1
|
Kong W, Wang X, Song J, Zhao Y, Wei W, Li Y, Shi H, Cai J, Xue X. Characteristics of EEG microstates in stroke patients with cognitive impairment after basal ganglia injury. Brain Res 2025:149716. [PMID: 40425100 DOI: 10.1016/j.brainres.2025.149716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/28/2025] [Accepted: 05/17/2025] [Indexed: 05/29/2025]
Abstract
OBJECTIVES To explore changes in Electroencephalography (EEG) microstates in patients with cognitive impairment following basal ganglia stroke to understand the neural mechanisms of cognitive deficits better. METHODS Thirty post-stroke cognitive impairment (PSCI, MoCA < 26, age: 60.07 ± 7.57, male/female: 22/8) patients, 23 post-stroke patients without cognitive impairment (PSN, MoCA ≥ 26, age: 59.57 ± 8.65, male/female: 17/6), and 27 healthy controls (HC, MoCA ≥ 26, age: 62.26 ± 6.65, male/female: 17/10) underwent cognitive tests and EEG recordings. EEG data were preprocessed to analyze microstate parameters, with variance testing performed across groups. Following preprocessing of the raw EEG data, global field power (GFP) was computed to identify periods of maximal topographic stability. Four prototypical microstate classes were derived using K-means clustering, after which three key temporal characteristics were quantified for each participant: (1) microstate mean duration, (2) Mean Frequency of Occurrence, and (3) Mean Coverage. Correlation analyses were conducted between microstate parameters and cognitive scores in the PSCI group. The cut-off value, sensitivity, and specificity of metrics related to overall cognitive function were calculated with the receiver operating characteristic curve. RESULTS Cognitive assessments revealed significantly poorer performance in all domains for the PSCI group than the PSN and HC groups (p < 0.001). The PSCI group exhibited a longer mean media duration (MMD) and lower incidence mean frequency of occurrence (MFO) of EEG microstates compared to other groups (p < 0.01). The mean duration of microstates A, and D negatively correlated with MoCA total scores (microstates A: r = -0.491, microstates D: r = -0.372), particularly in attention and orientation domains. Furthermore, receiver operating characteristic (ROC) curve analysis indicated that the mean duration of microstate A can potentially serve as a diagnostic biomarker for PSCI. The optimal cut-off values for A-MMD were 45.41 points. The area under the curve was 0.82, sensitivity was 80 %, and specificity was 69.6 %. CONCLUSION Basal ganglia injury is associated with abnormal EEG microstate dynamics, characterized by prolonged microstate duration and reduced incidence rate, contributing to cognitive network dysfunction. These findings suggest EEG microstates as potential biomarkers for diagnosis.
Collapse
Affiliation(s)
- Weicheng Kong
- The Affiliated Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, China; College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xinyang Wang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jian Song
- The Affiliated Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yuqing Zhao
- The Affiliated Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Wei Wei
- The Affiliated Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, China; Fujian Provincial Rehabilitation Industrial Institution, Fujian Provincial Key Laboratory of Rehabilitation Technology, Fujian Key Laboratory of Cognitive Rehabilitation, Fuzhou, China
| | - Yanyan Li
- The Affiliated Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Haoran Shi
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jiayu Cai
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiehua Xue
- The Affiliated Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, China; Fujian Provincial Rehabilitation Industrial Institution, Fujian Provincial Key Laboratory of Rehabilitation Technology, Fujian Key Laboratory of Cognitive Rehabilitation, Fuzhou, China.
| |
Collapse
|
2
|
Chen M, Wu Y, Wang Y, Li Z. Functional connectivity and white matter microstructural alterations in patients with left basal ganglia acute ischemic stroke. Brain Imaging Behav 2025; 19:421-432. [PMID: 39964657 DOI: 10.1007/s11682-025-00982-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2025] [Indexed: 04/09/2025]
Abstract
Lesions in the basal ganglia present different neuroimaging manifestations compared to other regions. The functional connectivity and white matter (WM) microstructural alterations in patients with left basal ganglia acute ischemic stroke (AIS) remain unknown. This study aimed to explore the alterations of functional connectivity and WM microstructure, as well as their relationship with cognitive performance in patients with left basal ganglia AIS. We acquired resting-state functional MRI (rs-fMRI) and diffusion kurtosis imaging (DKI) data from 41 individuals with left basal ganglia AIS and 41 healthy controls (HC). The degree centrality (DC) method was applied to calculate the functional connectivity and Tract-Based Spatial Statistics was employed to evaluate the voxel-based group differences of diffusion metrics for the values of fractional anisotropy (FA), mean diffusivity, axial diffusivity (AD), radial diffusivity, mean kurtosis (MK), axial kurtosis, and radial kurtosis (RK). AIS showed attenuated DC in the bilateral precuneus and enhanced DC in the left caudate nucleus, compared with HC. In AIS, DC in the left caudate nucleus correlated positively with the Montreal Cognitive Assessment (MoCA) score (r = 0.681, p < 0.05). AIS had significantly decreased FA, AD, MK, and RK in WM tracts, including the internal capsule (IC), genu of corpus callosum (CC), body of CC, left superior longitudinal fasciculus (SLF), left cerebral peduncle, left corticospinal tract, anterior corona radiata (ACR), and left cingulum gyrus (CG). The MK in a cluster including the body of CC, right IC, left cingulate, SLF, ACR, and left CG was also significantly negatively correlated with MoCA scores (r = -0.508, p < 0.05). This study revealed that left basal ganglia AIS not only disrupted the functional connectivity of the whole brain but also had a pervasive impact on the WM microstructure of the whole brain. These findings provide novel insights into the underlying neural mechanisms of early cognitive decline in patients after AIS.
Collapse
Affiliation(s)
- Meizhong Chen
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Yufan Wu
- Department of Imaging, The First Affiliated Hospital of Fujian Medical University, NO.20, Chazhong Road, Fuzhou City, Fujian Province, 350000, China
| | - Yuntao Wang
- Department of Radiology, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Zhongming Li
- Department of Imaging, The First Affiliated Hospital of Fujian Medical University, NO.20, Chazhong Road, Fuzhou City, Fujian Province, 350000, China.
| |
Collapse
|
3
|
Mei K, Li F, Kang Z, Sun D, Luo X, Tian S, Zhang L, Zhang J. Cognitive impairment after intravenous thrombolysis in mild stroke: assessment of cerebral blood flow covariance network. Front Neurol 2025; 16:1513182. [PMID: 40125400 PMCID: PMC11925760 DOI: 10.3389/fneur.2025.1513182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/14/2025] [Indexed: 03/25/2025] Open
Abstract
Background Mild stroke may lead to cognitive impairment, and it remains unclear whether intravenous thrombolysis (IVT) can mitigate cognitive deficits. This study investigates whether IVT can help alleviate cognitive function impairment in patients and further explores changes in the topological properties of cerebral blood flow (CBF) networks. Methods This observational study prospectively enrolled 94 patients with acute mild ischemic stroke (44 IVT vs. 50 non-IVT) from two hospitals. A battery of neuropsychological tests and arterial spin labeling were performed to evaluate their cognitive functioning and CBF in 116 brain regions. Voxel-wise CBF was compared between patients and health controls. The CBF covariance network of patients was constructed by calculating across-subject CBF covariance among 116 brain regions. Network properties were calculated and compared between IVT and no-IVT groups. Results The mild stroke group demonstrated significantly lower Montreal Cognitive Assessment (MoCA) scores compared to healthy controls (p < 0.001). Patients receiving IVT showed superior performance on the Trail Making Test-B (p = 0.043), Clock Drawing Test (p = 0.001), and Verbal Fluency Test (p = 0.033). Multivariate regression analysis adjusted for covariates demonstrated significant associations between IVT and cognitive outcomes: Montreal Cognitive Assessment (β = 2.85; 95% CI, 0.64-5.13), Trail Making Test-A (β = -16.90; 95% CI, -32.89--0.90), Trail Making Test-B (β = -43.27; 95% CI, -78.78--7.76), Hopkins Verbal Learning Test-Revised total recall (β = 3.57; 95% CI, 1.36-5.78), HVLT-R delayed recall (β = 1.53; 95% CI, 0.43-2.63), Clock Drawing Test (β = 7.09; 95% CI, 2.40-11.79), and Verbal Fluency Test (β = 3.00; 95% CI, 1.33-4.68). IVT patients exhibited higher small-worldness, clustering coefficient, and global efficiency of the network compared to non-IVT patients. Conclusion Intravenous thrombolysis demonstrated early cognitive benefits across multiple domains in patients with mild stroke. Improvement in the brain CBF covariance network properties may be the underlying mechanism.
Collapse
Affiliation(s)
- Kefu Mei
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Neurology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Feng Li
- Department of Radiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Zhiming Kang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dong Sun
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | | | - Shiyuan Tian
- Department of Neurology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Lei Zhang
- Department of Neurology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Junjian Zhang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Chen M, Wang Y, Li Z. Disrupted white matter structural networks in patients with acute ischemic stroke in the right basal ganglia. Neuroscience 2025; 568:68-75. [PMID: 39341271 DOI: 10.1016/j.neuroscience.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/27/2024] [Accepted: 08/03/2024] [Indexed: 09/30/2024]
Abstract
Widespread structural changes have been observed in patients with stroke in previous diffusion tensor imaging studies. However, the topological organization of white matter structural networks after acute ischemic stroke (AIS) in the right basal ganglia (BG) remains unknown. The aim of our study is to investigate whether the topological structure of the white matter structural network is altered in patients with AIS in the right BG, and its relationship with cognition. Graph theoretical analysis was employed to investigate the topological architecture of whole-brain white matter structural networks in 40 AIS patients in the right BG and 40 healthy controls (HC), and network-based statistics (NBS) were applied to examine structural connectivity alterations. Compared to HC, AIS patients exhibited altered global network properties characterized by increased small-worldness, normalized clustering coefficient, and shortest path length, as well as decreased clustering coefficient, local efficiency, and global efficiency. The nodes with significantly decreased nodal properties in AIS patients were primarily located in the default mode network, limbic system, sensorimotor system, salience network, and central executive network. Reduced structural connectivity detected by NBS in AIS patients were primarily located in the lesional hemisphere. Furthermore, altered nodal properties were correlated with cognitive scores. Documenting the alterations in the topological patterns of white matter structural networks will help to promote the understanding of the neural mechanisms of cognitive impairment after AIS in the right BG.
Collapse
Affiliation(s)
- Meizhong Chen
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yuntao Wang
- Department of Radiology, Fujian Cancer Hospital, Fuzhou, China
| | - Zhongming Li
- Department of Imaging, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.
| |
Collapse
|
5
|
Jia X, Li Y, Jia X, Yang Q. Structural network disruption of corticothalamic pathways in cerebral small vessel disease. Brain Imaging Behav 2024; 18:979-988. [PMID: 38717572 PMCID: PMC11582140 DOI: 10.1007/s11682-024-00889-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2024] [Indexed: 11/22/2024]
Abstract
Generalized fractional anisotropy (GFA) can eliminate the crossing fiber effect, which may be more reflective of brain tissue changes in patients with cerebral small vessel disease (CSVD). This study aimed to explore the alterations of structural networks based on GFA and its relationship with cognitive performance in CSVD patients. We recruited 50 CSVD patients which were divided into two groups: cognitive impairment (CSVD-CI) and normal cognition (CSVD-NC), and 22 healthy controls (HCs). All participants underwent the Montreal Cognitive Assessment (MoCA) and MRI examinations. The structural topological properties were compared among the three groups. The correlation between these structural alterations and MoCA was analyzed. Compared with HCs, significantly decreased nodal efficiency and connectivity were detected in the corticothalamic pathways in both patient groups, of which some were significantly decreased in CSVD-CIs compared with CSVD-NCs. Moreover, both patient groups exhibited global network disruption including decreased global efficiency and increased characteristic path length compared with HCs. Furthermore, the nodal efficiency in the right pallidum positively correlated with MoCA in CSVD-NCs controlling for nuisance variables (r = 0.471, p = 0.031). The alterations in corticothalamic pathways indicated that the brain structural network underwent extensive disruption, providing evidence for the consideration of CSVD as a global brain disease.
Collapse
Affiliation(s)
- Xuejia Jia
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Yingying Li
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Xiuqin Jia
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
- Key Lab of Medical Engineering for Cardiovascular Disease, Ministry of Education, Beijing, 100020, China.
| | - Qi Yang
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
- Key Lab of Medical Engineering for Cardiovascular Disease, Ministry of Education, Beijing, 100020, China.
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
6
|
Liu C, Jing J, Zhu W, Zuo L. Exploring the Relationship between Abnormal Communication Efficiency of Cerebral Cortex and Multiple Cognitive Functions in Mild Subcortical Stroke: A Resting-State fMRI Study. Brain Sci 2024; 14:809. [PMID: 39199500 PMCID: PMC11352420 DOI: 10.3390/brainsci14080809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND The purpose of this study was to explore the specific regions of abnormal cortical communication efficiency in patients with mild subcortical stroke and to investigate the relationship between these communication efficiency abnormalities and multidimensional cognition. METHODS The research involved 35 patients with mild strokes affecting the basal ganglia and 29 healthy controls (HC). Comprehensive neuroimaging and neuropsychological assessments were conducted. Stroke patients were categorized into post-stroke cognitive impairment (PSCI) (MoCA ≤ 22) and non-cognitively impaired stroke patients (NPSCI) (MoCA ≥ 23) based on their cognitive performance. Additionally, 22 patients were reassessed three months later. RESULTS PSCI patients, compared to HC and NPSCI groups, had significantly higher communication efficiency in specific brain regions. A notable finding was the significant correlation between increased communication efficiency in the medioventral occipital cortex and multidimensional cognitive decline. However, this increased communication efficiency in PSCI patients lessened during the three-month follow-up period. CONCLUSIONS the heightened communication efficiency in the medio-ventral occipital cortex may represent a compensatory mechanism for cognitive impairment in PSCI patients, which undergoes adjustment three months after stroke.
Collapse
Affiliation(s)
- Chang Liu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Jing Jing
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China; (J.J.); (W.Z.)
| | - Wanlin Zhu
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China; (J.J.); (W.Z.)
| | - Lijun Zuo
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China; (J.J.); (W.Z.)
| |
Collapse
|
7
|
Viader F. Basal ganglia matter. Eur J Neurol 2023; 30:3638-3639. [PMID: 37548566 DOI: 10.1111/ene.16029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Affiliation(s)
- Fausto Viader
- Universite de Caen Normandie UFR Sante, Caen, France
- Universite de Caen Normandie UFR Sante, Inserm U1077-NIMH, Caen, France
| |
Collapse
|
8
|
Shi J, Zhao Y, Chen Q, Liao X, Chen J, Xie H, Liu J, Sun J, Chen S. Association Analysis of Gut Microbiota and Prognosis of Patients with Acute Ischemic Stroke in Basal Ganglia Region. Microorganisms 2023; 11:2667. [PMID: 38004679 PMCID: PMC10673176 DOI: 10.3390/microorganisms11112667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Previous studies have implied the potential impact of gut microbiota on acute ischemic stroke (AIS), but the relationships of gut microbiota with basal ganglia region infarction (BGRI) and the predictive power of gut microbiota in BGRI prognosis is unclear. The aim of this study was to ascertain characteristic taxa of BGRI patients with different functional outcomes and identify their predictive value. Fecal samples of 65 BGRI patients were collected at admission and analyzed with 16s rRNA gene sequencing. Three-month functional outcomes of BGRI were evaluated using modified Rankin Scale (mRS), and patients with mRS score of 0-1 were assigned to good-BGRI group while others were assigned to poor-BGRI group. We further identified characteristic microbiota using linear discriminant analysis effect size, and receiver operating characteristic (ROC) curve was used to determine the predictive value of differential bacteria. According to the mRS score assessed after 3 months of stroke onset, 22 patients were assigned to poor-BGRI group, while 43 patients were assigned to good-BGRI group. Short chain fatty acids-producing bacteria, Romboutsia and Fusicatenibacter, were characteristic microbiota of the good-BGRI group, while pro-inflammatory taxa, Acetanaerobacterium, were characteristic microbiota of the poor-BGRI group. Furthermore, the differential bacteria showed extensive associations with clinical indices. ROC curves, separately plotted based on Romboutsia and Fusicatenibacter, achieved area under the curve values of 0.7193 and 0.6839, respectively. This study identified the efficient discriminative power of characteristic microbiota in BGRI patients with different outcomes and provided novel insights into the associations of gut microbiota with related risk factors.
Collapse
Affiliation(s)
- Jiayu Shi
- Department of Geriatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China; (J.S.); (Y.Z.); (Q.C.); (X.L.); (J.C.); (H.X.)
| | - Yiting Zhao
- Department of Geriatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China; (J.S.); (Y.Z.); (Q.C.); (X.L.); (J.C.); (H.X.)
| | - Qionglei Chen
- Department of Geriatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China; (J.S.); (Y.Z.); (Q.C.); (X.L.); (J.C.); (H.X.)
| | - Xiaolan Liao
- Department of Geriatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China; (J.S.); (Y.Z.); (Q.C.); (X.L.); (J.C.); (H.X.)
| | - Jiaxin Chen
- Department of Geriatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China; (J.S.); (Y.Z.); (Q.C.); (X.L.); (J.C.); (H.X.)
| | - Huijia Xie
- Department of Geriatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China; (J.S.); (Y.Z.); (Q.C.); (X.L.); (J.C.); (H.X.)
| | - Jiaming Liu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China;
| | - Jing Sun
- Department of Geriatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China; (J.S.); (Y.Z.); (Q.C.); (X.L.); (J.C.); (H.X.)
| | - Songfang Chen
- Department of Neurology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
9
|
Brain disconnections refine the relationship between brain structure and function. Brain Struct Funct 2022; 227:2893-2895. [PMID: 36282422 PMCID: PMC10064792 DOI: 10.1007/s00429-022-02585-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
10
|
Min Y, Liu C, Zuo L, Wang Y, Li Z. The Relationship between Altered Degree Centrality and Cognitive Function in Mild Subcortical Stroke: A Resting-State fMRI Study. Brain Res 2022; 1798:148125. [DOI: 10.1016/j.brainres.2022.148125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/28/2022] [Accepted: 10/10/2022] [Indexed: 11/02/2022]
|