1
|
Mudappathi R, Patton T, Chen H, Yang P, Sun Z, Wang P, Shi CX, Wang J, Liu L. reg-eQTL: Integrating transcription factor effects to unveil regulatory variants. Am J Hum Genet 2025; 112:659-674. [PMID: 39922197 PMCID: PMC11947170 DOI: 10.1016/j.ajhg.2025.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/09/2025] [Accepted: 01/15/2025] [Indexed: 02/10/2025] Open
Abstract
Regulatory single-nucleotide variants (rSNVs) in noncoding regions of the genome play a crucial role in gene transcription by altering transcription factor (TF) binding, chromatin states, and other epigenetic modifications. Existing expression quantitative trait locus (eQTL) methods identify genomic loci associated with gene-expression changes, but they often fall short in pinpointing causal variants. We introduce reg-eQTL, a computational method that incorporates TF effects and interactions with genetic variants into eQTL analysis. This approach provides deeper insights into the regulatory mechanisms, bringing us one step closer to identifying potential causal variants by uncovering how TFs interact with SNVs to influence gene expression. This method defines a trio consisting of a genetic variant, a target gene, and a TF and tests its impact on gene transcription. In comprehensive simulations, reg-eQTL shows improved power of detecting rSNVs with low population frequency, weak effects, and synergetic interaction with TF as compared to traditional eQTL methods. Application of reg-eQTL to GTEx data from lung, brain, and whole-blood tissues uncovered regulatory trios that include eQTLs and increased the number of eQTLs shared across tissue types. Regulatory networks constructed on the basis of these trios reveal intricate gene regulation across tissue types.
Collapse
Affiliation(s)
- Rekha Mudappathi
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Tatiana Patton
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - Hai Chen
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Ping Yang
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Zhifu Sun
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Panwen Wang
- Department of Quantitative Health Sciences and Center for Individualized Medicine, Mayo Clinic, Scottsdale, AZ, USA
| | - Chang-Xin Shi
- Division of Hematology/Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Junwen Wang
- Department of Quantitative Health Sciences and Center for Individualized Medicine, Mayo Clinic, Scottsdale, AZ, USA; Division of Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong SAR, China
| | - Li Liu
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA.
| |
Collapse
|
2
|
Taylor SJ, Hollis RL, Gourley C, Herrington CS, Langdon SP, Arends MJ. RFWD3 modulates response to platinum chemotherapy and promotes cancer associated phenotypes in high grade serous ovarian cancer. Front Oncol 2024; 14:1389472. [PMID: 38711848 PMCID: PMC11071161 DOI: 10.3389/fonc.2024.1389472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/10/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND DNA damage repair is frequently dysregulated in high grade serous ovarian cancer (HGSOC), which can lead to changes in chemosensitivity and other phenotypic differences in tumours. RFWD3, a key component of multiple DNA repair and maintenance pathways, was investigated to characterise its impact in HGSOC. METHODS RFWD3 expression and association with clinical features was assessed using in silico analysis in the TCGA HGSOC dataset, and in a further cohort of HGSOC tumours stained for RFWD3 using immunohistochemistry. RFWD3 expression was modulated in cell lines using siRNA and CRISPR/cas9 gene editing, and cells were characterised using cytotoxicity and proliferation assays, flow cytometry, and live cell microscopy. RESULTS Expression of RFWD3 RNA and protein varied in HGSOCs. In cell lines, reduction of RFWD3 expression led to increased sensitivity to interstrand crosslinking (ICL) inducing agents mitomycin C and carboplatin. RFWD3 also demonstrated further functionality outside its role in DNA damage repair, with RFWD3 deficient cells displaying cell cycle dysregulation, reduced cellular proliferation and reduced migration. In tumours, low RFWD3 expression was associated with increased tumour mutational burden, and complete response to platinum chemotherapy. CONCLUSION RFWD3 expression varies in HGSOCs, which can lead to functional effects at both the cellular and tumour levels.
Collapse
Affiliation(s)
- Sarah J. Taylor
- Edinburgh Pathology, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
- Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Robert L. Hollis
- Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Charlie Gourley
- Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - C. Simon Herrington
- Edinburgh Pathology, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
- Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Simon P. Langdon
- Edinburgh Pathology, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Mark J. Arends
- Edinburgh Pathology, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
3
|
Xia D, Zhu X, Wang Y, Gong P, Su HS, Xu X. Implications of ubiquitination and the maintenance of replication fork stability in cancer therapy. Biosci Rep 2023; 43:BSR20222591. [PMID: 37728310 PMCID: PMC10550789 DOI: 10.1042/bsr20222591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/21/2023] [Accepted: 09/19/2023] [Indexed: 09/21/2023] Open
Abstract
DNA replication forks are subject to intricate surveillance and strict regulation by sophisticated cellular machinery. Such close regulation is necessary to ensure the accurate duplication of genetic information and to tackle the diverse endogenous and exogenous stresses that impede this process. Stalled replication forks are vulnerable to collapse, which is a major cause of genomic instability and carcinogenesis. Replication stress responses, which are organized via a series of coordinated molecular events, stabilize stalled replication forks and carry out fork reversal and restoration. DNA damage tolerance and repair pathways such as homologous recombination and Fanconi anemia also contribute to replication fork stabilization. The signaling network that mediates the transduction and interplay of these pathways is regulated by a series of post-translational modifications, including ubiquitination, which affects the activity, stability, and interactome of substrates. In particular, the ubiquitination of replication protein A and proliferating cell nuclear antigen at stalled replication forks promotes the recruitment of downstream regulators. In this review, we describe the ubiquitination-mediated signaling cascades that regulate replication fork progression and stabilization. In addition, we discuss the targeting of replication fork stability and ubiquitination system components as a potential therapeutic approach for the treatment of cancer.
Collapse
Affiliation(s)
- Donghui Xia
- Shenzhen University General Hospital-Dehua Hospital Joint Research Center on Precision Medicine (sgh-dhhCPM), Dehua Hospital, Dehua, Quanzhou 362500, China
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Carson International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518060, China
- State Key Laboratory of Agro-biotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xuefei Zhu
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors and Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Ying Wang
- State Key Laboratory of Agro-biotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Peng Gong
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors and Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Hong-Shu Su
- Shenzhen University General Hospital-Dehua Hospital Joint Research Center on Precision Medicine (sgh-dhhCPM), Dehua Hospital, Dehua, Quanzhou 362500, China
| | - Xingzhi Xu
- Shenzhen University General Hospital-Dehua Hospital Joint Research Center on Precision Medicine (sgh-dhhCPM), Dehua Hospital, Dehua, Quanzhou 362500, China
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Carson International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518060, China
| |
Collapse
|
4
|
Fan R, Xu L, Cui B, Li D, Sun X, Qi Y, Rao J, Wang K, Wang C, Zhao K, Zhao Y, Dai J, Chen W, Shen H, Liu Y, Yu D. Genomic Characterization Revealed PM 2.5-Associated Mutational Signatures in Lung Cancer Including Activation of APOBEC3B. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6854-6864. [PMID: 37071573 DOI: 10.1021/acs.est.2c08092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Fine particulate matter (PM2.5) exposure causes DNA mutations and abnormal gene expression leading to lung cancer, but the detailed mechanisms remain unknown. Here, analysis of genomic and transcriptomic changes upon a PM2.5 exposure-induced human bronchial epithelial cell-based malignant transformed cell model in vitro showed that PM2.5 exposure led to APOBEC mutational signatures and transcriptional activation of APOBEC3B along with other potential oncogenes. Moreover, by analyzing mutational profiles of 1117 non-small cell lung cancers (NSCLCs) from patients across four different geographic regions, we observed a significantly higher prevalence of APOBEC mutational signatures in non-smoking NSCLCs than smoking in the Chinese cohorts, but this difference was not observed in TCGA or Singapore cohorts. We further validated this association by showing that the PM2.5 exposure-induced transcriptional pattern was significantly enriched in Chinese NSCLC patients compared with other geographic regions. Finally, our results showed that PM2.5 exposure activated the DNA damage repair pathway. Overall, here we report a previously uncharacterized association between PM2.5 and APOBEC activation, revealing a potential molecular mechanism of PM2.5 exposure and lung cancer.
Collapse
Affiliation(s)
- Rongrong Fan
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Lin Xu
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Bowen Cui
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Daochuan Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xueying Sun
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yuan Qi
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Jianan Rao
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Kai Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Cheng Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Kunming Zhao
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yanjie Zhao
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Juncheng Dai
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Hongbing Shen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Genomic Science and Precision Medicine Institute, Gusu School, Nanjing Medical University, Nanjing 211166, China
| | - Yu Liu
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Fujian Children's Hospital, Fujian Branch of Shanghai Children's Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, Fuzhou 350000, China
| | - Dianke Yu
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| |
Collapse
|
5
|
Liang RP, Zhang XX, Zhao J, Lu QW, Zhu RT, Wang WJ, Li J, Bo K, Zhang CX, Sun YL. RING finger and WD repeat domain 3 regulates proliferation and metastasis through the Wnt/β-catenin signalling pathways in hepatocellular carcinoma. World J Gastroenterol 2022; 28:3435-3454. [PMID: 36158256 PMCID: PMC9346462 DOI: 10.3748/wjg.v28.i27.3435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/16/2022] [Accepted: 06/03/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) exhibits high invasiveness and mortality rates, and the molecular mechanisms of HCC have gained increasing research interest. The abnormal DNA damage response has long been recognized as one of the important factors for tumor occurrence and development. Recent studies have shown the potential of the protein RING finger and WD repeat domain 3 (RFWD3) that positively regulates p53 stability in response to DNA damage as a therapeutic target in cancers. AIM To investigate the relationship between HCC and RFWD3 in vitro and in vivo and explored the underlying molecular signalling transduction pathways. METHODS RFWD3 gene expression was analyzed in HCC tissues and adjacent normal tissues. Lentivirus was used to stably knockdown RFWD3 expression in HCC cell lines. After verifying the silencing efficiency, Celigo/cell cycle/apoptosis and MTT assays were used to evaluate cell proliferation and apoptosis. Subsequently, cell migration and invasion were assessed by wound healing and transwell assays. In addition, transduced cells were implanted subcutaneously and injected into the tail vein of nude mice to observe tumor growth and metastasis. Next, we used lentiviral-mediated rescue of RFWD3 shRNA to verify the phenotype. Finally, the microarray, ingenuity pathway analysis, and western blot analysis were used to analyze the regulatory network underlying HCC. RESULTS Compared with adjacent tissues, RFWD3 expression levels were significantly higher in clinical HCC tissues and correlated with tumor size and TNM stage (P < 0.05), which indicated a poor prognosis state. RFWD3 silencing in BEL-7404 and HCC-LM3 cells increased apoptosis, decreased growth, and inhibited the migration in shRNAi cells compared with those in shCtrl cells (P < 0.05). Furthermore, the in vitro results were supported by the findings of the in vivo experiments with the reduction of tumor cell invasion and migration. Moreover, the rescue of RFWD3 shRNAi resulted in the resumption of invasion and metastasis in HCC cell lines. Finally, gene expression profiling and subsequent experimental verification revealed that RFWD3 might influence the proliferation and metastasis of HCC via the Wnt/β-catenin signalling pathway. CONCLUSION We provide evidence for the expression and function of RFWD3 in HCC. RFWD3 affects the prognosis, proliferation, invasion, and metastasis of HCC by regulating the Wnt/β-catenin signalling pathway.
Collapse
Affiliation(s)
- Ruo-Peng Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Xiao-Xue Zhang
- Department of Physical Examination, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Jie Zhao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Qin-Wei Lu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Rong-Tao Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Wei-Jie Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Jian Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Kai Bo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Chi-Xian Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Yu-Ling Sun
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| |
Collapse
|
6
|
CircRFWD3 promotes HNSCC metastasis by modulating miR-27a/b/PPARγ signaling. Cell Death Dis 2022; 8:285. [PMID: 35690612 PMCID: PMC9188624 DOI: 10.1038/s41420-022-01066-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/29/2022] [Accepted: 05/23/2022] [Indexed: 02/05/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer in the world, the 5-year survival rate of patients with HNSCC is still about 50% due to frequent metastasis and recurrence. Circular RNAs (circRNAs) have been characterized as key regulators of gene expression in numerous malignancies. However, the role of circRNA in HNSCC metastasis remains largely unknown. Here, we demonstrated that the circRFWD3 was significantly upregulated in HNSCC tissues and cell lines by circRNA microarray analysis and qPCR. Notably, high expression of circRFWD3 is related to highly aggressive HNSCC cell lines and lymph node metastasis in HNSCC patients. After that, Sanger sequencing, RNase R, and actinomycin D assay were performed to verify the ring structure of circRFWD3. Then functional experiments found it could promote the metastasis of HNSCC cells both in vitro and in vivo. Mechanistically, a dual-luciferase reporter assay, FISH, RIP, RNA pull-down, RNA-seq, and western blot experiments were employed and found that circRFWD3 served as a miRNAs sponge for miR-27a/27b, leading to the upregulation of PPARγ, and then promoted HNSCC metastasis via NF-κB/MMP13 pathway. Finally, ISH and IHC were carried out to determine the expression levels and clinical significances of circRFWD3 and PPARγ in clinical cohorts of HNSCC. According to the analysis results from two independent HNSCC cohorts, upregulated expression of circRFWD3 and PPARγ were positively associated with worse survival in patients with HNSCC. Overall, our results uncover that circRFWD3 acts a critical role in promoting the aggressiveness of HNSCC cells and is a prognostic marker for the disease, indicating that circRFWD3 may act as a potential therapeutic target in HNSCC.
Collapse
|
7
|
Zhu Y, Peng X, Wang X, Ying P, Wang H, Li B, Li Y, Zhang M, Cai Y, Lu Z, Niu S, Yang N, Zhong R, Tian J, Chang J, Miao X. Systematic analysis on expression quantitative trait loci identifies a novel regulatory variant in ring finger and WD repeat domain 3 associated with prognosis of pancreatic cancer. Chin Med J (Engl) 2022; 135:1348-1357. [PMID: 35830250 PMCID: PMC9433068 DOI: 10.1097/cm9.0000000000002180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Pancreatic adenocarcinoma (PAAD) is an extremely lethal malignancy. Identification of the functional genes and genetic variants related to PAAD prognosis is important and challenging. Previously identified prognostic genes from several expression profile analyses were inconsistent. The regulatory genetic variants that affect PAAD prognosis were largely unknown. METHODS Firstly, a meta-analysis was performed with seven published datasets to systematically explore the candidate prognostic genes for PAAD. Next, to identify the regulatory variants for those candidate genes, expression quantitative trait loci analysis was implemented with PAAD data resources from The Cancer Genome Atlas. Then, a two-stage association study in a total of 893 PAAD patients was conducted to interrogate the regulatory variants and find the prognostic locus. Finally, a series of biochemical experiments and phenotype assays were carried out to demonstrate the biological function of variation and genes in PAAD progression process. RESULTS A total of 128 genes were identified associated with the PAAD prognosis in the meta-analysis. Fourteen regulatory loci in 12 of the 128 genes were discovered, among which, only rs4887783, the functional variant in the promoter of Ring Finger and WD Repeat Domain 3 ( RFWD3 ), presented significant association with PAAD prognosis in both stages of the population study. Dual-luciferase reporter and electrophoretic mobility shift assays demonstrated that rs4887783-G allele, which predicts the worse prognosis, enhanced the binding of transcript factor REST, thus elevating RFWD3 expression. Further phenotypic assays revealed that excess expression of RFWD3 promoted tumor cell migration without affecting their proliferation rate. RFWD3 was highly expressed in PAAD and might orchestrate the genes in the DNA repair process. CONCLUSIONS RFWD3 and its regulatory variant are novel genetic factors for PAAD prognosis.
Collapse
Affiliation(s)
- Ying Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, Hubei 430072, China
| | - Xiating Peng
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei 430030, China
| | - Xiaoyang Wang
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei 430030, China
| | - Pingting Ying
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei 430030, China
| | - Haoxue Wang
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei 430030, China
| | - Bin Li
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei 430030, China
| | - Yue Li
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei 430030, China
| | - Ming Zhang
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei 430030, China
| | - Yimin Cai
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei 430030, China
| | - Zequn Lu
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei 430030, China
| | - Siyuan Niu
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei 430030, China
| | - Nan Yang
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei 430030, China
| | - Rong Zhong
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei 430030, China
| | - Jianbo Tian
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, Hubei 430072, China
| | - Jiang Chang
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei 430030, China
| | - Xiaoping Miao
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
8
|
Xu F, Xiao Z, Fan L, Ruan G, Cheng Y, Tian Y, Chen M, Chen D, Wei Y. RFWD3 Participates in the Occurrence and Development of Colorectal Cancer via E2F1 Transcriptional Regulation of BIRC5. Front Cell Dev Biol 2021; 9:675356. [PMID: 34712656 PMCID: PMC8547426 DOI: 10.3389/fcell.2021.675356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 08/25/2021] [Indexed: 12/16/2022] Open
Abstract
Objectives: Colorectal cancer (CRC) is one of the most common human malignancies. It was reported that the alterations in the DNA damage response (DDR) pathways are emerging as novel targets for treatment across different cancer types including CRC. RFWD3 plays a critical role in replication protein A (RPA)-mediated DNA damage in cancer cells. More importantly, RFWD3 can response to DNA damage by positively regulating p53 stability when the G1 cell cycle checkpoint is activated. However, the functional significance of RFWD3 in CRC has not been reported in the existing documents. Materials and Methods: Here, we revealed high expression of RFWD3 in CRC tissues by IHC analysis and The Cancer Genome Atlas (TCGA) database. Besides, overexpression of RFWD3 in CRC cell lines was also confirmed by qRT-PCR and western blot assay. The Celigo cell counting method and wound-healing/transwell migration assay were applied to evaluate CRC cell proliferation and migration. The tumor growth indicators were quantified in nude mice xenografted with shRFWD3 and shCtrl RKO cells. Results: The results indicated that RFWD3 knockdown restricted CRC development in vitro and in vivo. In exploring the downstream mechanism of RFWD3’s action, we found that RFWD3 could transcriptionally activate BIRC5 by interacting with E2F transcription factor 1 (E2F1). Accordingly, we identified BIRC5 as a downstream gene of RFWD3 regulating CRC. Subsequent loss- and gain- of function experiments demonstrated that upon overexpressing BIRC5 in RKO cells with down-regulated RFWD3, the inhibitory effects of cell proliferation, migration and colony formation could be reversed, while the capacity of cell apoptosis was ameliorated, suggesting that the effects of RFWD3 depletion was mainly due to BIRC5 suppression. Conclusion: Taken together, this study revealed that RFWD3 participates in the occurrence and development of colorectal cancer via E2F1 transcriptional regulation of BIRC5.
Collapse
Affiliation(s)
- Fenghua Xu
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhifeng Xiao
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Liqin Fan
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Guangcong Ruan
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yi Cheng
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yuting Tian
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Minjia Chen
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Dongfeng Chen
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yanling Wei
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
9
|
Zhao X, Yongchun Z, Qian H, Sanhui G, Jie L, Hong Y, Yanfei Z, Guizhen W, Yunchao H, Guangbiao Z. Identification of a potential tumor suppressor gene, UBL3, in non-small cell lung cancer. Cancer Biol Med 2021; 17:76-87. [PMID: 32296577 PMCID: PMC7142850 DOI: 10.20892/j.issn.2095-3941.2019.0279] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 10/24/2019] [Indexed: 12/24/2022] Open
Abstract
Objective: Oncogenes have been shown to be drivers of non-small cell lung cancer (NSCLC), yet the tumor suppressing genes involved in lung carcinogenesis remain to be systematically investigated. This study aimed to identify tumor suppressing ubiquitin pathway genes (UPGs) that were critical to lung tumorigenesis. Methods: The 696 UPGs were silenced by an siRNA screening in NSCLC cells; the potential tumor suppressing UPGs were analyzed, and their clinical significance was investigated. Results: We reported that silencing of 11 UPGs resulted in enhanced proliferation of NSCLC cells, and four UPGs (UBL3, TRIM22, UBE2G2, and MARCH1) were significantly downregulated in tumor samples compared to that in normal lung tissues and their expression levels were positively associated with overall survival (OS) of NSCLC patients. Among these genes, UBL3 was the most significant one. UBL3 expression was decreased in tumor samples compared to that in paired normal lung tissues in 59/86 (68.6%) NSCLCs, was correlated with TNM stage and sex of NSCLC patients, and was significantly higher in non-smoking patients than in smoking patients. Silencing UBL3 accelerated cell proliferation and ectopic expression of UBL3 suppressed NSCLC in vitro and in vivo. Conclusions: These results showed that UBL3 represented a tumor suppressor in NSCLC and may have potential for use in therapeutics and for the prediction of clinical outcome of patients.
Collapse
Affiliation(s)
- Xinchun Zhao
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China.,State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.,State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhou Yongchun
- Department of Thoracic Surgery, the Third Affiliated Hospital of Kunming Medical University, Kunming 650106, China
| | - Hu Qian
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.,School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Gao Sanhui
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.,State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Liu Jie
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.,State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu Hong
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.,School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhang Yanfei
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.,State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wang Guizhen
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.,State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Huang Yunchao
- Department of Thoracic Surgery, the Third Affiliated Hospital of Kunming Medical University, Kunming 650106, China
| | - Zhou Guangbiao
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.,State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
10
|
E3 ubiquitin ligase PJA1 regulates lung adenocarcinoma apoptosis and invasion through promoting FOXR2 degradation. Biochem Biophys Res Commun 2021; 556:106-113. [PMID: 33839405 DOI: 10.1016/j.bbrc.2021.03.137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 01/18/2023]
Abstract
Among all lung cancer cases, lung adenocarcinoma (LAC) represents nearly 40% and remains the leading cause of cancer deaths worldwide. Although the combination therapy of surgical treatment with radiotherapy, chemotherapy, and immunotherapy, has been used to treat LAC, unfortunately, high recurrence rates and poor survival remain. Therefore, novel prognostic markers and new targets for molecular targeted therapy in LAC is urgently needed. Fork-head box R2 (FOXR2) plays a key role in a wide range of cellular processes, including cellular proliferation, invasion, differentiation, and apoptosis, and it has been reported to be implicated in progression of LAC, thus inhibition of FOXR2 may be a novel targeting therapy for lung cancer. This current study found that E3 ligase PJA1 regulates ubiquitin-mediated degradation of FOXR2 and predicts good outcome of patients with LAC. In addition, it was showed force expression of PJA1 significantly inhibited LAC cells invasion and induced apoptosis in vitro through inactivating Wnt/β-catenin signaling pathway. In short, our findings reveal that PJA1 could be a potential diagnostic and prognostic biomarkers and the PJA1- FOXR2 axis could be served as a promising target for LAC therapy.
Collapse
|
11
|
Systematic identification of CDC34 that functions to stabilize EGFR and promote lung carcinogenesis. EBioMedicine 2020; 53:102689. [PMID: 32114396 PMCID: PMC7047192 DOI: 10.1016/j.ebiom.2020.102689] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 12/24/2022] Open
Abstract
Background How the oncoprotein epidermal growth factor receptor (EGFR) evades proteolytic degradation and accumulates in non-small cell lung cancer (NSCLC) remains unclear, and ubiquitin pathway genes (UPGs) that are critical to NSCLC needs to be systematically identified. Methods A total of 696 UPGs (including E1, E2, E3, and deubiquitinases) were silenced by small interfering RNA (siRNA) library in NSCLC cells, the candidates were verified, and their significance was evaluated in patients with NSCLC. The effects of a candidate gene on EGFR were investigated in vitro and in vivo. Findings We report 31 candidates that are required for cell proliferation, with the E2 ubiquitin conjugase CDC34 as the most significant one. CDC34 is elevated in tumor tissues in 76 of 114 (66.7%) NSCLCs and inversely associated with prognosis, is higher in smoker patients than nonsmoker patients, and is induced by tobacco carcinogens in normal human lung epithelial cells. Forced expression of CDC34 promotes, whereas knockdown of CDC34 inhibits, NSCLC cell proliferation in vitro and in vivo. CDC34 competes with c-Cbl to bind Y1045 to inhibit polyubiquitination and degradation of EGFR. In EGFR-L858R and EGFR-T790M/Del (exon 19)-driven lung tumor growth in mouse models, knockdown of CDC34 significantly inhibits tumor formation. Interpretation These results demonstrate that an E2 enzyme is capable of competing with E3 ligase to stabilize substrates, and CDC34 represents an attractive therapeutic target for NSCLCs. Funding National Key Research and Development Program of China, National Natural Science Foundation of China, and the CAMS Innovation Fund for Medical Sciences.
Collapse
|