1
|
Dimitriou M, Mortera-Blanco T, Tobiasson M, Mazzi S, Lehander M, Högstrand K, Karimi M, Walldin G, Jansson M, Vonlanthen S, Ljungman P, Langemeijer S, Yoshizato T, Hellström-Lindberg E, Woll PS, Jacobsen SEW. Identification and surveillance of rare relapse-initiating stem cells during complete remission after transplantation. Blood 2024; 143:953-966. [PMID: 38096358 PMCID: PMC10950475 DOI: 10.1182/blood.2023022851] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 02/29/2024] Open
Abstract
ABSTRACT Relapse after complete remission (CR) remains the main cause of mortality after allogeneic stem cell transplantation for hematological malignancies and, therefore, improved biomarkers for early prediction of relapse remains a critical goal toward development and assessment of preemptive relapse treatment. Because the significance of cancer stem cells as a source of relapses remains unclear, we investigated whether mutational screening for persistence of rare cancer stem cells would enhance measurable residual disease (MRD) and early relapse prediction after transplantation. In a retrospective study of patients who relapsed and patients who achieved continuous-CR with myelodysplastic syndromes and related myeloid malignancies, combined flow cytometric cell sorting and mutational screening for persistence of rare relapse-initiating stem cells was performed in the bone marrow at multiple CR time points after transplantation. In 25 CR samples from 15 patients that later relapsed, only 9 samples were MRD-positive in mononuclear cells (MNCs) whereas flowcytometric-sorted hematopoietic stem and progenitor cells (HSPCs) were MRD-positive in all samples, and always with a higher variant allele frequency than in MNCs (mean, 97-fold). MRD-positivity in HSPCs preceded MNCs in multiple sequential samples, in some cases preceding relapse by >2 years. In contrast, in 13 patients in long-term continuous-CR, HSPCs remained MRD-negative. Enhanced MRD sensitivity was also observed in total CD34+ cells, but HSPCs were always more clonally involved (mean, 8-fold). In conclusion, identification of relapse-initiating cancer stem cells and mutational MRD screening for their persistence consistently enhances MRD sensitivity and earlier prediction of relapse after allogeneic stem cell transplantation.
Collapse
Affiliation(s)
- Marios Dimitriou
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Teresa Mortera-Blanco
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Magnus Tobiasson
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Stefania Mazzi
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Madeleine Lehander
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Kari Högstrand
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Mohsen Karimi
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA
| | - Gunilla Walldin
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Monika Jansson
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Sofie Vonlanthen
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Per Ljungman
- Division of Hematology, Department of Medicine, Department of Cellular Therapy and Allogeneic Stem Cell Transplantation, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Karolinska Comprehensive Cancer Center, Stockholm, Sweden
| | - Saskia Langemeijer
- Department of Hematology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Tetsuichi Yoshizato
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Eva Hellström-Lindberg
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Petter S. Woll
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Sten Eirik W. Jacobsen
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
- Haematopoietic Stem Cell Biology Laboratory and MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
2
|
Stempel JM, Xie Z, Bewersdorf JP, Stahl M, Zeidan AM. Evolution of Therapeutic Benefit Measurement Criteria in Myelodysplastic Syndromes/Neoplasms. Cancer J 2023; 29:203-211. [PMID: 37195777 DOI: 10.1097/ppo.0000000000000666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
ABSTRACT Myelodysplastic syndromes/neoplasms (MDS) are heterogeneous, clonal myeloid neoplasms characterized by ineffective hematopoiesis, progressive cytopenias, and an increased risk of progression to acute myeloid leukemia. The diversity in disease severity, morphology, and genetic landscape challenges not only novel drug development but also therapeutic response assessment. The MDS International Working Group (IWG) response criteria were first published in the year 2000 focusing on measures of blast burden reduction and hematologic recovery. Despite revision of the IWG criteria in 2006, correlation between IWG-defined responses and patient-focused outcomes, including long-term benefits, remains limited and has potentially contributed to failures of several phase III clinical trials. Several IWG 2006 criteria also lacked clear definitions leading to problems in practical applications and interobserver and intraobserver consistency of response reporting. Although the 2018 revision addressed lower-risk MDS, the most recent update in 2023 redefined responses for higher-risk MDS and has set out to provide clear definitions to enhance consistency while focusing on clinically meaningful outcomes and patient-centered responses. In this review, we analyze the evolution of the MDS response criteria, limitations, and areas of improvement.
Collapse
Affiliation(s)
- Jessica M Stempel
- From the Department of Internal Medicine, Hematology Section, Yale School of Medicine, New Haven, CT
| | - Zhuoer Xie
- Department of Hematology, H. Lee Moffitt Cancer Center, Tampa, FL
| | - Jan Philipp Bewersdorf
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Maximilian Stahl
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Harvard University, Boston, MA
| | - Amer M Zeidan
- From the Department of Internal Medicine, Hematology Section, Yale School of Medicine, New Haven, CT
| |
Collapse
|
3
|
Shen MZ, Zhang XH, Xu LP, Wang Y, Yan CH, Chen H, Chen YH, Han W, Wang FR, Wang JZ, Zhao XS, Qin YZ, Chang YJ, Liu KY, Huang XJ, Mo XD. Preemptive Interferon-α Therapy Could Protect Against Relapse and Improve Survival of Acute Myeloid Leukemia Patients After Allogeneic Hematopoietic Stem Cell Transplantation: Long-Term Results of Two Registry Studies. Front Immunol 2022; 13:757002. [PMID: 35154096 PMCID: PMC8831731 DOI: 10.3389/fimmu.2022.757002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/10/2022] [Indexed: 12/26/2022] Open
Abstract
For allogeneic hematopoietic stem cell transplantation (allo-HSCT) recipients, preemptive interferon-α (IFN-α) therapy is considered as a useful method to eliminate the minimal residual disease (MRD). Our purpose is to assess the long-term efficacy of preemptive IFN-α therapy in acute myeloid leukemia (AML) patients following allo-HSCT based on two registry studies (#NCT02185261 and #NCT02027064). We would present the final data and unpublished results of long-term clinical outcomes with extended follow-up. We adopted polymerase chain reaction (PCR) and multiparameter flow cytometry (MFC) to monitor MRD, and a positive result of bone marrow specimen examined by either of them would be identified as the MRD-positive status. Subcutaneous injections of recombinant human IFN-α-2b were performed for 6 cycles, and prolonged IFN-α therapy could be permitted at the request of patients. The median cycles were 3.5 (range, 0.5-30.5) cycles. A total of 9 patients suffered from grade ≥3 toxicities (i.e., infectious: n = 6; hematologic: n = 3). The 6-year cumulative incidences of relapse and non-relapse mortality following IFN-α therapy were 13.0% (95% confidence interval [CI], 5.4-20.6%) and 3.9% (95%CI, 0.0-17.6%), respectively. The probability of disease-free survival at 6 years following IFN-α therapy was 83.1% (95%CI, 75.2-91.9%). The probability of overall survival at 6 years following IFN-α therapy was 88.3% (95%CI, 81.4-95.8%). The cumulative incidences of total chronic graft-versus-host disease (cGVHD) and severe cGVHD at 6 years following IFN-α therapy were 66.2% (95%CI, 55.5-77.0%) and 10.4% (95%CI, 3.6-17.2%), respectively. Multivariable analysis showed that an alternative donor was associated with a lower risk of relapse and the better disease-free survival. Thus, preemptive IFN-α therapy could clear MRD persistently, prevent relapse truly, and improve long-term survival in AML patients following allo-HSCT.
Collapse
Affiliation(s)
- Meng-Zhu Shen
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Hui Zhang
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Lan-Ping Xu
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yu Wang
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Chen-Hua Yan
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Huan Chen
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yu-Hong Chen
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Wei Han
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Feng-Rong Wang
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Jing-Zhi Wang
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Su Zhao
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Ya-Zhen Qin
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Ying-Jun Chang
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Kai-Yan Liu
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Jun Huang
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiao-Dong Mo
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Fan S, Shen MZ, Zhang XH, Xu LP, Wang Y, Yan CH, Chen H, Chen YH, Han W, Wang FR, Wang JZ, Zhao XS, Qin YZ, Chang YJ, Liu KY, Huang XJ, Mo XD. Preemptive Immunotherapy for Minimal Residual Disease in Patients With t(8;21) Acute Myeloid Leukemia After Allogeneic Hematopoietic Stem Cell Transplantation. Front Oncol 2022; 11:773394. [PMID: 35070977 PMCID: PMC8770808 DOI: 10.3389/fonc.2021.773394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/10/2021] [Indexed: 11/13/2022] Open
Abstract
In patients with t(8;21) acute myeloid leukemia (AML), recurrent minimal residual disease (MRD) measured by RUNX1-RUNX1T1 transcript levels can predict relapse after allogeneic hematopoietic stem cell transplantation (allo-HSCT). This study aimed to compare the efficacy of preemptive interferon (IFN)-α therapy and donor lymphocyte infusion (DLI) in patients with t(8;21) AML following allo-HSCT. We also evaluated the appropriate method for patients with different levels of RUNX1-RUNX1T1 transcripts. In this retrospective study, consecutive patients who had high-risk t(8;21) AML and received allo-HSCT were enrolled. The inclusion criteria were as follows: (1) age ≤65 years; (2) regained MRD positive following allo-HSCT. MRD positive was defined as the loss of a ≥4.5-log reduction and/or <4.5-log reduction in the RUNX1-RUNX1T1 transcripts, and high-level, intermediate-level, and low-level MRDs were, respectively, defined as <2.5-log, 2.5-3.5-log, and 3.5-4.5-log reductions in the transcripts compared with the pretreatment baseline level. Patients with positive RUNX1-RUNX1T1 could receive preemptive IFN-α therapy or DLI, which was primarily based on donor availability and the intentions of physicians and patients. The patients received recombinant human IFN-α-2b therapy by subcutaneous injection twice a week every 4 weeks. IFN-α therapy was scheduled for six cycles or until the RUNX1-RUNX1T1 transcripts were negative for at least two consecutive tests. The rates of MRD turning negative for patients with low-level, intermediate-level, and high-level RUNX1-RUNX1T1 receiving IFN-α were 87.5%, 58.1%, and 22.2%, respectively; meanwhile, for patients with intermediate-level and high-level RUNX1-RUNX1T1 receiving DLI, the rates were 50.0% and 14.3%, respectively. For patients with low-level and intermediate-level RUNX1-RUNX1T1, the probability of overall survival at 2 years was higher in the IFN-α group than in the DLI group (87.6% vs. 55.6%; p = 0.003). For patients with high levels of RUNX1-RUNX1T1, the probability of overall survival was comparable between the IFN-α and DLI groups (53.3% vs. 83.3%; p = 0.780). Therefore, patients with low-level and intermediate-level RUNX1-RUNX1T1 could benefit more from preemptive IFN-α therapy compared with DLI. Clinical outcomes were comparable between preemptive IFN-α therapy and DLI in patients with high-level RUNX1-RUNX1T1; however, they should be further improved.
Collapse
Affiliation(s)
- Shuang Fan
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Meng-Zhu Shen
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Hui Zhang
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Lan-Ping Xu
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yu Wang
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Chen-Hua Yan
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Huan Chen
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yu-Hong Chen
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Wei Han
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Feng-Rong Wang
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Jing-Zhi Wang
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Su Zhao
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Ya-Zhen Qin
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Ying-Jun Chang
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Kai-Yan Liu
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Jun Huang
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiao-Dong Mo
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Deng DX, Wen JJ, Cheng YF, Zhang XH, Xu LP, Wang Y, Yan CH, Chen YH, Chen H, Han W, Wang FR, Wang JZ, Qin YZ, Liu KY, Huang XJ, Zhao XS, Mo XD. Wilms' tumor gene 1 is an independent prognostic factor for pediatric acute myeloid leukemia following allogeneic hematopoietic stem cell transplantation. BMC Cancer 2021; 21:292. [PMID: 33740924 PMCID: PMC7980537 DOI: 10.1186/s12885-021-08022-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/08/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Sequential monitoring of Wilms' tumor gene 1 (WT1) after allogeneic hematopoietic stem cell transplantation (allo-HSCT) could predict relapse in adult acute myeloid leukemia (AML). However, the prognostic role of WT1 in pediatric AML after allo-HSCT is unclear. Thus, we determined to see whether sequential monitoring of WT1 after allo-HSCT could predict relapse in AML children. METHODS Pediatric AML patients receiving allo-HSCT from January 21, 2012 to December 20, 2018 at the Peking University Institute of Hematology were included in this study. WT1 expression level was determined by TaqMan-based reverse transcription-polymerase chain reaction. WT1 sequential monitoring was performed 1, 2, 3, 4.5, 6, 9, and 12 months post-transplantation and at 6-month intervals thereafter. The primary end point was relapse. The secondary end points included disease-free survival (DFS), overall survival (OS), and non-relapse mortality (NRM). Kaplan-Meier analysis was used for DFS and OS estimates, while competing risk analysis was used for estimating relapse and NRM. RESULTS Of the 151 consecutive patients included, the median age was 10 years (range, 1-17). The optimal cutoff value of WT1 within 1 year after allo-HSCT to predict relapse was 0.8% (80 WT1 copies/104 ABL copies), with a sensitivity of 60% and specificity of 79%. Compared with WT1 expression < 0.8%, WT1 expression ≥0.8% indicated significantly higher 5-year cumulative incidence of relapse (CIR, 35.1% vs. 11.3%; P = 0.001), lower 5-year disease-free survival (DFS, 60.4% vs. 80.8%; P = 0.009), and lower 5-year overall survival (OS, 64.9% vs. 81.6%; P = 0.038) rates. Multivariate analyses showed that WT1 was an independent risk factor for relapse (HR 2.89; 95% confidence interval (CI), 1.25-6.71; P = 0.014). Both the CIR (5-year CIR: 8.3% vs. 11.3%; P = 0.513) and DFS (5-year DFS: 91.7% vs. 80.8%; P = 0.208) were comparable between patients achieving minimal residual disease (MRD) negativity after preemptive interferon-α (IFN-α) treatment and those without MRD after allo-HSCT, which were better than those of MRD-positive patients without preemptive therapies. CONCLUSIONS Sequential monitoring of WT1 could predict relapse in pediatric AML after allo-HSCT. WT1-directed immunotherapy may have the potential to prevent relapse and improve survival.
Collapse
MESH Headings
- Adolescent
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/metabolism
- Bone Marrow/pathology
- Child
- Child, Preschool
- Disease-Free Survival
- Female
- Hematopoietic Stem Cell Transplantation
- Humans
- Incidence
- Infant
- Kaplan-Meier Estimate
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/therapy
- Male
- Neoplasm Recurrence, Local/epidemiology
- Neoplasm Recurrence, Local/pathology
- Neoplasm, Residual
- Prognosis
- Risk Assessment/methods
- Transplantation, Homologous
- WT1 Proteins/analysis
- WT1 Proteins/metabolism
Collapse
Affiliation(s)
- Dao-Xing Deng
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, 2019RU029, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Juan-Juan Wen
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, 2019RU029, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yi-Fei Cheng
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, 2019RU029, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, 2019RU029, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Lan-Ping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, 2019RU029, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, 2019RU029, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Chen-Hua Yan
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, 2019RU029, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yu-Hong Chen
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, 2019RU029, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Huan Chen
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, 2019RU029, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Wei Han
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, 2019RU029, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Feng-Rong Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, 2019RU029, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Jing-Zhi Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, 2019RU029, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Ya-Zhen Qin
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, 2019RU029, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Kai-Yan Liu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, 2019RU029, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, 2019RU029, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Xiao-Su Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, 2019RU029, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China.
| | - Xiao-Dong Mo
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, 2019RU029, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.
| |
Collapse
|
6
|
Liu J, Zhang XH, Xu LP, Wang Y, Yan CH, Chen H, Chen YH, Han W, Wang FR, Wang JZ, Cheng YF, Qin YZ, Liu KY, Huang XJ, Zhao XS, Mo XD. Minimal residual disease monitoring and preemptive immunotherapies for frequent 11q23 rearranged acute leukemia after allogeneic hematopoietic stem cell transplantation. Ann Hematol 2021; 100:1267-1281. [PMID: 33712867 DOI: 10.1007/s00277-021-04488-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 03/02/2021] [Indexed: 01/02/2023]
Abstract
The prognosis of 11q23/KMT2A-rearranged (KMT2A-r) acute leukemia (AL) after allogeneic hematopoietic stem cell transplantation (allo-HSCT) is poor. Minimal residual disease (MRD) is an important prognostic factor for relapse. Thus, we aimed to identify the evolution of KMT2A before and after allo-HSCT and the efficacy of preemptive immunotherapies for KMT2A-r AL patients receiving allo-HSCT. KMT2A expression was determined through TaqMan-based RQ-PCR technology. Preemptive immunotherapies included interferon-α and donor lymphocyte infusion. We collected 1751 bone marrow samples from 177 consecutive KMT2A-r AL patients. Pre-HSCT KMT2A positivity was correlated with post-HSCT KMT2A positivity (correlation coefficient=0.371, P<0.001). The rates of achieving KMT2A negativity after allo-HSCT were 96.6%, 92.9%, and 68.8% in the pre-HSCT low-level group (>0, <0.1%), intermediate-level group (≥ 0.1%, <1%), and high-level group (≥1%), respectively. The rates of regaining KMT2A positivity after allo-HSCT were 7.7%, 35.7%, 38.5%, and 45.5% for the pre-HSCT KMT2A-negative, low-level, intermediate-level, and high-level groups, respectively (P<0.001). The 4-year cumulative incidence of relapse after allo-HSCT was as high as 53.7% in the pre-HSCT KMT2A expression ≥ 0.1% group, which was compared to the KMT2A-negative group (15.1%) and KMT2A <0.1% group (31.2%). The clinical outcomes of patients with post-HSCT KMT2A positivity were poorer than those of patients with persistent KMT2A negativity. Although post-HSCT preemptive immunotherapies might help to achieve KMT2A negativity, the long-term efficacy was unsatisfactory. Thus, pre-HSCT KMT2A positivity was significantly associated with post-HSCT KMT2A positivity. The clinical outcomes of patients with post-HSCT KMT2A positivity were poor, which might not be overcome by commonly used immunotherapies.
Collapse
Affiliation(s)
- Jing Liu
- National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Xiao-Hui Zhang
- National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Lan-Ping Xu
- National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Yu Wang
- National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Chen-Hua Yan
- National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Huan Chen
- National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Yu-Hong Chen
- National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Wei Han
- National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Feng-Rong Wang
- National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Jing-Zhi Wang
- National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Yi-Fei Cheng
- National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Ya-Zhen Qin
- National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Kai-Yan Liu
- National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Xiao-Jun Huang
- National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China.,Peking-Tsinghua Center for Life Sciences, Beijing, 100044, China.,Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, 2019RU029, Beijing, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Xiao-Su Zhao
- National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China. .,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.
| | - Xiao-Dong Mo
- National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China. .,Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, 2019RU029, Beijing, China.
| |
Collapse
|
7
|
Liu S, Luo X, Zhang X, Xu L, Wang Y, Yan C, Chen H, Chen Y, Han W, Wang F, Wang J, Liu K, Huang X, Mo X. Preemptive interferon-α treatment could protect against relapse and improve long-term survival of ALL patients after allo-HSCT. Sci Rep 2020; 10:20148. [PMID: 33214615 PMCID: PMC7677364 DOI: 10.1038/s41598-020-77186-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/04/2020] [Indexed: 12/11/2022] Open
Abstract
Relapse was the major cause of treatment failure in patients with acute lymphoblastic leukemia (ALL) after allogeneic hematopoietic stem cell transplantation (allo-HSCT). We aimed to identify the efficacy and safety of preemptive interferon-α (IFN-α) treatment in ALL patients who had minimal residual disease (MRD) after allo-HSCT. Multiparameter flow cytometry and polymerase chain reaction assays were applied for MRD monitoring. Recombinant human IFN-α-2b injections were administered subcutaneously twice weekly in every 4 weeks cycle. Twenty-four (35.3%), 5 (7.4%), 6 (8.8%), and 13 (19.1%) patients achieved MRD negativity at 1, 2, 3, and > 3 months, respectively, after treatment. Seven patients showed grade ≥ 3 toxicities after IFN-α treatment. The 4-year cumulative incidence of total acute graft-versus-host disease (aGVHD), severe aGVHD, total chronic GVHD (cGVHD), and severe cGVHD after treatment was 14.7%, 2.9%, 40.0%, and 7.5%, respectively. The 4-year cumulative incidences of relapse and non-relapse mortality after treatment was 31.9% and 6.0%, respectively. The 4-year probabilities of disease-free survival and overall survival after IFN-α treatment were 62.1% and 71.1%, respectively. Thus, preemptive IFN-α treatment could protect against relapse and improve long-term survival for ALL patients who had MRD after allo-HSCT. The study was registered at https://clinicaltrials.gov as #NCT02185261 (09/07/2014).
Collapse
Affiliation(s)
- Sining Liu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, 2019RU029, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Xueyi Luo
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, 2019RU029, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Xiaohui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, 2019RU029, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Lanping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, 2019RU029, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, 2019RU029, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Chenhua Yan
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, 2019RU029, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Huan Chen
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, 2019RU029, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Yuhong Chen
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, 2019RU029, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Wei Han
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, 2019RU029, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Fengrong Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, 2019RU029, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Jingzhi Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, 2019RU029, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Kaiyan Liu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, 2019RU029, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Xiaojun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, 2019RU029, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xiaodong Mo
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, 2019RU029, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China.
| |
Collapse
|
8
|
Bewersdorf JP, Zeidan AM. Following in the footsteps of acute myeloid leukemia: are we witnessing the start of a therapeutic revolution for higher-risk myelodysplastic syndromes? Leuk Lymphoma 2020; 61:2295-2312. [PMID: 32421403 PMCID: PMC7670856 DOI: 10.1080/10428194.2020.1761968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/16/2020] [Accepted: 04/19/2020] [Indexed: 12/21/2022]
Abstract
For most patients with higher-risk myelodysplastic syndromes (HR-MDS) the hypomethylating agents (HMA) azacitidine and decitabine remain the mainstay of therapy. However, the prognosis mostly remains poor and aside from allogeneic hematopoietic stem cell transplantation no curative treatment options exist. Unlike acute myeloid leukemia, which has seen a dramatic expansion of available therapies recently, no new agents have been approved for MDS in the United States since 2006. However, various novel HMAs, HMA in combination with venetoclax, immune checkpoint inhibitors, and targeted therapies for genetically defined patient subgroups such as APR-246 or IDH inhibitors, have shown promising results in early stages of clinical testing. Furthermore, the wider availability of genetic testing is going to allow for a more individualized treatment of MDS patients. Herein, we review the current treatment approach for HR-MDS and discuss recent therapeutic advances and the implications of genetic testing on management of HR-MDS.
Collapse
Affiliation(s)
- Jan Philipp Bewersdorf
- Department of Internal Medicine, Section of Hematology, Yale University School of Medicine, New Haven, CT
| | - Amer M. Zeidan
- Department of Internal Medicine, Section of Hematology, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
9
|
Bald T, Krummel MF, Smyth MJ, Barry KC. The NK cell-cancer cycle: advances and new challenges in NK cell-based immunotherapies. Nat Immunol 2020; 21:835-847. [PMID: 32690952 DOI: 10.1038/s41590-020-0728-z] [Citation(s) in RCA: 310] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022]
Abstract
Natural killer (NK) cells belong to the innate immune system and contribute to protecting the host through killing of infected, foreign, stressed or transformed cells. Additionally, via cellular cross-talk, NK cells orchestrate antitumor immune responses. Hence, significant efforts have been undertaken to exploit the therapeutic properties of NK cells in cancer. Current strategies in preclinical and clinical development include adoptive transfer therapies, direct stimulation, recruitment of NK cells into the tumor microenvironment (TME), blockade of inhibitory receptors that limit NK cell functions, and therapeutic modulation of the TME to enhance antitumor NK cell function. In this Review, we introduce the NK cell-cancer cycle to highlight recent advances in NK cell biology and to discuss the progress and problems of NK cell-based cancer immunotherapies.
Collapse
Affiliation(s)
- Tobias Bald
- Oncology and Cellular Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Matthew F Krummel
- Department of Pathology, ImmunoX Initiative, and Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, USA
| | - Mark J Smyth
- Immunology of Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.
| | - Kevin C Barry
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|