1
|
Farooqi SS, Naveed S, Qamar F, Sana A, Farooqi SH, Sabir N, Mansoor A, Sadia H. Phytochemical analysis, GC-MS characterization and antioxidant activity of Hordeum vulgare seed extracts. Heliyon 2024; 10:e27297. [PMID: 38509904 PMCID: PMC10950502 DOI: 10.1016/j.heliyon.2024.e27297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/22/2024] Open
Abstract
Barley scientifically known as Hordeum vulgare (HV) is a major grain crop. Over the course of time, great interest has been developed in the usage of barley, because of its various pharmacological activities. Current study is designed to determine the chemical constituents of Hordeum vulgare (HV) seed extract by GC-MS technique, and Invitro antioxidant assays i.e. 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH) and 2-azino-bis(3-ethyl benzthiazoline-6-sulfonic acid) (ABTS) methods. GC-MS identified 16 non-polar compounds in the hexane extract of HV plant, which includes carboxylic acid (6.25%), fatty acid (37.5%), carboxylic acid amide derivative of fatty acid (6.25%), triterpinoids (18.75%), fat soluble vitamin (6.25%), phytosterol (6.25%), stigmastanes (6.25%), beta diketones (6.25%), and cycloartenol (6.25%) respectively. The major compound includes Hexadecanoic acid, methyl ester (6.84%), n-Hexadecanoic acid (8.58%), 9,12-Octadecanoic acid (Z,Z)-, Methyl Ester (8.04%), 9,12-Octadecadienoic acid (Z,Z) (57.01%), Lup-20(29)-en-3-one (3.57%), γ-Sitosterol (3.31%). Some constituents such as Lup-20(29)-en-3-one, campesterol and squalene were observed and were not previously reported. Total phenolic and total flavonoid content were determined using spectrophotometric technique and calculated as gallic acid equivalents GAE/g dry weight and rutin equivalent RE/g of dry weight respectively.The highest phenolic content exhibited by the acetone extract of HV seedsi.e. 0.0597 mg GAE/g while the highest flavonoid content exhibited by dichloromethane extract i.e. 0.09 mg RE/g and 0.25 mg QE/g of dry weight respectively. All the extracts showed significant antioxidant activity in DPPH and ABTS cation decolorization assays. Methanol and dichloromethane extract showed the highest DPPH radical scavenging activity i.e. 52.41% and 42.07% at the concentration of 100 mg/ml respectively. Moreover, the IC50 has been determined by the acetone and methanol extract of HV seeds. The high antioxidant activity of its seed extracts has made this plant pharmacologically important. Conclusively, there is a vast scope to further explore the active principals of barley so that more of its pharmacological properties can be identified.
Collapse
Affiliation(s)
- Saman Shahab Farooqi
- Department of Pharmaceutical Chemistry, Jinnah University for Women, Karachi, Pakistan
| | - Safila Naveed
- Department of Pharmaceutical Chemistry, University of Karachi, Karachi, Pakistan
| | - Fatima Qamar
- Department of Pharmaceutical Chemistry, Jinnah University for Women, Karachi, Pakistan
| | - Aisha Sana
- Department of Pharmaceutical Chemistry, Jinnah University for Women, Karachi, Pakistan
| | - Shahab H. Farooqi
- Department of Mathematics, Jinnah University for Women, Karachi, Pakistan
| | - Neelam Sabir
- Department of Pharmaceutical Chemistry, Jinnah University for Women, Karachi, Pakistan
| | - Asra Mansoor
- Department of Pharmaceutics, Jinnah University for Women, Karachi, Pakistan
| | - Halima Sadia
- Department of Pharmacy Practice, Jinnah University for Women, Karachi, Pakistan
| |
Collapse
|
2
|
Alemayehu GF, Forsido SF, Tola YB, Amare E. Nutritional and Phytochemical Composition and Associated Health Benefits of Oat ( Avena sativa) Grains and Oat-Based Fermented Food Products. ScientificWorldJournal 2023; 2023:2730175. [PMID: 37492342 PMCID: PMC10365923 DOI: 10.1155/2023/2730175] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/27/2023] [Accepted: 07/04/2023] [Indexed: 07/27/2023] Open
Abstract
Oats (Avena sativa L.) are a popular functional cereal grain due to their numerous health benefits. This review article summarized the information on the chemical composition and phytonutrients of oats grown in different countries. It also reviewed recently developed fermented oat products to highlight their potential for human health. Oats have an interesting nutritional profile that includes high-quality protein, unsaturated fats, soluble fiber, polyphenolic compounds, and micronutrients. Oat grain has a unique protein composition, with globulins serving as the primary storage protein, in contrast to other cereals, where prolamins are the main storage proteins. Oats have the highest fat content of any cereal, with low saturated fatty acids and high essential unsaturated fatty acid content, which can help reduce the risk of cardiovascular diseases. Oats are a good source of soluble dietary fiber, particularly β-glucan, which has outstanding functional properties and is extremely important in human nutrition. β-Glucan has been shown to lower blood cholesterol and glucose absorption in the intestine, thereby preventing diseases such as cardiovascular injury, dyslipidemia, hypertension, inflammatory state, and type 2 diabetes. Oats also contain high concentration of antioxidant compounds. Avenanthramides, which are unique to oats, are powerful antioxidants with high antioxidative activity in humans. Recognizing the nutritional benefits of oats, oat-based fermented food products are gaining popularity as functional foods with high probiotic potential.
Collapse
Affiliation(s)
| | | | - Yetenayet B. Tola
- Department of Post-Harvest Management, Jimma University, Jimma, Ethiopia
| | - Endale Amare
- Food Science and Nutrition Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| |
Collapse
|
3
|
Cui L, Jia Q, Zhao J, Hou D, Zhou S. A comprehensive review on oat milk: from oat nutrients and phytochemicals to its processing technologies, product features, and potential applications. Food Funct 2023. [PMID: 37317702 DOI: 10.1039/d3fo00893b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Plant-based milk alternatives have become increasingly desirable due to their sustainability and the increased consumer awareness of health. Among many varieties of emerging plant-based milk, the smooth texture and flavor of oat milk make it spread rapidly around the world. Furthermore, as a sustainable source of diet, oats can provide rich nutrients and phytochemicals. Issues on the stability, sensory properties, shelf life, and nutritional quality of oat milk have been highlighted in published studies. In this review, the processing techniques, quality improvement, and product features of oat milk are elaborated, and the potential applications of oat milk are summarized. Besides, the challenges and future perspectives of oat milk production in the future are discussed.
Collapse
Affiliation(s)
- Lulu Cui
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, No. 11 Fucheng Road, Haidian District, Beijing 100048, China.
| | - Qiuju Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, No. 11 Fucheng Road, Haidian District, Beijing 100048, China.
| | - Jiani Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, No. 11 Fucheng Road, Haidian District, Beijing 100048, China.
| | - Dianzhi Hou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, No. 11 Fucheng Road, Haidian District, Beijing 100048, China.
| | - Sumei Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, No. 11 Fucheng Road, Haidian District, Beijing 100048, China.
| |
Collapse
|
4
|
Tir M, Mufti A, Feriani A, Saadaoui E, El Cafsi M, Tlili N. Eucalyptus camaldulensis Seeds as a Potential Source of Beneficial Compounds: High-Performance Liquid Chromatography – Photodiode Array – Mass Spectrometry (HPLC-PDA-MS/MS) Profiling of Secondary Metabolites and the Assessment of the Biological Effects. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2139383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Meriam Tir
- Laboratoire d’Ecologie, de Biologie et de Physiologie des Organismes Aquatiques, LR18ES41, Faculté des Sciences de Tunis, Université Tunis EL Manar, Tunis, Tunisia
| | - Afoua Mufti
- Faculty of Sciences of Gafsa, Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems, Gafsa, Tunisia
| | - Anouar Feriani
- Faculty of Sciences of Gafsa, Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems, Gafsa, Tunisia
| | - Ezzeddine Saadaoui
- Institut National de Recherches en Génie Rural, Eaux et Forets (LGVRF), Université de Carthage, Carthage, Tunisia
| | - M’Hammed El Cafsi
- Laboratoire d’Ecologie, de Biologie et de Physiologie des Organismes Aquatiques, LR18ES41, Faculté des Sciences de Tunis, Université Tunis EL Manar, Tunis, Tunisia
| | - Nizar Tlili
- Institut Supérieur des Sciences et Technologies de l’Environnement Borj Cédria, Université de Carthage, Carthage, Tunisia
| |
Collapse
|
5
|
Mufti A, Tir M, Zarei A, Contreras MDM, Gómez-Cruz I, Feriani A, Ghazouani L, Saadaoui E, Allagui MS, Harrath AH, Ramazani A, Tlili N. Phytochemical Profiling of Ephedra alata subsp. alenda Seeds by High-Performance Liquid Chromatography—Electrospray Ionization—Quadrupole-Time-of-Flight-Mass Spectrometry (HPLC-ESI-QTOF-MS), Molecular Docking, and Antioxidant, Anti-diabetic, and Acetylcholinesterase Inhibition. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2059082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Afoua Mufti
- Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems, Faculty of Sciences of Gafsa, 2112 Gafsa, Tunisia
| | - Meriam Tir
- Laboratoire d’Ecologie, de Biologie et de Physiologie des Organismes Aquatiques, LR18ES41, Faculté des Sciences de Tunis, Université Tunis EL Manar, 2092 Tunis, Tunisia
| | - Armin Zarei
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - María del Mar Contreras
- Department of Chemical, Environmental and Materials Engineering and Centre for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Irene Gómez-Cruz
- Department of Chemical, Environmental and Materials Engineering and Centre for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Anouar Feriani
- Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems, Faculty of Sciences of Gafsa, 2112 Gafsa, Tunisia
| | - Lakhdar Ghazouani
- Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems, Faculty of Sciences of Gafsa, 2112 Gafsa, Tunisia
| | - Ezzeddine Saadaoui
- Institut National de Recherches en Génie Rural, Eaux et Forêts (LGVRF), Université de Carthage, BP 10, Ariana, 2080, Tunisia
| | - Mohamed Salah Allagui
- Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems, Faculty of Sciences of Gafsa, 2112 Gafsa, Tunisia
| | - Abdel Halim Harrath
- King Saud University, Department of Zoology, College of Science, Riyadh 11451, Saudi Arabia
| | - Ali Ramazani
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
- Department of Biotechnology, Research Institute of Modern Biological Techniques (RIMBT), University of Zanjan, Zanjan 45371-38791, Iran
| | - Nizar Tlili
- Institut Supérieur des Sciences et Technologies de l’Environnement, Université de Carthage, Tunisia
| |
Collapse
|
6
|
HPLC-ESI-QTOF-MS/MS profiling and therapeutic effects of Schinus terebinthifolius and Schinus molle fruits: investigation of their antioxidant, antidiabetic, anti-inflammatory and antinociceptive properties. Inflammopharmacology 2021; 29:467-481. [PMID: 33635473 DOI: 10.1007/s10787-021-00791-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/25/2021] [Indexed: 12/22/2022]
Abstract
The aim of the current work was to study the phytochemical variability among Schinus terebinthifolius (STE) and Schinus molle (SME) fruit extracts. The in vitro antioxidant, antihemolytic, antidiabetic, and macromolecule damage protective activities, as well as, the in vivo anti-inflammatory and antinociceptive capacities were assessed. Using the HPLC-ESI-QTOF/MS analysis, the chemical profile of fruit extract varied between S. terebinthifolius (30 compounds) and S. molle (16 compounds). The major compound was masazino-flavanone (5774.98 and 1177.65 μg/g sample for STE and SME, respectively). The investigations highlighted significant antioxidant proprieties when using ABTS radical (IC50; 0.12 and 0.14 mg/ml for STE and SME, respectively), superoxide (IC50; 0.17 and 0.22 mg/ml for STE and SME, respectively) and hydrogen peroxide (IC50; 014 and 0.17 mg/ml for STE and SME, respectively). In addition, STE and SME proved preventive effects against H2O2-induced hemolysis (IC50; 0.22 and 0.14 mg/ml for STE and SME, respectively). The in vitro antidiabetic effect revealed that STE and SME exhibited important inhibitory effects against α-amylase (IC50; 0.13 and 0.19 mg/ml for STE and SME, respectively) and α-glycosidase (IC50; 0.21 and 0.18 mg/ml for STE and SME, respectively) when compared with acarbose. Furthermore, the extracts showed potent inhibitory activity against AAPH-induced plasmid DNA damage, and protein oxidation. In vivo study revealed that STE and SME presented interesting antinociceptive and anti-inflammatory capacities. All observed effects highlighted the potential application of Schinus fruit extract in food and pharmaceutical industries against ROS-induced damage.
Collapse
|
7
|
Feriani A, Tir M, Hamed M, Sila A, Nahdi S, Alwasel S, Harrath AH, Tlili N. Multidirectional insights on polysaccharides from Schinus terebinthifolius and Schinus molle fruits: Physicochemical and functional profiles, in vitro antioxidant, anti-genotoxicity, antidiabetic, and antihemolytic capacities, and in vivo anti-inflammatory and anti-nociceptive properties. Int J Biol Macromol 2020; 165:2576-2587. [DOI: 10.1016/j.ijbiomac.2020.10.123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/05/2020] [Accepted: 10/15/2020] [Indexed: 12/18/2022]
|
8
|
Galaz‐Pérez EA, Velazquez G, Mendez‐Montealvo G. Improvement of physicochemical properties of baked oatmeal (
Avena sativa
L.) by imbibition. Cereal Chem 2020. [DOI: 10.1002/cche.10320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Estefany A. Galaz‐Pérez
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada Instituto Politécnico Nacional Querétaro México
| | - Gonzalo Velazquez
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada Instituto Politécnico Nacional Querétaro México
| | - Guadalupe Mendez‐Montealvo
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada Instituto Politécnico Nacional Querétaro México
| |
Collapse
|
9
|
kaur S, Bhardwaj RD, Kapoor R, Grewal SK. Biochemical characterization of oat (Avena sativa L.) genotypes with high nutritional potential. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.04.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Pharmacological and chemical properties of some marine echinoderms. REVISTA BRASILEIRA DE FARMACOGNOSIA 2018. [DOI: 10.1016/j.bjp.2018.05.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Marmouzi I, Karym EM, Saidi N, Meddah B, Kharbach M, Masrar A, Bouabdellah M, Chabraoui L, El Allali K, Cherrah Y, Faouzi MEA. In Vitro and In Vivo Antioxidant and Anti-Hyperglycemic Activities of Moroccan Oat Cultivars. Antioxidants (Basel) 2017; 6:antiox6040102. [PMID: 29211033 PMCID: PMC5745512 DOI: 10.3390/antiox6040102] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 12/13/2022] Open
Abstract
Improvement of oat lines via introgression is an important process for food biochemical functionality. This work aims to evaluate the protective effect of phenolic compounds from hybrid Oat line (F11-5) and its parent (Amlal) on hyperglycemia-induced oxidative stress and to establish the possible mechanisms of antidiabetic activity by digestive enzyme inhibition. Eight phenolic acids were quantified in our samples including ferulic, p-hydroxybenzoic, caffeic, salicylic, syringic, sinapic, p-coumaric and chlorogenic acids. The Oat extract (2000 mg/kg) ameliorated the glucose tolerance, decreased Fasting Blood Glucose (FBG) and oxidative stress markers, including Superoxide dismutase (SOD), Catalase (CAT), Glutathione peroxidase (GPx), Glutathione (GSH) and Malondialdehyde (MDA) in rat liver and kidney. Furthermore, Metformin and Oat intake prevented anxiety, hypercholesterolemia and atherosclerosis in diabetic rats. In vivo anti-hyperglycemic effect of Oat extracts has been confirmed by their inhibitory activities on α-amylase (723.91 μg/mL and 1027.14 μg/mL) and α-glucosidase (1548.12 μg/mL & 1803.52 μg/mL) enzymes by mean of a mixed inhibition.
Collapse
Affiliation(s)
- Ilias Marmouzi
- Laboratoire de Pharmacologie et Toxicologie, équipe de Pharmacocinétique, Faculté de Médicine et Pharmacie, University Mohammed V in Rabat, BP 6203, Rabat Instituts, Rabat 10100, Morocco.
| | - El Mostafa Karym
- Laboratoire de Biochimie et Neurosciences, FST, Université Hassan I, BP 577, Settat 26000, Morocco.
| | - Nezha Saidi
- Regional Office of Rabat, National Institute for Agricultural Research, P.O. Box 6570, Rabat Institutes, Rabat 10101, Morocco.
| | - Bouchra Meddah
- Laboratoire de Pharmacologie et Toxicologie, équipe de Pharmacocinétique, Faculté de Médicine et Pharmacie, University Mohammed V in Rabat, BP 6203, Rabat Instituts, Rabat 10100, Morocco.
| | - Mourad Kharbach
- Pharmaceutical and Toxicological Analysis Research Team, Laboratory of Pharmacology and Toxicology, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat 10100, Morocco.
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, CePhaR, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090 Brussels, Belgium.
| | - Azlarab Masrar
- Central Laboratory of Biochemistry, Ibn Sina Hospital, Rabat 10100, Morocco.
| | - Mounya Bouabdellah
- Central Laboratory of Biochemistry, Ibn Sina Hospital, Rabat 10100, Morocco.
| | - Layachi Chabraoui
- Central Laboratory of Biochemistry, Ibn Sina Hospital, Rabat 10100, Morocco.
| | - Khalid El Allali
- Comparative Anatomy Unit-URAC-49, Hassan II Agronomy and Veterinary Institute, Rabat 10101, Morocco.
| | - Yahia Cherrah
- Laboratoire de Pharmacologie et Toxicologie, équipe de Pharmacocinétique, Faculté de Médicine et Pharmacie, University Mohammed V in Rabat, BP 6203, Rabat Instituts, Rabat 10100, Morocco.
| | - My El Abbes Faouzi
- Laboratoire de Pharmacologie et Toxicologie, équipe de Pharmacocinétique, Faculté de Médicine et Pharmacie, University Mohammed V in Rabat, BP 6203, Rabat Instituts, Rabat 10100, Morocco.
| |
Collapse
|