1
|
Alabrahim OAA, Lababidi JM, Fritzsche W, Azzazy HMES. Beyond aromatherapy: can essential oil loaded nanocarriers revolutionize cancer treatment? NANOSCALE ADVANCES 2024:d4na00678j. [PMID: 39415775 PMCID: PMC11474398 DOI: 10.1039/d4na00678j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Abstract
Cancer, a complex global health burden, necessitates the development of innovative therapeutic strategies. While chemotherapy remains the primary treatment approach, its severe side effects and chemoresistance drive the search for novel alternatives. Essential oils (EOs), consisting of diverse bioactive phytochemicals, offer promise as anticancer agents. However, their limitations, such as instability, limited bioavailability, and non-specific targeting, hinder their therapeutic potential. These challenges were circumvented by utilizing nanoparticles and nanosystems as efficient delivery platforms for EOs. This review highlights the accumulating evidence based on loading EOs into several nanocarriers, including polymeric nanoparticles, nanoemulsions, nanofibers, lipid-based nanocapsules and nanostructures, niosomes, and liposomes, as effective anticancer regimens. It covers extraction and chemical composition of EOs, their mechanisms of action, and targeting strategies to various tumors. Additionally, it delves into the diverse landscape of nanocarriers, including their advantages and considerations for cancer targeting and EO encapsulation. The effectiveness of EO-loaded nanocarriers in cancer targeting and treatment is examined, highlighting enhanced cellular uptake, controlled drug release, and improved therapeutic efficacy. Finally, the review addresses existing challenges and future perspectives, emphasizing the potential for clinical translation and personalized medicine approaches.
Collapse
Affiliation(s)
- Obaydah Abd Alkader Alabrahim
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo AUC Avenue, SSE # 1184, P.O. Box 74 New Cairo 11835 Egypt
| | - Jude Majed Lababidi
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo AUC Avenue, SSE # 1184, P.O. Box 74 New Cairo 11835 Egypt
| | - Wolfgang Fritzsche
- Department of Nanobiophotonics, Leibniz Institute of Photonic Technology Albert Einstein Str. 9 Jena 07745 Germany
| | - Hassan Mohamed El-Said Azzazy
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo AUC Avenue, SSE # 1184, P.O. Box 74 New Cairo 11835 Egypt
- Department of Nanobiophotonics, Leibniz Institute of Photonic Technology Albert Einstein Str. 9 Jena 07745 Germany
| |
Collapse
|
2
|
Jamir Y, Bhushan M, Sanjukta R, Robindro Singh L. Plant-based essential oil encapsulated in nanoemulsions and their enhanced therapeutic applications: An overview. Biotechnol Bioeng 2024; 121:415-433. [PMID: 37941510 DOI: 10.1002/bit.28590] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/22/2023] [Accepted: 10/28/2023] [Indexed: 11/10/2023]
Abstract
In recent years, studies on the formulation of nanoemulsions have been the focus of attention due to their potential applicability in food, pharmaceuticals, cosmetics, and agricultural industries. Nanoemulsions can be formulated using ingredients approved by the Food and Drug Administration (FDA), which assures their safety profiles to a great extent. Bioactive compounds such as essential oils although have strong biological properties and antimicrobial compounds, their usage is restricted due to their high volatility, instability, and hydrophobic nature. Therefore, nanoemulsion as carrier vehicle can be used to encapsulate essential oils to obtain stable and enhanced physicochemical characteristics of the essential oils. This review details the structure, formulation, and characterization techniques used for nanoemulsions, with a focus on the essential oil-based nanoemulsions which have the potential to be used as antimicrobial and anticancer therapeutics.
Collapse
Affiliation(s)
- Yangerdenla Jamir
- Department of Nanotechnology, North Eastern Hill University, Shillong, Meghalaya, India
- Division of Animal and Fisheries Sciences, ICAR-RC for NEH Region, Umiam, Meghalaya, India
| | - Mayank Bhushan
- Department of Nanotechnology, North Eastern Hill University, Shillong, Meghalaya, India
| | - Rajkumari Sanjukta
- Division of Animal and Fisheries Sciences, ICAR-RC for NEH Region, Umiam, Meghalaya, India
| | | |
Collapse
|
3
|
Yousefpoor Y, Esnaashari SS, Baharifar H, Mehrabi M, Amani A. Current challenges ahead in preparation, characterization, and pharmaceutical applications of nanoemulsions. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1920. [PMID: 37558229 DOI: 10.1002/wnan.1920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 06/07/2023] [Accepted: 06/27/2023] [Indexed: 08/11/2023]
Abstract
Nanoemulsions (NEs) are emulsions with particle size of less than around 100 nm. Reviewing the literature, several reports are available on NEs, including preparation, characterization, and applications of them. This review aims to brief challenges that researchers or formulators may encounter when working with NEs. For instance, when selecting NE components and identifying their concentrations, stability and safety of the preparation should be evaluated. When preparing an NE, issues over scale-up of the preparation as well as possible effects of the preparation process on the active ingredient need to be considered. When characterizing the NEs, the two major concerns are accuracy of the method and accessibility of the characterizing instrument. Also a highly efficient NE for clinical use to deliver the active ingredient to the target tissue with maximum safety profile is commonly sought. Throughout the review we also have tried to suggest approaches to overcome the challenges. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Yaser Yousefpoor
- Department of Medical Biotechnology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical, Torbat Heydariyeh, Iran
| | - Seyedeh Sara Esnaashari
- Department of Medical Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hadi Baharifar
- Department of Medical Nanotechnology, Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohsen Mehrabi
- Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Amir Amani
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Department of Advanced Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| |
Collapse
|
4
|
Gayathri K, Bhaskaran M, Selvam C, Thilagavathi R. Nano formulation approaches for curcumin delivery- a review. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
5
|
Ahmadi Oskooei F, Mehrzad J, Asoodeh A, Motavalizadehkakhky A. Olive oil-based quercetin nanoemulsion (QuNE)'s interactions with human serum proteins (HSA and HTF) and its anticancer activity. J Biomol Struct Dyn 2023; 41:778-791. [PMID: 34919017 DOI: 10.1080/07391102.2021.2012514] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/25/2021] [Indexed: 01/11/2023]
Abstract
The current study produced Quercetin nanoemulsions (QuNEs) for the purpose of improving Quercetin solubility in an aqueous polar condition and to analyze QuNE-protein formation (QuNE-human serum albumin (HSA) and QuNE-holo-transferrin (HTF)).QuNE was produced by utilizing an ultrasound-based emulsification method and was characterized by DLS, TEM, and SEM. Its interaction with HSA and HTF proteins was studied by analyzing the results of FRET and RLS spectroscopy, Stern-Volmer plotting, the Van't Hoff equation, CD spectroscopy, and molecular docking methods. Finally, QuNE's cytotoxic impact, cell death type induction, and antioxidant properties were evaluated by applying an MTT assay on a human hepatocyte cancer cell (HepG2), measuring Cas-3 gene expression, and conducting a DPPH antioxidant test, respectively. Compared to the non-entrapped Quercetin, Quercetin-entrapped nano-emulsions formed stable complexes with HSA and HTF by improving hydrophilic-hydrophobic interactions. The binding constant (BC), ΔH0, and ΔS0 indices for both the QuNE-HSA and QuNE-HTF complexes were measured at (4.92 × 105 and 11.99 × 104 M-1), (170.96 and -131.19 KJ.mol-1), and (-464.86 and 342.83J.mol-1K-1), respectively.QuNE lowered the HepG2 viability by up-regulating Cas-3 gene expression and thus inducing apoptosis. Moreover, a notable antioxidant impact on the QuNE was detected. Due to its ability in delivering Quercetin to HSA and HTF proteins and stabilizing their protein complexes, QuNE can be used as a suitable primary transporting agent whose formation of stable bio-accessible QuNE-HSA and -HTF protein complexes creates a safe and natural secondary delivery system, which has potential to be used as an efficient anticancer compound.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Farnaz Ahmadi Oskooei
- Department of Biochemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Jamshid Mehrzad
- Department of Biochemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Ahmad Asoodeh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Alireza Motavalizadehkakhky
- Department of Chemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
- Advanced Research Center for Chemistry, Biochemistry & Nanomaterial, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| |
Collapse
|
6
|
Ahmadi Oskooei F, Mehrzad J, Asoodeh A, Motavalizadehkakhky A. Multi-spectroscopic characteristics of olive oil-based Quercetin nanoemulsion (QuNE) interactions with calf thymus DNA and its anticancer activity. J Mol Liq 2022; 367:120317. [DOI: 10.1016/j.molliq.2022.120317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Jampilek J, Kralova K. Anticancer Applications of Essential Oils Formulated into Lipid-Based Delivery Nanosystems. Pharmaceutics 2022; 14:2681. [PMID: 36559176 PMCID: PMC9781429 DOI: 10.3390/pharmaceutics14122681] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
The use of natural compounds is becoming increasingly popular among patients, and there is a renewed interest among scientists in nature-based bioactive agents. Traditionally, herbal drugs can be taken directly in the form of teas/decoctions/infusions or as standardized extracts. However, the disadvantages of natural compounds, especially essential oils, are their instability, limited bioavailability, volatility, and often irritant/allergenic potential. However, these active substances can be stabilized by encapsulation and administered in the form of nanoparticles. This brief overview summarizes the latest results of the application of nanoemulsions, liposomes, solid lipid nanoparticles, and nanostructured lipid carriers used as drug delivery systems of herbal essential oils or used directly for their individual secondary metabolites applicable in cancer therapy. Although the discussed bioactive agents are not typical compounds used as anticancer agents, after inclusion into the aforesaid formulations improving their stability and bioavailability and/or therapeutic profile, they indicated anti-tumor activity and became interesting agents with cancer treatment potential. In addition, co-encapsulation of essential oils with synthetic anticancer drugs into nanoformulations with the aim to achieve synergistic effect in chemotherapy is discussed.
Collapse
Affiliation(s)
- Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Department of Chemical Biology, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Katarina Kralova
- Institute of Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
| |
Collapse
|
8
|
Salehi F, Behboudi H, Salehi E, Ardestani SK, Piroozmand F, Kavoosi G. Apple pectin-based Zataria multiflora essential oil (ZEO) nanoemulsion: An approach to enhance ZEO DNA damage induction in breast cancer cells as in vitro and in silico studies reveal. Front Pharmacol 2022; 13:946161. [PMID: 36133807 PMCID: PMC9483017 DOI: 10.3389/fphar.2022.946161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Zataria multiflora essential oil (ZEO) is a natural complex of compounds with a high apoptotic potential against breast cancer cells and minor toxicity toward normal cells; however, similar to many essential oils, ZEO utilization in pharmaceutical industries has limitations due to its labile and sensitive ingredients. Nanoemulsification based on natural polymers is one approach to overcome this issue. In this study, an apple pectin-ZEO nanoemulsion (AP-ZEONE) was prepared and its morphology, FTIR spectra, and physical properties were characterized. Furthermore, it was shown that AP-ZEONE substantially suppresses the viability of MDA-MB-231, T47D, and MCF-7 breast cancer cells. AP-ZEONE significantly induced apoptotic morphological alterations and DNA fragmentation as confirmed by fluorescent staining and TUNEL assay. Moreover, AP-ZEONE induced apoptosis in MDA-MB-231 cells by loss of mitochondrial membrane potential (ΔΨm) associated with the accumulation of reactive oxygen species (ROS), G2/M cell cycle arrest, and DNA strand breakage as flow cytometry, DNA oxidation, and comet assay analysis revealed, respectively. Spectroscopic and computational studies also confirmed that AP-ZEONE interacts with genomic DNA in a minor groove/partial intercalation binding mode. This study demonstrated the successful inhibitory effect of AP-ZEONE on metastatic breast cancer cells, which may be beneficial in the therapy process.
Collapse
Affiliation(s)
- Fahimeh Salehi
- Institute of Biochemistry and Biophysics, Department of Biochemistry, University of Tehran, Tehran, Iran
| | - Hossein Behboudi
- Faculty of Biology, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Elaheh Salehi
- Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Sussan K. Ardestani
- Institute of Biochemistry and Biophysics, Department of Biochemistry, University of Tehran, Tehran, Iran
| | - Firoozeh Piroozmand
- Department of Microbiology, College of Science, University of Tehran, Tehran, Iran
| | - Gholamreza Kavoosi
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
- *Correspondence: Gholamreza Kavoosi,
| |
Collapse
|
9
|
Heracleum persicum Essential Oil Nanoemulsion: A Nanocarrier System for the Delivery of Promising Anticancer and Antioxidant Bioactive Agents. Antioxidants (Basel) 2022; 11:antiox11050831. [PMID: 35624695 PMCID: PMC9138159 DOI: 10.3390/antiox11050831] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 12/28/2022] Open
Abstract
Essential oils are important compounds for the prevention and/or treatment of various diseases in which solubility and bio-accessibility can be improved by nanoemulsion systems. Heracleum persicum oil nanoemulsion (HAE-NE) was prepared and biological properties were investigated against human breast cancer cells and normal human fibroblasts foreskin. Particle size, zeta potential and poly dispersity index were 153 nm, −47.9 mV and 0.35, respectively. (E)anethole (57.9%), terpinolene (13.8%), ɣ-terpinene (8.1%), myrcene (6.8%), hexyl butyrate (5.2%), octyl butanoate (4.5%) and octyl acetate (3.7%) was detected in nanoemulsion. Proliferation of cancer cells at IC50 = 2.32 μg/mL was significantly (p < 0.05) inhibited, and cell migration occurred at 1.5 μL/mL. The HAE-NE at 1.5, 2.5 and 3.5 µg/concentration up-regulated caspase 3 and enhanced sub-G1 peak of cell cycle with nil cytotoxic effects in the liver, kidney and jejunum of mice. Villus height, villus width, crypt depth and goblet cells in mice group fed with 10 and 20 mg/kg body weight of HAE-NE improved. Cellular redox state in the liver indicated 10 and 20 mg/kg body weight of nanoemulsion significantly up-regulated the expression of SOD, CAT and GPx genes. Heracleum persicum oil nanoemulsion could be an eco-friendly nanotherapeutic option for pharmaceutical, cosmetological and food applications.
Collapse
|
10
|
Nanoemulsions of Trachyspermum copticum, Mentha pulegium and Satureja hortensis essential oils: formulation, physicochemical properties, antimicrobial and antioxidant efficiency. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01294-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
11
|
Md S, Alhakamy NA, Alharbi WS, Ahmad J, Shaik RA, Ibrahim IM, Ali J. Development and Evaluation of Repurposed Etoricoxib Loaded Nanoemulsion for Improving Anticancer Activities against Lung Cancer Cells. Int J Mol Sci 2021; 22:13284. [PMID: 34948081 PMCID: PMC8705699 DOI: 10.3390/ijms222413284] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 12/24/2022] Open
Abstract
In the present work, novel modality for lung cancer intervention has been explored. Primary literature has established the potential role of cyclooxygenase-2 (COX-2) inhibitor in regression of multiple forms of carcinomas. To overcome its poor water solubility and boost anticancer activity, etoricoxib (ETO) was chosen as a therapeutic candidate for repurposing and formulated into a nanoemulsion (NE). The prepared ETO loaded NE was characterized for the surface charge, droplet size, surface morphology, and in vitro release. The optimized ETO loaded NE was then investigated for its anticancer potential employing A549 lung cancer cell line via cytotoxicity, apoptotic activity, mitochondrial membrane potential activity, cell migration assay, cell cycle analysis, Caspase-3, 9, and p53 activity by ELISA and molecular biomarker analysis through RT-PCR test. The developed ETO-NE formulation showed adequate homogeneity in the droplet size distribution with polydispersity index (PDI) of (0.2 ± 0.03) and had the lowest possible droplet size (124 ± 2.91 nm) and optimal negative surface charge (-8.19 ± 1.51 mV) indicative of colloidal stability. The MTT assay results demonstrated that ETO-NE exhibited substantial anticancer activity compared to the free drug. The ETO-NE showed a substantially potent cytotoxic effect against lung cancer cells, as was evident from the commencement of apoptosis/necrotic cell death and S-phase cell cycle arrests in A549 cells. The study on these molecules through RT-PCR confirmed that ETO-NE is significantly efficacious in mitigating the abundance of IL-B, IL-6, TNF, COX-2, and NF-kB as compared to the free ETO and control group. The current study demonstrates that ETO-NE represents a feasible approach that could provide clinical benefits for lung cancer patients in the future.
Collapse
Affiliation(s)
- Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (W.S.A.)
- Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (W.S.A.)
- Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Waleed S. Alharbi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (W.S.A.)
- Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia;
| | - Rasheed A. Shaik
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Ibrahim M. Ibrahim
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India;
| |
Collapse
|
12
|
Abstract
The purpose of this study was to develop a stable nanoemulsion (NE) containing Croton cajucara 7-hydroxycalamenene-rich essential oil (NECC) with antifungal activity. The NECCs were prepared using an ultrasonic processor with Pluronic® F-127 as the aqueous phase. In order to evaluate the NECCs, the droplet size, polydispersity index (PdI), percentage of emulsification, and pH were determined along with a stability study. The NECC selected for the study had 15% surfactant, showed 100% emulsification, Pdl of 0.249, neutral pH, droplet diameters of about 40 nm, and remained stable over 150 days at room temperature. In addition, the NECC activity against some species of Zygomycetes and Candida, as well as the potential to inhibit fungal extracellular proteases, were assessed, and, finally, the hemolytic activity was evaluated. The best NECC antifungal activities were against Mucorramosissimus (Minimal inhibitory concentration (MIC) = 12.2 μg/mL) and Candida albicans (MIC = 25.6 μg/mL). The highest extracellular protease activities of M. ramosissimus and C. albicans were detected at pH 3 and 4, respectively, which were totally inhibited after NECC treatment. The NECC showed no hemolytic effect at the highest concentration tested (2 mg/mL).
Collapse
|
13
|
Gupta N, Yadav V, Patel R. A brief review of the essential role of nanovehicles for improving the therapeutic efficacy of pharmacological agents against tumours. Curr Drug Deliv 2021; 19:301-316. [PMID: 34391379 DOI: 10.2174/1567201818666210813144105] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/05/2021] [Accepted: 06/16/2021] [Indexed: 11/22/2022]
Abstract
Cancer is the leading cause of death globally. There are several differences between cancer cells and normal cells. From all the therapies, chemotherapy is the most prominent therapy to treat cancer. However, the conventional drug delivery that is used to deliver poorly aqueous soluble chemotherapeutic agents has several obstacles such as whole-body distribution, rapid excretion, degradation before reaching the infected site, side effects, etc. Nanoformulation of these aqueous insoluble agents is the emerging delivery system for targeted and increasing solubility. Among all the three methods (physical, chemical and biological) chemical and biological methods are mostly used for the synthesis of nanovehicles (NVs) of different sizes, shapes and dimensions. A passive targeting delivery system in which NVs supports the pharmacological agents (drugs/genes) is a good way for resolving the obstacles with a conventional delivery system. It enhances the therapeutic efficacy of pharmacological agents (drugs/genes). These NVs have several specific characters like small size, large surface area to volume ratio, surface functionalization, etc. However, this delivery is not able to deliver site-specific delivery of drugs. An active targeting delivery system in which pharmacological agents are loaded on NVs to attack directly on cancer cells and tissues is a superior way for delivering the pharmacological agents compared to a passive targeting delivery system. Various targeting ligands have been investigated and applied for targeting the delivery of drugs such as sugar, vitamin, antibodies, protein, peptides, etc. These targeted ligand supports to guide the NVs accumulated directly on the cancer cells with a higher level of cellular internalization compared to passive targeting and conventional delivery system.
Collapse
Affiliation(s)
- Nitin Gupta
- School of Nano Sciences, Central University of Gujarat, Gandhinagar- 382030, Gujarat, India
| | - Virendra Yadav
- Department of Microbiology, School of Life Sciences, Jaipur National University, Jaipur- 341503, Rajasthan, India
| | - Rakesh Patel
- Shree S. K. Patel College of Pharmaceutical Education & Research, Ganpat University, Mehsana- 384012, Gujarat, India
| |
Collapse
|
14
|
Tavakkol Afshari HS, Homayouni Tabrizi M, Ardalan T, Jalili Anoushirvani N, Mahdizadeh R. Anethum Graveolens Essential Oil Nanoemulsions (AGEO-NE) as an Exclusive Apoptotic Inducer in Human Lung Adenocarcinoma (A549) Cells. Nutr Cancer 2021; 74:1411-1419. [PMID: 34282978 DOI: 10.1080/01635581.2021.1952450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Anethum graveolens essential oil (AGEO) is used as an anticancer compound that can be made more efficacious by improving its biosolubility and biocompatibility. In the current study, we aimed to improve AGEO bioactivity using the nanoemulsion-based encapsulation technique. To formulate stable AGEO-NE, an ultrasonication method was utilized. The size, stability, and morphology of the AGEO-NE was measured, and then its cytotoxic impacts were evaluated on adenocarcinomic human alveolar basal epithelial cells (A549). The ferric reducing antioxidant power (FRAP) test was done to measure the antioxidant activity of AGEO-NE. Its cytotoxic property was analyzed by measuring the viability percentage of cancer (A549) and normal human foreskin fibroblast (HFF) cell lines after increasing AGEO-NE treatment doses. AGEO-NE apoptotic activity was evaluated by studying the flow cytometry of the cells and measuring the apoptotic gene expression profile (Cas-3 and Cas-8) in the A549 cell line. The results showed a significant correlation between the increase of AGEO-NE concentrations and decrease of cancer (A549) cell viability (p < 0.05) when AGEO-NE was compared with normal HFF cells. Thus, AGEO-NE can be an efficient novel apoptosis and antioxidant inducer for human lung cancer cells without any undesirable side effects. However, further In Vitro and In Vivo studies are needed to confirm the results.
Collapse
Affiliation(s)
| | | | - Touran Ardalan
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Neda Jalili Anoushirvani
- Department of Medical Laboratory Sciences, Faculty of Medicine, Islamic Azad University, Branch of Mashhad, Mashhad, Iran
| | - Roya Mahdizadeh
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
15
|
Galal TM, Essa B, Al-Yasi H. Heavy metals uptake and its impact on the growth dynamics of the riparian shrub Ricinus communis L. along Egyptian heterogenic habitats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:37158-37171. [PMID: 33712952 DOI: 10.1007/s11356-021-13383-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Heavy metals are well known for their toxicity and become significant environmental pollution with a continually rising technology and public outcry to ensure the safest and healthiest environment. The present study aims to investigate the uptake capability of heavy metals and its impact on the growth dynamics of Ricinus communis L. (castor bean), along various habitats in Qalyubia Province, Egypt. Three composite plants and soil samples were collected from four different habitats: urban (residential area), canal banks, field edges, and drain banks. The samples were analyzed for nutrients and heavy metals. At the same time, forty quadrats (5 × 5 m) were selected to represent the micro-variations of castor bean in the selected habitats to determine its growth criteria and normalized vegetation index (NDVI). The lowest size index, volume, and number of leaves of castor bean were recorded along canal banks and they were characterized by high soil heavy metal concentration, especially Zn, Cu, and Ni, while the highest values were recorded along field edges with lower heavy metal concentration. Moreover, the NDVI indicated that castor bean from most studied habitats, except field edges, was healthy population. This study revealed that the leaves collected from all habitats were considered to be toxic with Cu. The bioconcentration factor (BF) of the investigated heavy metals was greater than 1. The BF order for heavy metals uptake by castor bean leaves was Fe > Ni > Mn > Cu > Zn. Consequently, the species selected in the present study can be used as a biomonitor of these heavy metal polluted soils. Moreover, it could be used as a phytoremediator, taken into consideration its use in all medicinal purposes.
Collapse
Affiliation(s)
- Tarek M Galal
- Biology Department, Faculty of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
- Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo, 11790, Egypt.
| | - Basma Essa
- Botany Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - Hatim Al-Yasi
- Biology Department, Faculty of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| |
Collapse
|
16
|
Ho TM, Abik F, Mikkonen KS. An overview of nanoemulsion characterization via atomic force microscopy. Crit Rev Food Sci Nutr 2021; 62:4908-4928. [PMID: 33543990 DOI: 10.1080/10408398.2021.1879727] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nanoemulsion-based systems are widely applied in food industries for protecting active ingredients against oxidation and degradation and controlling the release rate of active core ingredients under particular conditions. Visualizing the interface morphology and measuring the interfacial interaction forces of nanoemulsion droplets are essential to tailor and design intelligent nanoemulsion-based systems. Atomic force microscopy (AFM) is being established as an important technique for interface characterization, due to its unique advantages over traditional imaging and surface force-determining approaches. However, there is a gap in knowledge about the applicability of AFM in characterizing the droplet interface properties of nanoemulsions. This review aims to describe the fundamentals of the AFM technique and nanoemulsions, mainly focusing on the recent use of AFM to investigate nanoemulsion properties. In addition, by reviewing interfacial studies on emulsions in general, perspectives for the further development of AFM to study nanoemulsions are also discussed.
Collapse
Affiliation(s)
- Thao Minh Ho
- Department of Food and Nutrition, University of Helsinki, Finland.,Helsinki Institute of Sustainability Science (HELSUS), University of Helsinki, Finland
| | - Felix Abik
- Department of Food and Nutrition, University of Helsinki, Finland
| | - Kirsi S Mikkonen
- Department of Food and Nutrition, University of Helsinki, Finland.,Helsinki Institute of Sustainability Science (HELSUS), University of Helsinki, Finland
| |
Collapse
|