1
|
The critical importance of epigenetics in autoimmune-related skin diseases. Front Med 2023; 17:43-57. [PMID: 36811762 DOI: 10.1007/s11684-022-0980-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/05/2022] [Indexed: 02/24/2023]
Abstract
Autoimmune-related skin diseases are a group of disorders with diverse etiology and pathophysiology involved in autoimmunity. Genetics and environmental factors may contribute to the development of these autoimmune disorders. Although the etiology and pathogenesis of these disorders are poorly understood, environmental variables that induce aberrant epigenetic regulations may provide some insights. Epigenetics is the study of heritable mechanisms that regulate gene expression without changing DNA sequences. The most important epigenetic mechanisms are DNA methylation, histone modification, and noncoding RNAs. In this review, we discuss the most recent findings regarding the function of epigenetic mechanisms in autoimmune-related skin disorders, including systemic lupus erythematosus, bullous skin diseases, psoriasis, and systemic sclerosis. These findings will expand our understanding and highlight the possible clinical applications of precision epigenetics approaches.
Collapse
|
2
|
Pan Y, Du D, Wang L, Wang X, He G, Jiang X. The Role of T Helper 22 Cells in Dermatological Disorders. Front Immunol 2022; 13:911546. [PMID: 35911703 PMCID: PMC9331286 DOI: 10.3389/fimmu.2022.911546] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/14/2022] [Indexed: 11/25/2022] Open
Abstract
T helper 22 (Th22) cells are a newly identified subset of CD4+ T cells that secrete the effector cytokine interleukin 22 (IL-22) upon specific antigen stimulation, barely with IFN-γ or IL-17. Increasing studies have demonstrated that Th22 cells and IL-22 play essential roles in skin barrier defense and skin disease pathogenesis since the IL-22 receptor is widely expressed in the skin, especially in keratinocytes. Herein, we reviewed the characterization, differentiation, and biological activities of Th22 cells and elucidated their roles in skin health and disease. We mainly focused on the intricate crosstalk between Th22 cells and keratinocytes and provided potential therapeutic strategies targeting the Th22/IL-22 signaling pathway.
Collapse
Affiliation(s)
- Yu Pan
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Department of Dermatology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Dan Du
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Lian Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyun Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, China Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Gu He
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, China Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Gu He, ; Xian Jiang,
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, China Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Gu He, ; Xian Jiang,
| |
Collapse
|
3
|
Zhu C, Fei W, Wang W, Tang L, Gao J, Zhou F. Copy Number Variation Analysis of IL22 and LCE3C in Different Subtypes of Psoriasis in a Chinese Han Population. Med Sci Monit 2021; 27:e934927. [PMID: 34853291 PMCID: PMC8650389 DOI: 10.12659/msm.934927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/04/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Psoriasis is a chronic, immune-mediated and hyperproliferative skin disease with both genetic and environmental components. Copy number variations (CNV) of IL22 and LCE3C-LCE3B deletion have been confirmed to be predisposed to psoriasis vulgaris (PsV) in several ethnic groups. However, it remains to be clarified whether CNVs of IL22 and LCE3C are associated with different subtypes of psoriasis (psoriatic arthritis, PsA; erythrodermic psoriasis, EP; and generalized pustular psoriasis, GPP). MATERIAL AND METHODS We enrolled 897 Han Chinese individuals, including 478 patients and 419 healthy controls, and detected CNVs of IL22 and LCE3C using the comparative CT method by real-time PCR, and Pearson's χ² test was used to evaluated the copy number difference among subtypes. RESULTS CNVs of IL22 were significantly higher in PsV than in healthy controls (P<0.001). CNV of LCE3C in PsV, PsA, and GPP groups were significantly lower compared to healthy controls. When linked with clinical parameters, mild psoriasis carried less IL22 copy numbers than that in severe psoriasis (P=0.043). Neither IL22 or LCE3C CNVs were associated with age of onset. CONCLUSIONS CNVs of LCE3C and IL22 might differentially contribute to subtypes of psoriasis. These findings suggest complex and diverse genetic variations in and among different clinical subtypes of psoriasis.
Collapse
Affiliation(s)
- Caihong Zhu
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
- Institute of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
- The Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, PR China
- Collaborative Innovation Center for Complex and Severe Dermatosis, Anhui Medical University, Hefei, Anhui, PR China
| | - Wenmin Fei
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
- Collaborative Innovation Center for Complex and Severe Dermatosis, Anhui Medical University, Hefei, Anhui, PR China
| | - Wenjun Wang
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
- Institute of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
- The Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, PR China
| | - Lili Tang
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
- Institute of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
- The Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, PR China
| | - Jinping Gao
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
- Institute of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
- The Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, PR China
- Collaborative Innovation Center for Complex and Severe Dermatosis, Anhui Medical University, Hefei, Anhui, PR China
| | - Fusheng Zhou
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
- Institute of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
- The Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, PR China
- Collaborative Innovation Center for Complex and Severe Dermatosis, Anhui Medical University, Hefei, Anhui, PR China
| |
Collapse
|
4
|
Orsmond A, Bereza-Malcolm L, Lynch T, March L, Xue M. Skin Barrier Dysregulation in Psoriasis. Int J Mol Sci 2021; 22:10841. [PMID: 34639182 PMCID: PMC8509518 DOI: 10.3390/ijms221910841] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023] Open
Abstract
The skin barrier is broadly composed of two elements-a physical barrier mostly localised in the epidermis, and an immune barrier localised in both the dermis and epidermis. These two systems interact cooperatively to maintain skin homeostasis and overall human health. However, if dysregulated, several skin diseases may arise. Psoriasis is one of the most prevalent skin diseases associated with disrupted barrier function. It is characterised by the formation of psoriatic lesions, the aberrant differentiation and proliferation of keratinocytes, and excessive inflammation. In this review, we summarize recent discoveries in disease pathogenesis, including the contribution of keratinocytes, immune cells, genetic and environmental factors, and how they advance current and future treatments.
Collapse
Affiliation(s)
- Andreas Orsmond
- Sutton Arthritis Research Laboratory, Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (A.O.); (L.B.-M.)
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (T.L.); (L.M.)
| | - Lara Bereza-Malcolm
- Sutton Arthritis Research Laboratory, Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (A.O.); (L.B.-M.)
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (T.L.); (L.M.)
| | - Tom Lynch
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (T.L.); (L.M.)
| | - Lyn March
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (T.L.); (L.M.)
| | - Meilang Xue
- Sutton Arthritis Research Laboratory, Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (A.O.); (L.B.-M.)
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (T.L.); (L.M.)
| |
Collapse
|
5
|
Nwanaji-Enwerem JC, Nwanaji-Enwerem U, Baccarelli AA, Williams RF, Colicino E. Anti-tumor necrosis factor drug responses and skin-blood DNA methylation age: Relationships in moderate-to-severe psoriasis. Exp Dermatol 2020; 30:1197-1203. [PMID: 33015854 DOI: 10.1111/exd.14207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/07/2020] [Accepted: 09/27/2020] [Indexed: 12/19/2022]
Abstract
Studies have examined the utility of DNA methylation as a biomarker of psoriasis treatment responses, but investigations of treatment responses with Skin-Blood DNA methylation age (SkinBloodAge)-a methylation-based measure of health designed using skin tissues-are lacking. Using a HumanMethylation450 BeadChip blood DNA methylation data set from 70 white patients who presented with moderate-to-severe plaque psoriasis and were treated with anti-tumor necrosis factor (TNF) agents in Madrid, Spain, we examined the cross-sectional relationships of SkinBloodAge with anti-TNF treatment responses. Partial responders had a 7.2-year higher mean SkinBloodAge than excellent responders (P = .03). In linear regression models adjusted for chronological age, sex and anti-TNF agents - on average - partial responders had a 2.65-year higher SkinBloodAge than excellent responders (95%CI: 0.44, 4.86, P = .02). This relationship was attenuated in a sensitivity analysis adjusting for white blood cells including known T-cell mediators of psoriasis pathophysiology (β = 1.91-years, 95%CI: -0.50, 4.32, P = .12). Overall, our study suggests that partial responders to anti-TNF therapy have higher SkinBloodAges when compared to excellent responders. Although these findings still need to be confirmed more broadly, they further suggest that SkinBloodAge may be a useful treatment response biomarker that can be incorporated with other blood tests before anti-TNF therapy initiation in moderate-to-severe psoriasis patients.
Collapse
Affiliation(s)
- Jamaji C Nwanaji-Enwerem
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, MD/PhD Program, Harvard Medical School, Boston, MA, USA
| | | | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, NY, USA
| | - Ramone F Williams
- Division of Dermatology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Elena Colicino
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
6
|
Abstract
Psoriasis is a chronic and recurrent inflammatory skin disease, involving the rapid proliferation and abnormal differentiation of keratinocytes and activation of T cells. It is generally accepted that the central pathogenesis of psoriasis is a T cell-dominant immune disorder affected by multiple factors including genetic susceptibility, environmental factors, innate and adaptive immune responses, etc. However, the exact etiology is largely unknown. In recent years, epigenetic involvements, such as the DNA methylation, chromatin modifications, and noncoding RNA regulation are reported to be critical for the pathogenesis of psoriasis. However, the interplay between these factors has only recently been started to be unraveled. Notably, inhibitors of enzymes that work in epigenetic modifications, such as DNA methyltransferases and histone deacetylases, are beginning to appear in the clinical setting to restore normal epigenetic patterns (Generali et al. in J Autoimmun 83:51-61, 2017), providing novel therapeutic potential as novel treatment targets for psoriasis. Indeed, medications previously used to treat autoimmune diseases have later been discovered to exert their action via epigenetic mechanisms. Herein, we review the findings on epigenetics associated with psoriasis, and discuss future perspectives in this field.
Collapse
Affiliation(s)
- Shuai Shao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shannxi, China
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
7
|
Shen C, Wen L, Ko R, Gao J, Shen X, Zuo X, Sun L, Hsu YH, Zhang X, Cui Y, Wang M, Zhou F. DNA methylation age is not affected in psoriatic skin tissue. Clin Epigenetics 2018; 10:160. [PMID: 30587242 PMCID: PMC6307188 DOI: 10.1186/s13148-018-0584-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 11/09/2018] [Indexed: 12/19/2022] Open
Abstract
Background Psoriasis (Ps) is a common chronic inflammatory skin disease. The keratinocytes of psoriatic skin defy normal apoptosis and exhibit active cell proliferation. Aberrant DNA methylation (DNAm) has been suggested relevant through regulating the expression of Ps susceptibility genes. However, it is unclear whether the biological age inferred from DNA methylome is affected. Results To address the above issue, we applied a recently developed methylation clock model to our Chinese Han population dataset, which includes DNAm data of 114 involved psoriatic skin tissues (PP) and 41 uninvolved psoriatic skin tissues (PN) from Ps patients, and 62 normal skin tissues (NN) from health controls. We first confirmed the applicability of the clock in PN and NN. We then showed that PP samples have largely unchanged DNAm age, and that no association was observed between available clinical features and DNAm age acceleration. Examination of genome-wide CpGs yielded age-associated CpGs with concordant age-association coefficients among the three groups, which was also supported by an external dataset. We also interestingly observed two clock CpGs differentially methylated between PP and PN. Conclusions Overall, our results suggest no significant alteration in DNAm age in PN and PP. Therefore, the increase in keratinocyte proliferation and alteration in DNAm caused by Ps may not affect the biological age of psoriatic skin tissue. Electronic supplementary material The online version of this article (10.1186/s13148-018-0584-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Changbing Shen
- Institute and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China.,Department of Dermatology, China-Japan Friendship Hospital, Beijing, 100029, China.,Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,Hebrew SeniorLife Institute for Aging Research and Harvard Medical School, Boston, MA, 02131, USA.,Molecular and Integrative Physiological Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Leilei Wen
- Institute and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Randy Ko
- Department of Biochemistry, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Jing Gao
- Department of Dermatology, The Second Affiliated Hospital, Anhui Medical University, Hefei, 230601, Anhui, China
| | - Xue Shen
- Institute and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Xianbo Zuo
- Institute and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Liangdan Sun
- Institute and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yi-Hsiang Hsu
- Hebrew SeniorLife Institute for Aging Research and Harvard Medical School, Boston, MA, 02131, USA.,Molecular and Integrative Physiological Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Xuejun Zhang
- Institute and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China.,Department of Dermatology, The Second Affiliated Hospital, Anhui Medical University, Hefei, 230601, Anhui, China.,Institute and Department of Dermatology, Huashan Hospital of Fudan University, Shanghai, 200040, China
| | - Yong Cui
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, 100029, China. .,Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Meng Wang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
| | - Fusheng Zhou
- Institute and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China.
| |
Collapse
|