1
|
Fan D, Wang T, Zhao H, Liu C, Liu C, Liu T, Wang Y. Association Between White Matter Hyperintensity and Cognitive Impairment in Cerebral Small Vessel Disease: The Frequency-dependent Role of Brain Functional Activity. J Integr Neurosci 2025; 24:36303. [PMID: 40302266 DOI: 10.31083/jin36303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/15/2025] [Accepted: 02/25/2025] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND Cognitive dysfunction in cerebral small vessel disease (CSVD) patients is associated with white matter hyperintensity (WMH), which demonstrates frequency-dependent correlations with brain functional activities. However, the neural mechanisms underlying the relationship between these structural and functional abnormalities and cognitive impairment remain unclear. METHODS We recruited 34 CSVD patients (mean age 63.74 ± 4.85 years, 19 males) and 45 age-matched healthy controls (mean age 63.69 ± 6.15 years, 15 males). All participants underwent magnetic resonance imaging (MRI) scanning and comprehensive cognitive assessments, including three behavioral tasks and a cognitive questionnaire battery. Regional brain activity and network topological properties were separately compared between the two groups for each of the three frequency bands (slow-4, slow-5, and typical band) using two-sample t-tests. Simple and multiple mediation analyses were performed to examine the relationships among WMH, functional brain measures, and global cognition. RESULTS CSVD patients exhibited frequency-specific alterations in regional activity and reduced global functional organization in the slow-4 band. Frequency-dependent functional measures in the slow-4 band significantly mediated the relationship between deep WMH and cognitive performance. CONCLUSION Our findings demonstrate the frequency-specific mediating role of abnormal brain functions in the pathophysiological pathway linking WMHs to cognitive impairment. This study provides new insight into the pathological mechanisms underlying WMH-related cognitive dysfunction. CLINICAL TRIAL REGISTRATION ChiCTR2100043346, 02 November 2021, https://www.chictr.org.cn/showproj.html?proj=52285.
Collapse
Affiliation(s)
- Dongqiong Fan
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 100191 Beijing, China
| | - Tingting Wang
- Department of Neurology, Beijing TianTan Hospital, Capital Medical University, 100070 Beijing, China
| | - Haichao Zhao
- Faculty of Psychology, MOE Key Laboratory of Cognition and Personality, Southwest University, 400715 Chongqing, China
| | - Chang Liu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 100191 Beijing, China
| | - Chenhui Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, 450001 Zhengzhou, Henan, China
| | - Tao Liu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 100191 Beijing, China
| | - Yilong Wang
- Department of Neurology, Beijing TianTan Hospital, Capital Medical University, 100070 Beijing, China
- Chinese Institute for Brain Research, 102206 Beijing, China
- National Center for Neurological Disorders, 100070 Beijing, China
| |
Collapse
|
2
|
Zhao H, Li Y, Yin X, Liu Z, Zhou Z, Sun H, Fan Y, Wang S, Xin T. Neuroticism and cerebral small vessel disease: A genetic correlation and Mendelian randomization analysis. Neuroscience 2025; 566:1-8. [PMID: 39681255 DOI: 10.1016/j.neuroscience.2024.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/25/2024] [Accepted: 12/14/2024] [Indexed: 12/18/2024]
Abstract
OBJECTIVES The association of neuroticism and cerebral small vessel disease (CSVD) development remains unclear. In this study, we used Mendelian randomization (MR) to explore the potential role of neuroticism in CSVD development. METHODS We collected data on ischemic stroke (IS); small vessel stroke (SVS); three neuroimaging markers altered in CSVD, including white matter hyperintensity (WMH), fractional anisotropy (FA), and mean diffusivity (MD); and three neuroticism clusters, including depressed affect, worry, sensitivity to environmental stress and adversity (SESA), from large-scale genome-wide association studies (GWAS). Bidirectional MR analyses were used to evaluate the association between neuroticism and CSVD, primarily estimated using the inverse variance weighted (IVW) method. The linkage disequilibrium score (LDSC) regression was employed to assess the association between various phenotypes. RESULTS LDSC analysis unveiled a noteworthy genetic correlation between depressed affect and IS (rg = 0.111, p = 0.001) as well as between worry and SVS (rg = -0.111, p = 0.032). Our study revealed a causal correlation between SESA and FA using both forward and reverse MR analyses (SESA on FA, odds ratio (OR) = 0.186 (0.071 to 0.483), p = 5.50 × 10-4; FA on SESA, OR = 0.996 (0.9916 to 0.9997), p = 0.035). Meanwhile, FA also exerted a statistical causal influence on depressed affect cluster (OR = 0.992 (0.987 to 0.997), p = 0.001). INTERPRETATION This research suggests a potential correlation between certain aspects of neuroticism and CSVD, with further studies needed to better understand the causal relationship and its implications for patient intervention.
Collapse
Affiliation(s)
- Hongbo Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China; Shandong Engineering Research Center of Precision Diagnosis and Treatment Technology for Neuro-oncology, Jinan, 250014, China; Shandong Institute of Brain Science and Brain-inspired Research, Jinan, 250117, China
| | - Yuming Li
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China; Shandong Engineering Research Center of Precision Diagnosis and Treatment Technology for Neuro-oncology, Jinan, 250014, China; Shandong Institute of Brain Science and Brain-inspired Research, Jinan, 250117, China; First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xianyong Yin
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China; Shandong Engineering Research Center of Precision Diagnosis and Treatment Technology for Neuro-oncology, Jinan, 250014, China; Shandong Institute of Brain Science and Brain-inspired Research, Jinan, 250117, China
| | - Zihao Liu
- Shandong Engineering Research Center of Precision Diagnosis and Treatment Technology for Neuro-oncology, Jinan, 250014, China; Shandong Institute of Brain Science and Brain-inspired Research, Jinan, 250117, China; Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Zijian Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China; Shandong Engineering Research Center of Precision Diagnosis and Treatment Technology for Neuro-oncology, Jinan, 250014, China; Shandong Institute of Brain Science and Brain-inspired Research, Jinan, 250117, China; Laboratory of Basic and Translational Neuromedicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China
| | - Haohan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China; Shandong Engineering Research Center of Precision Diagnosis and Treatment Technology for Neuro-oncology, Jinan, 250014, China; Shandong Institute of Brain Science and Brain-inspired Research, Jinan, 250117, China
| | - Yang Fan
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China; Shandong Engineering Research Center of Precision Diagnosis and Treatment Technology for Neuro-oncology, Jinan, 250014, China; Shandong Institute of Brain Science and Brain-inspired Research, Jinan, 250117, China; Laboratory of Basic and Translational Neuromedicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China
| | - Shan Wang
- Shandong Key Laboratory of Reproductive Medicine, Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.
| | - Tao Xin
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China; Shandong Engineering Research Center of Precision Diagnosis and Treatment Technology for Neuro-oncology, Jinan, 250014, China; Shandong Institute of Brain Science and Brain-inspired Research, Jinan, 250117, China; Laboratory of Basic and Translational Neuromedicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China; Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| |
Collapse
|
3
|
Cao W, Niu J, Liang Y, Cui D, Jiao Q, Ouyang Z, Yu G, Dong L, Luo C. Disturbances of thalamus and prefrontal cortex contribute to cognitive aging: A structure-function coupling analysis based on KL divergence. Neuroscience 2024; 559:263-271. [PMID: 39236803 DOI: 10.1016/j.neuroscience.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/24/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
Normal aging is accompanied by changes in brain structure and function associated with cognitive decline. Structural and functional abnormalities, particularly the prefrontal cortex (PFC) and subcortical regions, contributed to cognitive aging. However, it remains unclear how the synchronized changes in structure and function of individual brain regions affect the cognition in aging. Using 3D T1-weighted structural data and movie watching functional magnetic resonance imaging data in a sample of 422 healthy individuals (ages from 18 to 87 years), we constructed regional structure-function coupling (SFC) of cortical and subcortical regions by quantifying the distribution similarity of gray matter volume (GMV) and amplitude of low-frequency fluctuation (ALFF). Further, we investigated age-related changes in SFC and its relationship with cognition. With aging, increased SFC localized in PFC, thalamus and caudate nucleus, decreased SFC in temporal cortex, lateral occipital cortex and putamen. Moreover, the SFC in the PFC was associated with executive function and thalamus was associated with the fluid intelligence, and partially mediated age-related cognitive decline. Collectively, our results highlight that tighter structure-function synchron of the PFC and thalamus might contribute to age-related cognitive decline, and provide insight into the substrate of the thalamo-prefrontal pathway with cognitive aging.
Collapse
Affiliation(s)
- Weifang Cao
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; Institute of Electronic and Information Engineering of Guangdong, University of Electronic Science and Technology of China, Dongguan 523000, China; School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Jinpeng Niu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Yong Liang
- Institute of Electronic and Information Engineering of Guangdong, University of Electronic Science and Technology of China, Dongguan 523000, China
| | - Dong Cui
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Qing Jiao
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Zhen Ouyang
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Guanghui Yu
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Li Dong
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Cheng Luo
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| |
Collapse
|
4
|
Bu J, Ren N, Wang Y, Wei R, Zhang R, Zhu H. Identification of abnormal closed-loop pathways in patients with MRI-negative pharmacoresistant epilepsy. Brain Imaging Behav 2024; 18:892-901. [PMID: 38592332 DOI: 10.1007/s11682-024-00880-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2024] [Indexed: 04/10/2024]
Abstract
Epilepsy is a disorder of brain networks, that is usually combined with cognitive and emotional impairment. However, most of the current research on closed-loop pathways in epilepsy is limited to the neuronal level or has focused only on known closed-loop pathways, and studies on abnormalities in closed-loop pathways in epilepsy at the whole-brain network level are lacking. A total of 26 patients with magnetic resonance imaging-negative pharmacoresistant epilepsy (MRIneg-PRE) and 26 healthy controls (HCs) were included in this study. Causal brain networks and temporal-lag brain networks were constructed from resting-state functional MRI data, and the Johnson algorithm was used to identify stable closed-loop pathways. Abnormal closed-loop pathways in the MRIneg-PRE cohort compared with the HC group were identified, and the associations of these pathways with indicators of cognitive and emotional impairments were examined via Pearson correlation analysis. The results revealed that the abnormal stable closed-loop pathways were distributed across the frontal, parietal, and occipital lobes and included altered functional connectivity values both within and between cerebral hemispheres. Four abnormal closed-loop pathways in the occipital lobe were associated with emotional and cognitive impairments. These abnormal pathways may serve as biomarkers for the diagnosis and guidance of individualized treatments for MRIneg-PRE patients.
Collapse
Affiliation(s)
- Jinxin Bu
- Department of Functional Neurosurgery, Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Nanxiao Ren
- Department of Functional Neurosurgery, Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Yonglu Wang
- Child Mental Health Research Center, Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Ran Wei
- Division of Child Care, Suzhou Municipal Hospital, No. 26 Daoqian Road, Suzhou, Jiangsu, 215002, China
| | - Rui Zhang
- Department of Functional Neurosurgery, Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| | - Haitao Zhu
- Department of Functional Neurosurgery, Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
5
|
Thomas J, Jezzard P, Webb AJS. Low-frequency oscillations in the brain show differential regional associations with severity of cerebral small vessel disease: a systematic review. Front Neurosci 2023; 17:1254209. [PMID: 37719157 PMCID: PMC10501452 DOI: 10.3389/fnins.2023.1254209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/15/2023] [Indexed: 09/19/2023] Open
Abstract
Background Cerebral small vessel disease (cSVD) is associated with endothelial dysfunction but the pathophysiology is poorly understood. Low-frequency oscillations (LFOs) in the BOLD signal partly reflect cerebrovascular function and have the potential to identify endothelial dysfunction in cSVD. A systematic review was performed to assess the reported relationships between imaging markers of cSVD and LFOs. Methods Medline and EMBASE were searched for original studies reporting an association between LFOs and STRIVE-defined imaging markers of cSVD, including: white matter hyperintensities (WMH), enlarged perivascular spaces, lacunes, CADASIL, and cerebral microbleeds, from inception to September 1, 2022. Variations in LFOs were extracted, where available, on a global, tissue-specific, or regional level, in addition to participant demographics, data acquisition, methods of analysis, and study quality. Where a formal meta-analysis was not possible, differences in the number of studies reporting LFO magnitude by presence or severity of cSVD were determined by sign test. Results 15 studies were included from 841 titles. Studies varied in quality, acquisition parameters, and in method of analysis. Amplitude of low-frequency fluctuation (ALFF) in resting state fMRI was most commonly assessed (12 studies). Across 15 studies with differing markers of cSVD (9 with WMH; 1 with cerebral microbleeds; 1 with lacunar infarcts; 1 with CADASIL; 3 with multiple markers), LFOs in patients with cSVD were decreased in the posterior cortex (22 of 32 occurrences across all studies, p = 0.05), increased in the deep grey nuclei (7 of 7 occurrences across all studies, p = 0.016), and potentially increased in the temporal lobes (9 of 11 occurrences across all studies, p = 0.065). Conclusion Despite limited consensus on the optimal acquisition and analysis methods, there was reasonably consistent regional variation in LFO magnitude by severity of cSVD markers, supporting its potential as a novel index of endothelial dysfunction. We propose a consistent approach to measuring LFOs to characterise targetable mechanisms underlying cSVD.
Collapse
Affiliation(s)
- James Thomas
- Nuffield Department of Clinical Neurosciences, Wolfson Centre for Prevention of Stroke and Dementia, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Peter Jezzard
- FMRIB Division, Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Alastair J. S. Webb
- Nuffield Department of Clinical Neurosciences, Wolfson Centre for Prevention of Stroke and Dementia, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|