1
|
Changes in Plasma Metabolomic Profile Following Bariatric Surgery, Lifestyle Intervention or Diet Restriction-Insights from Human and Rat Studies. Int J Mol Sci 2023; 24:ijms24032354. [PMID: 36768676 PMCID: PMC9916678 DOI: 10.3390/ijms24032354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/28/2022] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
Although bariatric surgery is known to change the metabolome, it is unclear if this is specific for the intervention or a consequence of the induced bodyweight loss. As the weight loss after Roux-en-Y Gastric Bypass (RYGB) can hardly be mimicked with an evenly effective diet in humans, translational research efforts might be helpful. A group of 188 plasma metabolites of 46 patients from the randomized controlled Würzburg Adipositas Study (WAS) and from RYGB-treated rats (n = 6) as well as body-weight-matched controls (n = 7) were measured using liquid chromatography tandem mass spectrometry. WAS participants were randomized into intensive lifestyle modification (LS, n = 24) or RYGB (OP, n = 22). In patients in the WAS cohort, only bariatric surgery achieved a sustained weight loss (BMI -34.3% (OP) vs. -1.2% (LS), p ≤ 0.01). An explicit shift in the metabolomic profile was found in 57 metabolites in the human cohort and in 62 metabolites in the rodent model. Significantly higher levels of sphingolipids and lecithins were detected in both surgical groups but not in the conservatively treated human and animal groups. RYGB leads to a characteristic metabolomic profile, which differs distinctly from that following non-surgical intervention. Analysis of the human and rat data revealed that RYGB induces specific changes in the metabolome independent of weight loss.
Collapse
|
2
|
Mercado A, Pham A, Wang Z, Huang W, Chan P, Ibrahim H, Gogineni H, Huang Y, Wang J. Effects of bariatric surgery on drug pharmacokinetics-Preclinical studies. Front Pharmacol 2023; 14:1133415. [PMID: 37089960 PMCID: PMC10113450 DOI: 10.3389/fphar.2023.1133415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/27/2023] [Indexed: 04/25/2023] Open
Abstract
With the rising worldwide obesity rates, bariatric surgeries are increasing. Although the surgery offers an effective treatment option for weight loss, the procedure causes dramatic physiological and metabolic changes. Animal models in rodents provide a valuable tool for studying the systemic effects of the surgery. Since the surgery may significantly influence the pharmacokinetic properties of medications, animal studies should provide essential insight into mechanisms underlying changes in how the body handles the drug. This review summarizes research work in rodents regarding the impact of standard bariatric procedures on pharmacokinetics. A qualitative literature search was conducted via PubMed, the Cochrane Central Register of Controlled Trials (CENTRAL), and EMBASE. Studies that examined bariatric surgery's effects on drug pharmacokinetics in rodent models were included. Clinical studies and studies not involving drug interventions were excluded. A total of 15 studies were identified and assessed in this review. These studies demonstrate the possible impact of bariatric surgery on drug absorption, distribution, metabolism, excretion, and potential mechanisms. Pharmacokinetic changes exhibited in the limited pre-clinical studies highlight a need for further investigation to fully understand the impact and mechanism of bariatric surgery on drug responses.
Collapse
Affiliation(s)
- Angela Mercado
- College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| | - Anna Pham
- College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| | - Zhijun Wang
- College of Pharmacy, Marshall B. Ketchum University, Fullerton, CA, United States
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Arthur Riggs-Diabetes and Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Patrick Chan
- College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| | | | - Hyma Gogineni
- College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| | - Ying Huang
- College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
- *Correspondence: Ying Huang, ; Jeffrey Wang,
| | - Jeffrey Wang
- College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
- *Correspondence: Ying Huang, ; Jeffrey Wang,
| |
Collapse
|
3
|
Seyfried F, Springer R, Hoffmann A, Gruber M, Otto C, Schlegel N, Hankir MK. Gastric bypass surgery weight loss-independently induces gut Il-22 release in association with improved glycemic control in obese Zucker fatty rats. Metabol Open 2022; 17:100212. [PMID: 36992680 PMCID: PMC10040960 DOI: 10.1016/j.metop.2022.100212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
Background Roux-en-Y gastric bypass surgery (RYGB) improves glycemic control in individuals with severe obesity beyond the effects of weight loss alone. To identify potential underlying mechanisms, we asked how equivalent weight loss from RYGB and from chronic caloric restriction impact gut release of the metabolically beneficial cytokine interleukin-22 (Il-22). Methods Obese male Zucker fatty rats were randomized into sham-operated (Sham), RYGB, and sham-operated, body weight-matched to RYGB (BWM) groups. Food intake and body weight were measured regularly for 4 weeks. An oral glucose tolerance test (OGTT) was performed on postoperative day 27. Portal vein plasma, systemic plasma, and whole-wall samples from throughout the gut were collected on postoperative day 28. Gut Il-22 mRNA expression was determined by real-time quantitative PCR. Plasma Il-22 levels were determined by enzyme-linked immunosorbant assay (ELISA). Results RYGB and BWM rats had lower food intake and body weight as well as superior blood glucose clearing capability compared with Sham rats. RYGB rats also had superior blood glucose clearing capability compared with BWM rats despite having similar body weights and higher food intake. Il-22 mRNA expression was approximately 100-fold higher specifically in the upper jejunum in RYGB rats compared with Sham rats. Il-22 protein was only detectable in portal vein (34.1 ± 9.4 pg/mL) and systemic (46.9 ± 10.5 pg/mL) plasma in RYGB rats. Area under the curve of blood glucose during the OGTT, but not food intake or body weight, negatively correlated with portal vein and systemic plasma Il-22 levels in RYGB rats. Conclusions These results suggest that induction of gut Il-22 release might partly account for the weight loss-independent improvements in glycemic control after RYGB, and further support the use of this cytokine for the treatment of metabolic disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mohammed K. Hankir
- Corresponding author. Center of Operative Medicine, Oberduerrbacherstrasse 6, 97080, Wuerzburg, Germany.
| |
Collapse
|
4
|
Seyfried F, Phetcharaburanin J, Glymenaki M, Nordbeck A, Hankir M, Nicholson JK, Holmes E, Marchesi JR, Li JV. Roux-en-Y gastric bypass surgery in Zucker rats induces bacterial and systemic metabolic changes independent of caloric restriction-induced weight loss. Gut Microbes 2022; 13:1-20. [PMID: 33535876 PMCID: PMC7872092 DOI: 10.1080/19490976.2021.1875108] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Mechanisms of Roux-en-Y gastric bypass (RYGB) surgery are not fully understood. This study aimed to investigate weight loss-independent bacterial and metabolic changes, as well as the absorption of bacterial metabolites and bile acids through the hepatic portal system following RYGB surgery. Three groups of obese Zucker (fa/fa) rats were included: RYGB (n = 11), sham surgery and body weight matched with RYGB (Sham-BWM, n = 5), and sham surgery fed ad libitum (Sham-obese, n = 5). Urine and feces were collected at multiple time points, with portal vein and peripheral blood obtained at the end of the study. Metabolic phenotyping approaches and 16S rRNA gene sequencing were used to determine the biochemical and bacterial composition of the samples, respectively. RYGB surgery-induced distinct metabolic and bacterial disturbances, which were independent of weight loss through caloric restriction. RYGB resulted in lower absorption of phenylalanine and choline, and higher urinary concentrations of host-bacterial co-metabolites (e.g., phenylacetylglycine, indoxyl sulfate), together with higher fecal trimethylamine, suggesting enhanced bacterial aromatic amino acid and choline metabolism. Short chain fatty acids (SCFAs) were lower in feces and portal vein blood from RYGB group compared to Sham-BWM, accompanied with lower abundances of Lactobacillaceae, and Ruminococcaceae known to contain SCFA producers, indicating reduced bacterial fiber fermentation. Fecal γ-amino butyric acid (GABA) was found in higher concentrations in RYGB than that in Sham groups and could play a role in the metabolic benefits associated with RYGB surgery. While no significant difference in urinary BA excretion, RYGB lowered both portal vein and circulating BA compared to Sham groups. These findings provide a valuable resource for how dynamic, multi-systems changes impact on overall metabolic health, and may provide potential therapeutic targets for developing downstream non-surgical treatment for metabolic disease.
Collapse
Affiliation(s)
- Florian Seyfried
- Department of General, Visceral, Transplant, Vascular, and Pediatric Surgery, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Jutarop Phetcharaburanin
- Department of Metabolism Digestion and Reproduction, Faculty of Medicine, Imperial College LondonLondon, UK,Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Maria Glymenaki
- Department of Metabolism Digestion and Reproduction, Faculty of Medicine, Imperial College LondonLondon, UK
| | - Arno Nordbeck
- Department of General, Visceral, Transplant, Vascular, and Pediatric Surgery, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Mohammed Hankir
- Department of General, Visceral, Transplant, Vascular, and Pediatric Surgery, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Jeremy K Nicholson
- Division of Organisms and Environment, School of Biosciences, Institute of Health Futures, Murdoch University, Perth, Western Australia, Australia
| | - Elaine Holmes
- Department of Metabolism Digestion and Reproduction, Faculty of Medicine, Imperial College LondonLondon, UK,Division of Organisms and Environment, School of Biosciences, Institute of Health Futures, Murdoch University, Perth, Western Australia, Australia
| | - Julian R. Marchesi
- Department of Metabolism Digestion and Reproduction, Faculty of Medicine, Imperial College LondonLondon, UK,School of Biosciences, Cardiff University, Cardiff, UK
| | - Jia V. Li
- Department of Metabolism Digestion and Reproduction, Faculty of Medicine, Imperial College LondonLondon, UK,CONTACT Jia V. Li Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
5
|
Roux-en-Y Gastric Bypass and Caloric Restriction but Not Gut Hormone-Based Treatments Profoundly Impact the Hypothalamic Transcriptome in Obese Rats. Nutrients 2021; 14:nu14010116. [PMID: 35010991 PMCID: PMC8746874 DOI: 10.3390/nu14010116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The hypothalamus is an important brain region for the regulation of energy balance. Roux-en-Y gastric bypass (RYGB) surgery and gut hormone-based treatments are known to reduce body weight, but their effects on hypothalamic gene expression and signaling pathways are poorly studied. METHODS Diet-induced obese male Wistar rats were randomized into the following groups: RYGB, sham operation, sham + body weight-matched (BWM) to the RYGB group, osmotic minipump delivering PYY3-36 (0.1 mg/kg/day), liraglutide s.c. (0.4 mg/kg/day), PYY3-36 + liraglutide, and saline. All groups (except BWM) were kept on a free choice of high- and low-fat diets. Four weeks after interventions, hypothalami were collected for RNA sequencing. RESULTS While rats in the RYGB, BWM, and PYY3-36 + liraglutide groups had comparable reductions in body weight, only RYGB and BWM treatment had a major impact on hypothalamic gene expression. In these groups, hypothalamic leptin receptor expression as well as the JAK-STAT, PI3K-Akt, and AMPK signaling pathways were upregulated. No significant changes could be detected in PYY3-36 + liraglutide-, liraglutide-, and PYY-treated groups. CONCLUSIONS Despite causing similar body weight changes compared to RYGB and BWM, PYY3-36 + liraglutide treatment does not impact hypothalamic gene expression. Whether this striking difference is favorable or unfavorable to metabolic health in the long term requires further investigation.
Collapse
|
6
|
Leptin Receptors Are Not Required for Roux-en-Y Gastric Bypass Surgery to Normalize Energy and Glucose Homeostasis in Rats. Nutrients 2021; 13:nu13051544. [PMID: 34064308 PMCID: PMC8147759 DOI: 10.3390/nu13051544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/29/2022] Open
Abstract
Sensitization to the adipokine leptin is a promising therapeutic strategy against obesity and its comorbidities and has been proposed to contribute to the lasting metabolic benefits of Roux-en-Y gastric bypass (RYGB) surgery. We formally tested this idea using Zucker fatty fa/fa rats as an established genetic model of obesity, glucose intolerance, and fatty liver due to leptin receptor deficiency. We show that the changes in body weight in these rats following RYGB largely overlaps with that of diet-induced obese Wistar rats with intact leptin receptors. Further, food intake and oral glucose tolerance were normalized in RYGB-treated Zucker fatty fa/fa rats to the levels of lean Zucker fatty fa/+ controls, in association with increased glucagon-like peptide 1 (GLP-1) and insulin release. In contrast, while fatty liver was also normalized in RYGB-treated Zucker fatty fa/fa rats, their circulating levels of the liver enzyme alanine aminotransferase (ALT) remained elevated at the level of obese Zucker fatty fa/fa controls. These findings suggest that the leptin system is not required for the normalization of energy and glucose homeostasis associated with RYGB, but that its potential contribution to the improvements in liver health postoperatively merits further investigation.
Collapse
|
7
|
Haange SB, Jehmlich N, Krügel U, Hintschich C, Wehrmann D, Hankir M, Seyfried F, Froment J, Hübschmann T, Müller S, Wissenbach DK, Kang K, Buettner C, Panagiotou G, Noll M, Rolle-Kampczyk U, Fenske W, von Bergen M. Gastric bypass surgery in a rat model alters the community structure and functional composition of the intestinal microbiota independently of weight loss. MICROBIOME 2020; 8:13. [PMID: 32033593 PMCID: PMC7007695 DOI: 10.1186/s40168-020-0788-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/13/2020] [Indexed: 05/02/2023]
Abstract
BACKGROUND Roux-en-Y gastric bypass (RYGB) surgery is a last-resort treatment to induce substantial and sustained weight loss in cases of severe obesity. This anatomical rearrangement affects the intestinal microbiota, but so far, little information is available on how it interferes with microbial functionality and microbial-host interactions independently of weight loss. METHODS A rat model was employed where the RYGB-surgery cohort is compared to sham-operated controls which were kept at a matched body weight by food restriction. We investigated the microbial taxonomy and functional activity using 16S rRNA amplicon gene sequencing, metaproteomics, and metabolomics on samples collected from theileum, the cecum, and the colon, and separately analysed the lumen and mucus-associated microbiota. RESULTS Altered gut architecture in RYGB increased the relative occurrence of Actinobacteria, especially Bifidobacteriaceae and Proteobacteria, while in general, Firmicutes were decreased although Streptococcaceae and Clostridium perfringens were observed at relative higher abundances independent of weight loss. A decrease of conjugated and secondary bile acids was observed in the RYGB-gut lumen. The arginine biosynthesis pathway in the microbiota was altered, as indicated by the changes in the abundance of upstream metabolites and enzymes, resulting in lower levels of arginine and higher levels of aspartate in the colon after RYGB. CONCLUSION The anatomical rearrangement in RYGB affects microbiota composition and functionality as well as changes in amino acid and bile acid metabolism independently of weight loss. The shift in the taxonomic structure of the microbiota after RYGB may be mediated by the resulting change in the composition of the bile acid pool in the gut and by changes in the composition of nutrients in the gut. Video abstract.
Collapse
Affiliation(s)
- Sven-Bastiaan Haange
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
- Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| | - Nico Jehmlich
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Ute Krügel
- Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Constantin Hintschich
- Neuroendocrine Regulation of Energy Homeostasis Group, IFB Adiposity Diseases, Leipzig, Germany
| | - Dorothee Wehrmann
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Mohammed Hankir
- Neuroendocrine Regulation of Energy Homeostasis Group, IFB Adiposity Diseases, Leipzig, Germany
- Current address: Department of Experimental Surgery, Wuerzburg University Hospital, Wuerzburg, Germany
| | - Florian Seyfried
- Department of General, Visceral, Vascular and Pediatric Surgery, Wuerzburg University Hospital, Wuerzburg, Germany
| | - Jean Froment
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Thomas Hübschmann
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Susann Müller
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Dirk K. Wissenbach
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
- Current address: Institute of Forensic Medicine, Jena University Hospital, Jena, Germany
| | - Kang Kang
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoll Institute, Jena, Germany
| | - Christian Buettner
- Institute for Bioanalysis, Faculty of Applied Sciences, Coburg University of Applied Sciences and Arts, Coburg, Germany
| | - Gianni Panagiotou
- Systems Biology and Bioinformatics Group, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Matthias Noll
- Institute for Bioanalysis, Faculty of Applied Sciences, Coburg University of Applied Sciences and Arts, Coburg, Germany
| | - Ulrike Rolle-Kampczyk
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Wiebke Fenske
- Neuroendocrine Regulation of Energy Homeostasis Group, IFB Adiposity Diseases, Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
- Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| |
Collapse
|
8
|
Dischinger U, Hasinger J, Königsrainer M, Corteville C, Otto C, Fassnacht M, Hankir M, Seyfried FJD. Toward a Medical Gastric Bypass: Chronic Feeding Studies With Liraglutide + PYY 3-36 Combination Therapy in Diet-Induced Obese Rats. Front Endocrinol (Lausanne) 2020; 11:598843. [PMID: 33551994 PMCID: PMC7862770 DOI: 10.3389/fendo.2020.598843] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/07/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Combination therapies of anorectic gut hormones partially mimic the beneficial effects of bariatric surgery. Thus far, the effects of a combined chronic systemic administration of Glucagon-like peptide-1 (GLP-1) and peptide tyrosine tyrosine 3-36 (PYY3-36) have not been directly compared to Roux-en-Y gastric bypass (RYGB) in a standardized experimental setting. METHODS High-fat diet (HFD)-induced obese male Wistar rats were randomized into six treatment groups: (1) RYGB, (2) sham-operation (shams), (3) liraglutide, (4) PYY3-36, (5) PYY3-36+liraglutide (6), saline. Animals were kept on a free choice high- and low-fat diet. Food intake, preference, and body weight were measured daily for 4 weeks. Open field (OP) and elevated plus maze (EPM) tests were performed. RESULTS RYGB reduced food intake and achieved sustained weight loss. Combined PYY3-36+liraglutide treatment led to similar and plateaued weight loss compared to RYGB. Combined PYY3-36+liraglutide treatment was superior to PYY3-36 (p ≤ 0.0001) and liraglutide (p ≤ 0.05 or p ≤ 0.01) mono-therapy. PYY3-36+liraglutide treatment and RYGB also reduced overall food intake and (less pronounced) high-fat preference compared to controls. The animals showed no signs of abnormal behavior in OF or EPM. CONCLUSIONS Liraglutide and PYY3-36 combination therapy vastly mimics reduced food intake, food choice and weight reducing benefits of RYGB.
Collapse
Affiliation(s)
- Ulrich Dischinger
- Department of Internal Medicine, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Würzburg, Germany
- *Correspondence: Ulrich Dischinger,
| | - Julia Hasinger
- Department of Internal Medicine, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Würzburg, Germany
| | - Malina Königsrainer
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital, University of Würzburg, Würzburg, Germany
| | - Carolin Corteville
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital, University of Würzburg, Würzburg, Germany
| | - Christoph Otto
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital, University of Würzburg, Würzburg, Germany
| | - Martin Fassnacht
- Department of Internal Medicine, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Würzburg, Germany
| | - Mohamed Hankir
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital, University of Würzburg, Würzburg, Germany
| | - Florian Johannes David Seyfried
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital, University of Würzburg, Würzburg, Germany
| |
Collapse
|
9
|
Guo Y, Liu CQ, Liu GP, Huang ZP, Zou DJ. Roux-en-Y gastric bypass decreases endotoxemia and inflammatory stress in association with improvements in gut permeability in obese diabetic rats. J Diabetes 2019; 11:786-793. [PMID: 30714321 DOI: 10.1111/1753-0407.12906] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 01/12/2019] [Accepted: 01/28/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Postoperative modulation of the gut microbiome has been suggested to contribute to the metabolic benefits after metabolic surgery, but the mechanisms underlying these metabolic benefits remain unknown. Previously, we reported that Roux-en-Y gastric bypass (RYGB) surgery in Zucker diabetic fatty (ZDF) rats increased the abundance of Proteobacteria and Gammaproteobacteria. However, theoretically, these Gram-negative bacteria may elevate lipopolysaccharide (LPS) levels. Therefore, in this study we further investigated the potential mechanisms by which RYGB improves glucose homeostasis, endotoxemia, and inflammatory stress in ZDF rats. METHODS Rats were divided into three groups: (a) an RYGB group (RY); (b) a sham-operated group pair-fed with the RY group; and (c) a sham-operated group fed ad libitum. Changes in LPS, cytokine levels, intestinal permeability (evaluated using the fluorescein isothiocyanate-dextran method), and intestinal epithelial tight junction proteins zona occludins (ZO)-1, occludin, and claudin-1 were assessed 10 weeks postoperatively. RESULTS Rats that underwent RYGB exhibited sustained weight loss and reduced glucose, as well as lower cytokine and LPS concentrations, than rats in the control groups. In the colonic epithelium, ZO1 and claudin-1 (Cldn1) mRNA levels were higher in the RY than control groups. Intestinal permeability declined in the RY group and was positively correlated with LPS levels and negatively correlated with ZO-1, occludin, and claudin-1 expression. CONCLUSIONS The results demonstrate that RYGB can reduce the extent of endotoxemia and inflammation, which is associated with improved tight junction integrity and intestinal barrier strength. These effects may explain why a low level of inflammation is maintained after RYGB and the postoperative increase in Gram-negative bacteria.
Collapse
Affiliation(s)
- Yan Guo
- Department of Endocrinology, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Chao-Qian Liu
- Department of General Surgery, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Guo-Ping Liu
- Department of General Surgery, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Zhi-Ping Huang
- Department of Hepatobiliary Surgery, General Hospital of Southern Theatre Command, Guangzhou, China
| | - Da-Jin Zou
- Department of Endocrinology, Changhai Hospital, The Second Military Medical University, Shanghai, China
| |
Collapse
|
10
|
Yan Y, Sha Y, Huang X, Yuan W, Wu F, Hong J, Fang S, Huang B, Hu C, Wang B, Zhang X. Roux-en-Y Gastric Bypass Improves Metabolic Conditions in Association with Increased Serum Bile Acids Level and Hepatic Farnesoid X Receptor Expression in a T2DM Rat Model. Obes Surg 2019; 29:2912-2922. [PMID: 31079286 DOI: 10.1007/s11695-019-03918-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
11
|
Ma F, Ma J, Ma S, Fu S, Zhang Y, Liu H, Lv Y, Wu R, Yan X. A novel magnetic compression technique for small intestinal end-to-side anastomosis in rats. J Pediatr Surg 2019; 54:744-749. [PMID: 30064696 DOI: 10.1016/j.jpedsurg.2018.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/15/2018] [Accepted: 07/19/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND Magnetic compression technology is a safe and convenient digestive tract reconstruction technique in large animals. The purpose of this study was to verify the feasibility of using the micromagnetic ring for construction of small intestinal end-to-side anastomosis in rats. METHODS Thirty male Sprague-Dawley albino rats were randomly divided into two groups: a study group that underwent small intestinal anastomosis with micromagnetic ring and a control group that had hand-sewn anastomosis. The time to construct the anastomosis, survival rate and incidence of complications were compared between the two groups. The anastomotic segments in each group were harvested on day 28 after surgery and investigated. RESULTS The mean anastomosis construction time was significantly lower in the study group than the control group (6.80 ± 1.97 min vs. 16.13 ± 3.29 min, P < 0.05). The survival rate was significantly higher in the study group (93.3%, 14/15) than the control group (66.7%, 10/15; P < 0.05). The incidence of anastomotic leakage [0% (0/15) vs. 6.67% (1/15), P = 1.000] and obstruction [20% (3/15) vs. 13.33% (2/15), P = 0.330] was similar in the study group and control group. The mean burst pressure did not differ significantly between the magnetic compression and hand-sewn anastomosis. In the study group, alignment of the tissue layers was improved and the inflammatory reaction was milder. CONCLUSION Use of a micromagnetic ring for small intestinal end-to-side anastomosis in rats is safe and feasible.
Collapse
Affiliation(s)
- Feng Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Xi'an, China
| | - Jia Ma
- Department of Surgical Oncology, The Third Affiliated Hospital of Xi'an Jiaotong University (Shaanxi Provincial People's Hospital), Xi'an, China
| | - Sijie Ma
- Qide College, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Shan Fu
- Qide College, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yanchao Zhang
- Qide College, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Hao Liu
- Qide College, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yi Lv
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Xi'an, China
| | - Rongqian Wu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Xi'an, China.
| | - Xiaopeng Yan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Xi'an, China.
| |
Collapse
|
12
|
Gastrojejunal anastomosis in rats using the magnetic compression technique. Sci Rep 2018; 8:11620. [PMID: 30072707 PMCID: PMC6072768 DOI: 10.1038/s41598-018-30075-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/23/2018] [Indexed: 02/07/2023] Open
Abstract
Rats are suitable animal models in which to study the effects of gastric bypass surgery. However, construction of gastrojejunal anastomosis in the rat is technically demanding and is associated with high rate of postoperative complications. The aim of this study was to explore the feasibility and efficacy of the magnetic compression technique (MCT) in side-to-side gastrojejunal anastomosis in rats. Thirty male rats underwent gastrojejunal anastomosis using one of three techniques: hand-sewn, magnetic compression using cuboid magnets, and magnetic compression using magnetic rings. The mean anastomosis time using the magnetic compression technique was significantly less than that of the hand-sewn technique (3.6 ± 0.96 and 6.50 ± 1.58 vs. 14.40 ± 2.37 minutes,). The survival rate was highest in animals treated with magnetic compression using cuboid magnets (100%), followed by animals treated with magnetic compression using magnetic rings (90%) and then hand sewing (70%). The mean burst pressure did not differ significantly between the magnetic compression and hand-sewn anastomoses. Anastomoses constructed by magnetic compression were smoother and flatter than hand-sewn anastomoses. The results showed that MCT is a simple and feasible method for gastrojejunal anastomosis in the rat.
Collapse
|
13
|
Celiker H. A new proposed mechanism of action for gastric bypass surgery: Air hypothesis. Med Hypotheses 2017; 107:81-89. [PMID: 28915970 DOI: 10.1016/j.mehy.2017.08.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/02/2017] [Accepted: 08/08/2017] [Indexed: 02/07/2023]
Abstract
Roux-en-Y gastric bypass (RYGB) surgery is one of the most effective treatments for obesity and type II diabetes. RYGB was originally believed to work by mechanically restricting caloric intake or causing macronutrient malabsorption. However, such mechanical effects play no role in the remarkable efficacy of gastric bypass. Instead, mounting evidence shows that altered neuroendocrine signaling is responsible for the weight reducing effects of RYGB. The exact mechanism of this surgical response is still a mystery. Here, we propose that RYGB leads to weight loss primarily by inducing a functional shift in the gut microbiome, manifested by a relative expansion of aerobic bacteria numbers in the colon. We point to compelling evidence that gastric bypass changes the function of the microbiome by disrupting intestinal gas homeostasis, causing excessive transit of swallowed air (oxygen) into the colon.
Collapse
Affiliation(s)
- Hasan Celiker
- Xeno Biosciences Inc., 12 Mt Auburn St #7, Cambridge, MA, USA.
| |
Collapse
|
14
|
Arora T, Seyfried F, Docherty NG, Tremaroli V, le Roux CW, Perkins R, Bäckhed F. Diabetes-associated microbiota in fa/fa rats is modified by Roux-en-Y gastric bypass. ISME JOURNAL 2017; 11:2035-2046. [PMID: 28524868 PMCID: PMC5563957 DOI: 10.1038/ismej.2017.70] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 04/03/2017] [Accepted: 04/07/2017] [Indexed: 02/08/2023]
Abstract
Roux-en-Y gastric bypass (RYGB) and duodenal jejunal bypass (DJB), two different forms of bariatric surgery, are associated with improved glucose tolerance, but it is not clear whether the gut microbiota contributes to this effect. Here we used fa/fa rats as a model of impaired glucose tolerance to investigate whether (i) the microbiota varies between fa/fa and nondiabetic fa/+ rats; (ii) the microbiota of fa/fa rats is affected by RYGB and/or DJB; and (iii) surgically induced microbiota alterations contribute to glucose metabolism. We observed a profound expansion of Firmicutes (specifically, Lactobacillus animalis and Lactobacillus reuteri) in the small intestine of diabetic fa/fa compared with nondiabetic fa/+ rats. RYGB-, but not DJB-, treated fa/fa rats exhibited greater microbiota diversity in the ileum and lower L. animalis and L. reuteri abundance compared with sham-operated fa/fa rats in all intestinal segments, and their microbiota composition resembled that of unoperated fa/+ rats. To investigate the functional role of RYGB-associated microbiota alterations, we transferred microbiota from sham- and RYGB-treated fa/fa rats to germ-free mice. The metabolic phenotype of RYGB-treated rats was not transferred by the transplant of ileal microbiota. In contrast, postprandial peak glucose levels were lower in mice that received cecal microbiota from RYGB- versus sham-operated rats. Thus, diabetes-associated microbiota alterations in fa/fa rats can be modified by RYGB, and modifications in the cecal microbiota may partially contribute to improved glucose tolerance after RYGB.
Collapse
Affiliation(s)
- Tulika Arora
- Wallenberg Laboratory, Sahlgrenska Center for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Florian Seyfried
- Department of Investigative Medicine, Imperial College London, London, UK.,Department of General, Visceral, Vascular and Pediatric Surgery, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Neil G Docherty
- Diabetes Complications Research Centre, Conway Institute, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland.,Gastrosurgical Laboratory, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Valentina Tremaroli
- Wallenberg Laboratory, Sahlgrenska Center for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Carel W le Roux
- Department of Investigative Medicine, Imperial College London, London, UK.,Diabetes Complications Research Centre, Conway Institute, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland.,Gastrosurgical Laboratory, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Rosie Perkins
- Wallenberg Laboratory, Sahlgrenska Center for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik Bäckhed
- Wallenberg Laboratory, Sahlgrenska Center for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Metabolic Receptology and Enteroendocrinology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Abstract
INTRODUCTION Metabolic surgery is known to impact glucose tolerance but the exact mechanism is still unclear. Based on recently-published data, especially the role of the hindgut may require redefinition. METHODS Either a loop duodeno-jejunostomy (DJOS) with exclusion of one third of total intestinal length, a loop duodeno-ileostomy (DiOS, exclusion of two thirds), or SHAM operation was performed in 9-week-old Zucker diabetic fatty rats. One, 3, and 6 months after surgery, an oral glucose tolerance test (OGTT) and glucose-stimulated hormone analyses were conducted. Body weight was documented weekly. RESULTS DJOS and DiOS animals showed significantly better glucose control in all OGTTs than the SHAM group (two-way ANOVA p < 0.0001). Body weight developed largely parallel in both intervention groups; SHAM animals had gained significantly less weight after 6 months (Mann-Whitney DJOS/DiOS vs. SHAM p < 0.05, DJOS vs. DiOS p > 0.05). Operative interventions had no impact on GLP-1 and GIP levels at any time point (Mann-Whitney p > 0.05 for all). DJOS/DiOS operations could preserve insulin production up to 6 months, while there was already a sharp decline of insulin levels in the SHAM group (Mann-Whitney: DJOS/DiOS vs. SHAM p < 0.05 for all time points). Additionally, insulin sensitivity was improved significantly 1 month postoperative in both intervention groups compared to SHAM (Mann-Whitney DJOS/DiOS vs. SHAM p < 0.05). CONCLUSION The data of the current study demonstrate a sharp amelioration of glucose control after duodenal exclusion with unchanged levels of GLP-1 and GIP. Direct or delayed hindgut stimulation had no impact on glucose control in our model.
Collapse
|
16
|
Hankir MK, Seyfried F, Hintschich CA, Diep TA, Kleberg K, Kranz M, Deuther-Conrad W, Tellez LA, Rullmann M, Patt M, Teichert J, Hesse S, Sabri O, Brust P, Hansen HS, de Araujo IE, Krügel U, Fenske WK. Gastric Bypass Surgery Recruits a Gut PPAR-α-Striatal D1R Pathway to Reduce Fat Appetite in Obese Rats. Cell Metab 2017; 25:335-344. [PMID: 28065827 DOI: 10.1016/j.cmet.2016.12.006] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 10/19/2016] [Accepted: 12/10/2016] [Indexed: 12/25/2022]
Abstract
Bariatric surgery remains the single most effective long-term treatment modality for morbid obesity, achieved mainly by lowering caloric intake through as yet ill-defined mechanisms. Here we show in rats that Roux-en-Y gastric bypass (RYGB)-like rerouting of ingested fat mobilizes lower small intestine production of the fat-satiety molecule oleoylethanolamide (OEA). This was associated with vagus nerve-driven increases in dorsal striatal dopamine release. We also demonstrate that RYGB upregulates striatal dopamine 1 receptor (D1R) expression specifically under high-fat diet feeding conditions. Mechanistically, interfering with local OEA, vagal, and dorsal striatal D1R signaling negated the beneficial effects of RYGB on fat intake and preferences. These findings delineate a molecular/systems pathway through which bariatric surgery improves feeding behavior and may aid in the development of novel weight loss strategies that similarly modify brain reward circuits compromised in obesity.
Collapse
Affiliation(s)
- Mohammed K Hankir
- Integrated Research and Treatment Centre for Adiposity Diseases, Department of Medicine, Universität Leipzig, Liebigstraße 21, 04103 Leipzig, Germany
| | - Florian Seyfried
- Department of General and Visceral, Vascular, and Paediatric Surgery, University of Würzburg, 97070 Würzburg, Germany
| | - Constantin A Hintschich
- Integrated Research and Treatment Centre for Adiposity Diseases, Department of Medicine, Universität Leipzig, Liebigstraße 21, 04103 Leipzig, Germany
| | - Thi-Ai Diep
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B Building 18.5, 2200 Copenhagen, Denmark
| | - Karen Kleberg
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 1165 Copenhagen, Denmark
| | - Mathias Kranz
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Permoserstraße 15, 04318 Leipzig, Germany
| | - Winnie Deuther-Conrad
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Permoserstraße 15, 04318 Leipzig, Germany
| | - Luis A Tellez
- John B. Pierce Laboratory and Departments of Psychiatry and Physiology, Yale University, New Haven, CT 06519, USA
| | - Michael Rullmann
- Department of Nuclear Medicine, Universität Leipzig, Liebigstraße 18, 04109 Leipzig, Germany
| | - Marianne Patt
- Department of Nuclear Medicine, Universität Leipzig, Liebigstraße 18, 04109 Leipzig, Germany
| | - Jens Teichert
- Rudolf Boehm Institute of Pharmacology and Toxicology, Clinical Pharmacology, Universität Leipzig, Härtelstraße 16-18, 04107 Leipzig, Germany
| | - Swen Hesse
- Integrated Research and Treatment Centre for Adiposity Diseases, Department of Medicine, Universität Leipzig, Liebigstraße 21, 04103 Leipzig, Germany; Department of Nuclear Medicine, Universität Leipzig, Liebigstraße 18, 04109 Leipzig, Germany
| | - Osama Sabri
- Integrated Research and Treatment Centre for Adiposity Diseases, Department of Medicine, Universität Leipzig, Liebigstraße 21, 04103 Leipzig, Germany; Department of Nuclear Medicine, Universität Leipzig, Liebigstraße 18, 04109 Leipzig, Germany
| | - Peter Brust
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Permoserstraße 15, 04318 Leipzig, Germany
| | - Harald S Hansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 1165 Copenhagen, Denmark
| | - Ivan E de Araujo
- John B. Pierce Laboratory and Departments of Psychiatry and Physiology, Yale University, New Haven, CT 06519, USA
| | - Ute Krügel
- Rudolf Boehm Institute of Pharmacology and Toxicology, Universität Leipzig, Härtelstraße 16-18, 04107 Leipzig, Germany.
| | - Wiebke K Fenske
- Integrated Research and Treatment Centre for Adiposity Diseases, Department of Medicine, Universität Leipzig, Liebigstraße 21, 04103 Leipzig, Germany.
| |
Collapse
|
17
|
Zhang X, Yu B, Yang D, Qiao Z, Cao T, Zhang P. Gastric volume reduction is essential for the remission of type 2 diabetes mellitus after bariatric surgery in nonobese rats. Surg Obes Relat Dis 2016; 12:1569-1576. [PMID: 27425832 DOI: 10.1016/j.soard.2016.04.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 04/18/2016] [Indexed: 01/19/2023]
|
18
|
Lutz TA, Bueter M. The Use of Rat and Mouse Models in Bariatric Surgery Experiments. Front Nutr 2016; 3:25. [PMID: 27547753 PMCID: PMC4974272 DOI: 10.3389/fnut.2016.00025] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 07/26/2016] [Indexed: 12/11/2022] Open
Abstract
Animal models have been proven to be a crucial tool for investigating the physiological mechanisms underlying bariatric surgery in general and individual techniques in particular. By using a translational approach, most of these studies have been performed in rodents and have helped to understand how bariatric surgery may or may not work. However, data from studies using animal models should always be critically evaluated for their transferability to the human physiology. It is, therefore, the aim of this review to summarize both advantages and limitations of data generated by animal based experiments designed to investigate and understand the physiological mechanisms at the root of bariatric surgery.
Collapse
Affiliation(s)
- Thomas A Lutz
- Vetsuisse Faculty, Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Marco Bueter
- Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland; Department of Surgery, Division of Visceral and Transplant Surgery, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
19
|
Lau RG, Kumar S, Hall CE, Palaia T, Rideout DA, Hall K, Brathwaite CE, Ragolia L. Roux-en-Y gastric bypass attenuates the progression of cardiometabolic complications in obese diabetic rats via alteration in gastrointestinal hormones. Surg Obes Relat Dis 2015; 11:1044-1053. [PMID: 25980330 DOI: 10.1016/j.soard.2014.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/10/2014] [Accepted: 12/05/2014] [Indexed: 01/20/2023]
Abstract
BACKGROUND Roux-en-Y gastric bypass (RYGB) ameliorates type 2 diabetes (T2DM) and obesity through alteration in gastrointestinal (GI) hormones. OBJECTIVE The objective of this study was to investigate the effect of RYGB on GI hormones and cardiometabolic parameters in Zucker diabetic fatty (ZDF) rodents. SETTING Winthrop University Hospital, Research and Academic Center METHODS Animals were divided into 3 groups, pair-fed (n = 4), ad lib (n = 4), and RYGB (n = 5). This study was carried out for 4 weeks and all related parameters were measured pre- and postsurgery in fasted obese diabetic Zucker rodents. RESULTS Postoperatively, RYGB significantly decreased fasting blood glucose by 32% compared with ad lib. Plasma insulin and leptin levels were also found to be significantly decreased, by 66% and 38%, respectively, after surgery. Moreover, both glucose-dependent insulinotropic polypeptide (GIP) and peptide tyrosine-tyrosine (PYY) were significantly increased after RYGB-by 300% and 51%, respectively. Glucagon-like peptide-1 (GLP-1) levels were also increased, but the increase was not statistically significant. Total cholesterol levels of the RYGB group remained unchanged for 4 weeks. However, total cholesterol in the ad lib and pair-fed groups increased by 25% and 34%, respectively, compared with initial levels. The cholesterol/high-density lipoprotein (HDL) ratio was decreased in the RYGB group by 14% and 30% compared with the ad lib and pair-fed group, respectively. The RYGB group had a significant decrease in aortic wall thickness of 25% compared with the ad lib and pair-fed groups. Similarly, the RYGB group had a 20-unit (mm Hg) decrease in systolic blood pressure compared with the presurgical value. CONCLUSION RYGB has beneficial cardiometabolic effects through alterations in GI hormones in a severely obese and diabetic rodent model.
Collapse
Affiliation(s)
- Raymond G Lau
- Department of Surgery, Winthrop University Hospital, Mineola, New York; Department of Endocrinology, Winthrop University Hospital, Mineola, New York
| | - Sunil Kumar
- Department of Biomedical Research, Winthrop University Hospital, Mineola, New York
| | - Christopher E Hall
- Department of Biomedical Research, Winthrop University Hospital, Mineola, New York
| | - Thomas Palaia
- Department of Biomedical Research, Winthrop University Hospital, Mineola, New York
| | - Drew A Rideout
- Bay Pines Veterans Affairs Medical Center, Bay Pines, Florida
| | - Keneth Hall
- Department of Surgery, Winthrop University Hospital, Mineola, New York
| | - Collin E Brathwaite
- Department of Surgery, Winthrop University Hospital, Mineola, New York; Department of Medicine, Stony Brook University School of Medicine, Stony Brook, New York
| | - Louis Ragolia
- Department of Biomedical Research, Winthrop University Hospital, Mineola, New York; Department of Medicine, Stony Brook University School of Medicine, Stony Brook, New York.
| |
Collapse
|
20
|
Hankir MK, Ashrafian H, Hesse S, Horstmann A, Fenske WK. Distinctive striatal dopamine signaling after dieting and gastric bypass. Trends Endocrinol Metab 2015; 26:223-30. [PMID: 25887491 DOI: 10.1016/j.tem.2015.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 03/10/2015] [Accepted: 03/15/2015] [Indexed: 12/25/2022]
Abstract
Highly palatable and/or calorically dense foods, such as those rich in fat, engage the striatum to govern and set complex behaviors. Striatal dopamine signaling has been implicated in hedonic feeding and the development of obesity. Dieting and bariatric surgery have markedly different outcomes on weight loss, yet how these interventions affect central homeostatic and food reward processing remains poorly understood. Here, we propose that dieting and gastric bypass produce distinct changes in peripheral factors with known roles in regulating energy homeostasis, resulting in differential modulation of nigrostriatal and mesolimbic dopaminergic reward circuits. Enhancement of intestinal fat metabolism after gastric bypass may also modify striatal dopamine signaling contributing to its unique long-term effects on feeding behavior and body weight in obese individuals.
Collapse
Affiliation(s)
- Mohammed K Hankir
- Leipzig University Medical Center, IFB Adiposity Diseases, Leipzig, Germany
| | - Hutan Ashrafian
- Department of Surgery & Cancer, Imperial College London, London, UK.
| | - Swen Hesse
- Leipzig University Medical Center, IFB Adiposity Diseases, Leipzig, Germany; Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | - Annette Horstmann
- Leipzig University Medical Center, IFB Adiposity Diseases, Leipzig, Germany; Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Wiebke K Fenske
- Leipzig University Medical Center, IFB Adiposity Diseases, Leipzig, Germany
| |
Collapse
|
21
|
Lutz TA, Bueter M. The physiology underlying Roux-en-Y gastric bypass: a status report. Am J Physiol Regul Integr Comp Physiol 2014; 307:R1275-91. [PMID: 25253084 DOI: 10.1152/ajpregu.00185.2014] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Obesity and its related comorbidities can be detrimental for the affected individual and challenge public health systems worldwide. Currently, the only available treatment options leading to clinically significant and maintained body weight loss and reduction in obesity-related morbidity and mortality are based on surgical interventions. This review will focus on two main clinical effects of Roux-en-Y gastric bypass (RYGB), namely body weight loss and change in eating behavior. Animal experiments designed to understand the underlying physiological mechanisms of these post-gastric bypass effects will be discussed. Where appropriate, reference will also be made to vertical sleeve gastrectomy. While caloric malabsorption and mechanical restriction seem not to be major factors in this respect, alterations in gut hormone levels are invariably found after RYGB. However, their causal role in RYGB effects on eating and body weight has recently been challenged. Other potential factors contributing to the RYGB effects include increased bile acid concentrations and an altered composition of gut microbiota. RYGB is further associated with remarkable changes in preference for different dietary components, such as a decrease in the preference for high fat or sugar. It needs to be noted, however, that in many cases, the question about the necessity of these alterations for the success of bariatric surgery procedures remains unanswered.
Collapse
Affiliation(s)
- Thomas A Lutz
- Institute of Veterinary Physiology, Vetsuisse Faculty University of Zurich, Zurich, Switzerland; Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland; Institute of Laboratory Animal Science, University of Zurich, Zurich, Switzerland; and
| | - Marco Bueter
- Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland; Department of Surgery, Division of Visceral and Transplantation Surgery, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|