1
|
Majeed M, Rather MA. Advancements in vitamin D encapsulation: characterization, wall materials, and fortification applications. NUTRIRE 2024; 49:48. [DOI: 10.1186/s41110-024-00292-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/13/2024] [Indexed: 01/06/2025]
|
2
|
Wen C, Lin X, Tang J, Fan M, Liu G, Zhang J, Xu X. New perspective on protein-based microcapsules as delivery vehicles for sensitive substances: A review. Int J Biol Macromol 2024; 270:132449. [PMID: 38777020 DOI: 10.1016/j.ijbiomac.2024.132449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Sensitive substances have attracted wide attention due to their rich functional activities, such as antibiosis activities, antioxidant activities and prevent disease, etc. However, the low stability of sensitive substances limits their bioavailability and functional activities. Protein-based microcapsules can encapsulate sensitive substances to improve their adverse properties due to their good stability, strong emulsifying ability and wide source. Therefore, it is necessary to fully elaborate and summarize protein-based microcapsules to maximize their potential benefits in nutritional interventions. The focus of this review is to highlight the classification of protein-based microcapsules. In addition, the principles, advantages and disadvantages of preparation methods for protein-based microcapsules are summarized. Some novel preparation methods for protein-based microcapsules are also emphasized. Moreover, the mechanism of protein-based microcapsules that release sensitive substances in vitro is elucidated and summarized. Furthermore, the applications of protein-based microcapsules are outlined. Protein-based microcapsules can effectively encapsulate sensitive substances, which improve their bioavailability, and provide protective effects during storage and gastrointestinal digestion. In addition, microcapsules can improve the sensory quality of food and enhance its stability. The performance of protein-based microcapsules for delivering sensitive substances is influenced by factors such as protein type, the ratio between protein ratio and the other wall material, the preparation process, etc. Future research should focus on the new composite protein-based microcapsule delivery system, which can be applied to in vivo research and have synergistic effects and precise nutritional functions. In summary, protein-based microcapsules have broader research prospects in the functional foods and nutrition field.
Collapse
Affiliation(s)
- Chaoting Wen
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Xinying Lin
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Jialuo Tang
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Meidi Fan
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Guoyan Liu
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Jixian Zhang
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China.
| | - Xin Xu
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China.
| |
Collapse
|
3
|
Tahir A, Ahmad RS, Khan MK, Imran M, Hailu GG. Optimization of Production Parameters for Fabrication of Gum Arabic/Whey Protein-Based Walnut Oil Loaded Nanoparticles and Their Characterization. ACS OMEGA 2024; 9:22839-22850. [PMID: 38826541 PMCID: PMC11137705 DOI: 10.1021/acsomega.4c01141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 06/04/2024]
Abstract
The encapsulation of fatty acids, including walnut oil, within complexes is a promising strategy to address challenges, for instance, low water solubility and susceptibility to oxidation while incorporating these oils into food products. Additionally, encapsulation can effectively mask undesirable odor and flavor. The current study focuses on the optimization of walnut oil nanoparticles (WON) using complexes fabricated from gum arabic and whey protein by applying a response surface methodology. The impact of three different independent variables were determined, such as surfactant mixture (33-66%), walnut oil (5-25%), and sonication time (60-300 s), under three distinct desired conditions (low, medium, and high) on four different responses, i.e., particle size, polydispersity index (PDI), moisture level, and encapsulation efficiency (EE). The findings of the present study indicate that the point prediction-based WON resulted in significantly low particle size (82.94 nm), PDI (0.19), moisture content (3.49%), and high EE (77.26%). Fourier transform infrared spectroscopy (FTIR) study demonstrated the successful encapsulation of walnut oil and wall material into nanocapsules. Differential scanning calorimetry (DSC) verified the improved thermal stability property of WON after incorporation, and scanning electron microscopy (SEM) indicated that the WON had relatively fragile and smooth surfaces, along with the presence of few porous structures. The recorded experimental data from the existing study showed that the developed formulation of WON was potentially useful as a value-added ingredient for food industries.
Collapse
Affiliation(s)
- Ali Tahir
- Department
of Food Science, Faculty of Life Sciences, Government College University Faisalabad Faisalabad, Punjab 38000, Pakistan
- Biological
Systems Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Rabia Shabir Ahmad
- Department
of Food Science, Faculty of Life Sciences, Government College University Faisalabad Faisalabad, Punjab 38000, Pakistan
| | - Muhammad Kamran Khan
- Department
of Food Science, Faculty of Life Sciences, Government College University Faisalabad Faisalabad, Punjab 38000, Pakistan
| | - Muhammad Imran
- Department
of Food Science, Faculty of Life Sciences, Government College University Faisalabad Faisalabad, Punjab 38000, Pakistan
| | | |
Collapse
|
4
|
Khan WA, Butt MS, Yasmin I, Wadood SA, Mahmood A, Gad HA. Protein-polysaccharide based double network microbeads improves stability of Bifidobacterium infantis ATCC 15697 in a gastro-Intestinal tract model (TIM-1). Int J Pharm 2024; 652:123804. [PMID: 38220120 DOI: 10.1016/j.ijpharm.2024.123804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 01/16/2024]
Abstract
Microencapsulation of probiotics is a main technique employed to improve cell survival in gastrointestinal tract (GIT). The present study investigated the impact of utilizing proteins i.e. Whey Protein Isolates (WPI), Pea Protein Isolates (PPI) or (WPI + PPI) complex based microbeads as encapsulating agents on the encapsulation efficiency (EE), diameter, morphology along with the survival and viability of Bifidobacterium infantis ATCC 15697. Results revealed that WPI + PPI combination had the highest EE% of the probiotics up to 94.09 % and the smoothest surface with less visible holes. WPI based beads revealed lower EE% and smaller size than PPI based ones. In addition, WPI based beads showed rough surface with visible signs of cracks, while PPI beads showed dense surfaces with pores and depressions. In contrast, the combination of the two proteins resulted in compact and smooth beads with less visible pores/wrinkles. The survival in gastrointestinal tract (GIT) was observed through TNO in-vitro gastrointestinal model (TIM-1) and results illustrated that all microbeads shrank in gastric phase while swelled in intestinal phase. In addition, in-vitro survival rate of free cells was very low in gastric phase (18.2 %) and intestinal phase (27.5 %). The free cells lost their viability after 28 days of storage (2.66 CFU/mL) with a maximum log reduction of 6.76, while all the encapsulated probiotic showed more than 106-7 log CFU/g viable cell. It was concluded that encapsulation improved the viability of probiotics in GIT and utilization of WPI + PPI in combination provided better protection to probiotics.
Collapse
Affiliation(s)
- Wahab Ali Khan
- Department of Food Science and Technology, University of Home Economics Lahore, 54660 Pakistan.
| | - Masood Sadiq Butt
- National Institute of Food Science & Technology, Faculty of Food, Nutrition & Home Sciences, University of Agriculture Faisalabad, 38040 Pakistan.
| | - Iqra Yasmin
- Department of Human Nutrition and Dietetics, University of Chakwal, Chakwal, 48800 Pakistan.
| | - Syed Abdul Wadood
- Department of Food Science and Technology, University of Home Economics Lahore, 54660 Pakistan; Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China.
| | - Asif Mahmood
- Department of Pharmacy, University of Chakwal, Chakwal 48800, Pakistan.
| | - Heba A Gad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt; Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia.
| |
Collapse
|
5
|
Saberi M, Saremnezhad S, Soltani M, Faraji A. Functional stirred yogurt manufactured using co-microencapsulated or free forms of grape pomace and flaxseed oil as bioactive ingredients: Physicochemical, antioxidant, rheological, microstructural, and sensory properties. Food Sci Nutr 2023; 11:3989-4001. [PMID: 37457195 PMCID: PMC10345739 DOI: 10.1002/fsn3.3385] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/29/2023] [Accepted: 04/11/2023] [Indexed: 07/18/2023] Open
Abstract
Functional stirred yogurt samples were manufactured with combinations of grape pomace (GP) and flaxseed oil (FO) in microencapsulated or free forms (2% w/w) and quality characteristics of yogurts were investigated during 21 days of storage. The incorporation of GP and FO in microencapsulated or free forms caused a significant decrease in pH, syneresis, and a significant increase in acidity, water holding capacity, and viscosity of stirred yogurt (p < .05). While stirred yogurt containing GP and FO in free form had the highest loss modulus (G″), all yogurt samples represented solid-like behavior. Stirred yogurts containing the microencapsulated form of GP and FO showed the highest amount of phenolics and antioxidant activity compared with the two other yogurt samples (p < .05). More compact structure and higher gel strength were observed in stirred yogurts formulated with the microencapsulated or free form of GP and FO, compared to the control yogurt sample. The overall sensory acceptability of stirred yogurt manufactured using the encapsulated form of GP and FO was not significantly different from the control yogurt sample (p > .05). In conclusion of this competitive study, GP and FO as bioactive compounds could be used in the microencapsulated form in order to develop functional stirred yogurt with specific quality characteristics.
Collapse
Affiliation(s)
- Manaf Saberi
- Department of Food Sciences and Technology, Faculty of Pharmacy, Tehran Medical SciencesIslamic Azad UniversityTehranIran
- Nutrition and Food Sciences Research Center, Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Solmaz Saremnezhad
- Department of Food Sciences and Technology, Faculty of Pharmacy, Tehran Medical SciencesIslamic Azad UniversityTehranIran
- Nutrition and Food Sciences Research Center, Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Mostafa Soltani
- Department of Food Sciences and Technology, Faculty of Pharmacy, Tehran Medical SciencesIslamic Azad UniversityTehranIran
- Nutrition and Food Sciences Research Center, Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Alireza Faraji
- Nutrition and Food Sciences Research Center, Tehran Medical SciencesIslamic Azad UniversityTehranIran
- Department of Organic Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical SciencesIslamic Azad UniversityTehranIran
| |
Collapse
|
6
|
Wei X, Pandohee J, Xu B. Recent developments and emerging trends in dietary vitamin D sources and biological conversion. Crit Rev Food Sci Nutr 2023; 64:10121-10137. [PMID: 37357915 DOI: 10.1080/10408398.2023.2220793] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
This review elaborates on biochemical characteristics, in vivo metabolism, biological conversion through UV irradiation, as well as dietary fortification of vitamin D. Recent innovations in vitamin D utilization, including nanoencapsulation, direct or indirect addition, emulsion, ultrasound, microwave processing, CRISPR-Cas9 genome editing, as well as UV photoconversion, were summarized. Mushrooms, eggs, yeasts, as well as seafood, such as Barramundi and Atlantic salmon, were typical representatives of original natural food materials for vitamin D bioconversion in relevant research. The critical session thereof referred to the 295 nm UV-B irradiation triggering biological fortification of vitamin D2 and vitamin D3, which occurred in ergosterol from mushrooms, and cholesterol from egg yolk, respectively. The schematic biosynthesis of vitamin D precursors in yeasts regulated miscellaneous enzymes were clearly demonstrated. These summarized pathways played a role as a theoretical primer for vitamin D bioconversion when the UV irradiation technique is concerned. Besides, tomatoes had become the latest potential vitamin D sources after genetic modification. The safety consideration for vitamin D fortified functional food was discussed either. Further research is required to fill the gap of investigating optimized factors like types of eggs, meat, and grain, boarder range of wavelength, and dosage in UV irradiation. Vitamin D has a great potential market in the field of functional food development.
Collapse
Affiliation(s)
- Xujin Wei
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, China
| | | | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, China
| |
Collapse
|
7
|
Wijekoon MMJO, Mahmood K, Ariffin F, Nafchi AM, Zulkurnain M. Recent advances in encapsulation of fat-soluble vitamins using polysaccharides, proteins, and lipids: A review on delivery systems, formulation, and industrial applications. Int J Biol Macromol 2023; 241:124539. [PMID: 37085081 DOI: 10.1016/j.ijbiomac.2023.124539] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/01/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023]
Abstract
Fat-soluble vitamins (FSVs) offer a range of beneficial properties as important nutrients in human nutrition. However, the high susceptibility to environmental conditions such as high temperature, light, and oxygen leads to the degradation of these compounds. This review highlights the different formulations underlying the encapsulation of FSVs in biopolymer (polysaccharide and protein) and lipid-based micro or nanocarriers for potential applications in food and pharmaceutical industries. In particular, the function of these carrier systems in terms of encapsulation efficiency, stability, bioavailability, and bio-accessibility is critically discussed. Recently, tremendous attention has been paid to encapsulating FSVs in commercial applications. According to the chemical nature of the active compound, the vigilant selection of delivery formulation, method of encapsulation, and final application (type of food) are the key important factors to be considered in the encapsulation of FSVs to ensure a high loading capacity, stability, bioavailability, and bio-accessibility. Future studies are recommended on the effect of different vitamin types and micro and nano encapsulate sizes on bioaccessibility and biocompatibility through in vitro/in vivo studies. Moreover, the toxicity and safety evaluation of encapsulated FSVs in human health should be evaluated before commercial application in food and pharmaceuticals.
Collapse
Affiliation(s)
- M M Jeevani Osadee Wijekoon
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Kaiser Mahmood
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Fazilah Ariffin
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia; Renewable Biomass Transformation Cluster, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| | - Abdorreza Mohammadi Nafchi
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia; Department of Food Science and Technology, Damghan Branch, Islamic Azad University, Damghan, Iran; Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| | - Musfirah Zulkurnain
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia
| |
Collapse
|
8
|
Gelatin-maltodextrin microcapsules as carriers of vitamin D3 improve textural properties of synbiotic yogurt and extend its probiotics survival. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
9
|
Co-assemblies of carboxymethyl cellulose and wheat glutenins as colloidal carriers of vitamin D3 with enhanced stability against long-term storage and ultraviolet radiation. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Frosi I, Ferron L, Colombo R, Papetti A. Natural carriers: Recent advances in their use to improve the stability and bioaccessibility of food active compounds. Crit Rev Food Sci Nutr 2022; 64:5700-5718. [PMID: 36533404 DOI: 10.1080/10408398.2022.2157371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the last decades, the incorporation of bioactive compounds in food supplements aroused the attention of scientists. However, these ingredients often exhibit both low solubility and stability and their poor bioaccessibility within the gastrointestinal tract limits their effectiveness. To overcome these drawbacks, many carriers have been investigated for encapsulating nutraceuticals and enhancing their bioavailability. It is note that several different vegetable wall materials have been applied to build delivery systems. Considering their encapsulation mechanism, lipid and protein-based carriers display specific interaction patterns with bioactives, whereas polysaccharidic-based carriers can entrap them by creating porous highly stable networks. To maximize the encapsulation efficiency, mixed systems are very promising. Following the current goal of using natural and sustainable ingredients, only a limited number of studies about the isolation of new ingredients from agro-food waste are available. In this review, a comprehensive overview of the state of art in the development of innovative natural lipid-, protein- and polysaccharide-based plant carriers is presented, focusing on their application as food active compounds. Different aspects to be considered in the design of delivery systems are discussed, including the carrier structure and chemical features, the interaction between the encapsulating and the core material, and the parameters affecting bioactives entrapment.
Collapse
Affiliation(s)
- Ilaria Frosi
- Drug Sciences Department, University of Pavia, Pavia, Italy
| | - Lucia Ferron
- Drug Sciences Department, University of Pavia, Pavia, Italy
| | | | - Adele Papetti
- Drug Sciences Department, University of Pavia, Pavia, Italy
| |
Collapse
|
11
|
Iddir M, Vahid F, Merten D, Larondelle Y, Bohn T. Influence of Proteins on the Absorption of Lipophilic Vitamins, Carotenoids and Curcumin - A Review. Mol Nutr Food Res 2022; 66:e2200076. [PMID: 35506751 DOI: 10.1002/mnfr.202200076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/26/2022] [Indexed: 12/13/2022]
Abstract
While proteins have been widely used to encapsulate, protect, and regulate the release of bioactive food compounds, little is known about the influence of co-consumed proteins on the absorption of lipophilic constituents following digestion, such as vitamins (A, D, E, K), carotenoids, and curcumin. Their bioavailability is often low and very variable, depending on the food matrix and host factors. Some proteins can act as emulsifiers during digestion. Their liberated peptides have amphiphilic properties that can facilitate the absorption of microconstituents, by improving their transition from lipid droplets into mixed micelles. Contrarily, the less well digested proteins could negatively impinge on enzymatic accessibility to the lipid droplets, slowing down their processing into mixed micelles and entrapping apolar food compounds. Interactions with mixed micelles and proteins are also plausible, as shown earlier for drugs. This review focuses on the ability of proteins to act as effective emulsifiers of lipophilic vitamins, carotenoids, and curcumin during digestion. The functional properties of proteins, their chemical interactions with enzymes and food constituents during gastro-intestinal digestion, potentials and limitations for their use as emulsifiers are emphasized and data from human, animal, and in vitro trials are summarized.
Collapse
Affiliation(s)
- Mohammed Iddir
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Science and Technology, 1 A-B, rue Thomas Edison, Strassen, L-1445, Luxembourg.,Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, 1348, Belgium
| | - Farhad Vahid
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Science and Technology, 1 A-B, rue Thomas Edison, Strassen, L-1445, Luxembourg
| | - Diane Merten
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Science and Technology, 1 A-B, rue Thomas Edison, Strassen, L-1445, Luxembourg
| | - Yvan Larondelle
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, 1348, Belgium
| | - Torsten Bohn
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Science and Technology, 1 A-B, rue Thomas Edison, Strassen, L-1445, Luxembourg
| |
Collapse
|
12
|
Lee J, Duggan E. Improved stability of vitamin D3 encapsulated in whey protein isolate microgels. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
Emulsion-filled gels of soy protein isolate for vehiculation of vitamin D3: Effect of protein solubility on their mechanical and rheological characteristics. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Maqamikia H, Hakimzadeh V, Arianfar A, Rajabzadeh G, Shahidi‐Noghabi M. Evaluation of apparent viscosity and syneresis of dairy dessert enriched of vitamin D
3
‐loaded nanoniosomes produced by different surfactant. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hamideh Maqamikia
- Department of Food Science and Technology Quchan Branch Islamic Azad University Quchan Iran
| | - Vahid Hakimzadeh
- Department of Food Science and Technology Quchan Branch Islamic Azad University Quchan Iran
| | - Akram Arianfar
- Department of Food Science and Technology Quchan Branch Islamic Azad University Quchan Iran
| | - Ghadir Rajabzadeh
- Department of Food Nanotechnology Research Institute of Food Science and Technology Mashhad Iran
| | - Mostafa Shahidi‐Noghabi
- Department of Food Chemistry Research Institute of Food Science and Technology (RIFST) Mashhad Iran
| |
Collapse
|
15
|
Mulrooney SL, O'Neill GJ, Brougham DF, Lyng JG, O'Riordan D. Improving vitamin D 3 stability to environmental and processing stresses using mixed micelles. Food Chem 2021; 362:130114. [PMID: 34087708 DOI: 10.1016/j.foodchem.2021.130114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/04/2021] [Accepted: 05/12/2021] [Indexed: 10/21/2022]
Abstract
Deficiency of vitamin-D is prevalent globally and can lead to negative health consequences. The fat-soluble nature of vitamin-D, coupled with its sensitivity to heat, light and oxygen limits its incorporation into foods. Mixed micelles (MM) have potential to enhance bioavailability of vitamin-D. This study explores the stability of MM to food processing regimes and their ability to protect vitamin-D. Subjecting MM to a range of shearing speeds (8,000-20,500 rpm) and to high pressure processing (600 MPa, 120sec) resulted in no change in MM size (4.1-4.5 nm). MM improved the retention of vitamin-D following exposure to UV-C light, near UV/visible light, and heat treatment. MM suspensions protected vitamin-D over a four week storage period at refrigeration or freezer conditions. Overall MM show potential to protect vitamin-D from degradation encountered in food processing and storage and may be beneficial as a mechanism to fortify foods with vitamin-D.
Collapse
Affiliation(s)
- Steven L Mulrooney
- Institute of Food and Health, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Graham J O'Neill
- School of Food Science and Environmental Health, Technological University Dublin, Dublin 1, Ireland.
| | - Dermot F Brougham
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - James G Lyng
- Institute of Food and Health, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Dolores O'Riordan
- Institute of Food and Health, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
16
|
In vitro digestibility and stability of encapsulated yerba mate extract and its impact on yogurt properties. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-020-00788-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
17
|
Yasmin I, Iqbal R, Liaqat A, Khan WA, Nadeem M, Iqbal A, Chughtai MFJ, Rehman SJU, Tehseen S, Mehmood T, Ahsan S, Tanweer S, Naz S, Khaliq A. Characterization and Comparative Evaluation of Milk Protein Variants from Pakistani Dairy Breeds. Food Sci Anim Resour 2020; 40:689-698. [PMID: 32968722 PMCID: PMC7492176 DOI: 10.5851/kosfa.2020.e44] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 06/09/2020] [Accepted: 06/15/2020] [Indexed: 02/03/2023] Open
Abstract
The aim of study was to scrutinize the physicochemical and protein profile of milk obtained from local Pakistani breeds of milch animals such as Nilli-Ravi buffalo, Sahiwal cow, Kajli sheep, Beetal goat and Brela camel. Physicochemical analysis unveiled maximum number of total solids and protein found in sheep and minimum in camel. Buffalo milk contains the highest level of fat (7.45%) while camel milk contains minimum (1.94%). Ash was found maximum in buffalo (0.81%) and sheep (0.80%) while minimum in cow's milk (0.71%). Casein and whey proteins were separated by subjecting milk to isoelectric pH and then analyzed through sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). The results showed heterogeneity among these species. Different fractions including αS1, αS2, κ-casein, β-casein and β-lactoglobulen (β-Lg) were identified and quantitatively compared in all milk samples. Additionally, this electrophoretic method after examining the number and strength of different protein bands (αS1, αS2, β-CN, α-LAC, BSA, and β-Lg, etc.), was helpful to understand the properties of milk for different processing purposes and could be successfully applied in dairy industry. Results revealed that camel milk was best suitable for producing allergen free milk protein products. Furthermore, based on the variability of milk proteins, it is suggested to clarify the phylogenetic relationships between different cattle breeds and to gather the necessary data to preserve the genetic fund and biodiversity of the local breeds. Thus, the study of milk protein from different breed and species has a wide range of scope in producing diverse protein based dairy products like cheese.
Collapse
Affiliation(s)
- Iqra Yasmin
- Department of Food Science and Technology, Government College Women University, Faisalabad 38040, Pakistan.,Center of Excellence for Olive Research and Training, Barani Agricultural Research Institute, Chkwal 4800, Pakistan
| | - Rabia Iqbal
- Department of Food Science and Technology, Government College Women University, Faisalabad 38040, Pakistan
| | - Atif Liaqat
- Department of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Wahab Ali Khan
- Department of Food Science, Lyallpur Institute of Advanced studies, Faisalabad,38000, Pakistan
| | - Muhamad Nadeem
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus 61100, Pakistan
| | - Aamir Iqbal
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Farhan Jahangir Chughtai
- Department of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Syed Junaid Ur Rehman
- Department of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Saima Tehseen
- Department of Food Science and Technology, Government College Women University, Faisalabad 38040, Pakistan
| | - Tariq Mehmood
- Department of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Samreen Ahsan
- Department of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Saira Tanweer
- University College of Agriculture and Environmental Sciences, Islamia University, Bahawalpur 63100, Pakistan
| | - Saima Naz
- Department of Clinical Nutrition, Nur International University, Lahore 54000, Pakistan
| | - Adnan Khaliq
- Department of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
| |
Collapse
|
18
|
Khan WA, Butt MS, Pasha I, Saeed M, Yasmin I, Ali M, Azam M, Khan MS. Bioavailability, rheology, and sensory evaluation of mayonnaise fortified with vitamin D encapsulated in protein-based carriers. J Texture Stud 2020; 51:955-967. [PMID: 32799340 DOI: 10.1111/jtxs.12555] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/02/2020] [Accepted: 08/10/2020] [Indexed: 11/30/2022]
Abstract
Vitamin D lost its functionality during processing and storage, thus, encapsulation with proteins is desirable to preserve bioactivity. The aim of the current study was to develop encapsulated vitamin D fortified mayonnaise (VDFM) using whey protein isolates (WPI) and soy protein isolates (SPI) as encapsulating materials in three different formulations, that is, 10% WPI, 10% SPI, and 5/5% WPI/SPI. Increased shear stress decreased the apparent viscosity along with significant effects on the loss modulus of VDFM. WPI encapsulates showed better results as compared to SPI. WPI based VDFM (M1 ) depicted the best results in terms of size and dispersion uniformity of oil droplets. Hue angle and total change differed significantly among treatments. The highest value for overall acceptability was acquired by M3 (5:5%WPI:SPI-encapsulates) thus proceed for in vivo trials. Serum vitamin D level was significantly higher in the encapsulated VDFM rat group (58.14 ± 6.29 nmol/L) than the control (37.80 ± 4.98 nmol/L). Conclusively, WPI and SPI encapsulates have the potential to improve the stability and bioavailability of vitamin D.
Collapse
Affiliation(s)
- Wahab Ali Khan
- Department of Food Science, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA.,National Institute of Food Science & Technology, Faculty of Food, Nutrition & Home Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Masood Sadiq Butt
- National Institute of Food Science & Technology, Faculty of Food, Nutrition & Home Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Imran Pasha
- National Institute of Food Science & Technology, Faculty of Food, Nutrition & Home Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Saeed
- National Institute of Food Science & Technology, Faculty of Food, Nutrition & Home Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Iqra Yasmin
- Center of Excellence for Olive Research and Training, Barani Agricultural Research Institute, Chakwal, Pakistan
| | - Maratab Ali
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Muhammad Azam
- National Institute of Food Science & Technology, Faculty of Food, Nutrition & Home Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Shahroz Khan
- Institute of Horticultural Sciences, Faculty of Agriculture, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
19
|
In vitro Probiotic Potential and Safety Evaluation (Hemolytic, Cytotoxic Activity) of Bifidobacterium Strains Isolated from Raw Camel Milk. Microorganisms 2020; 8:microorganisms8030354. [PMID: 32131456 PMCID: PMC7143641 DOI: 10.3390/microorganisms8030354] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/15/2020] [Accepted: 02/16/2020] [Indexed: 01/04/2023] Open
Abstract
The present study was designed to isolate Bifidobacterium strains from raw camel milk and to investigate their probiotic characteristics. Among 35 isolates, 8 were identified as Gram-positive, catalase negative, non-spore forming, non-motile and V or Y shaped rods. B-2, B-5, B-11, B-19 and B-28 exhibited good survival at low pH and high bile salt concentration. Most of the isolates were resistant to nalidixic acid, fusidic acid, polymyxin B, neomycin, streptomycin, gentamicin, rifampicin and kanamycin. Furthermore, the production of exopolysaccharides (EPS), adhesion characteristics, antioxidant properties, antagonistic activities, nitrite reduction and cholesterol assimilation were also studied. Isolate B-11 was chosen because it exhibited most of the probiotic properties among all the tested isolates. It is identified as the member of Bifidobacterium longum group through 16S rRNA gene sequencing and named as B. longum B-11. B. longum B-11 was further selected for in vivo attachment to rat intestine and scanning electron micrographs revealed that attachment of a large number of rods shaped bacterial cell. Our findings suggest that B. longum B-11 processes excellent attributes to be used as potential probiotic in the development of functional probiotic food.
Collapse
|