1
|
van der Kolk BW, Pirinen E, Nicoll R, Pietiläinen KH, Heinonen S. Subcutaneous adipose tissue and skeletal muscle mitochondria following weight loss. Trends Endocrinol Metab 2025; 36:339-363. [PMID: 39289110 DOI: 10.1016/j.tem.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 09/19/2024]
Abstract
Obesity is a major global health issue with various metabolic complications. Both bariatric surgery and dieting achieve weight loss and improve whole-body metabolism, but vary in their ability to maintain these improvements over time. Adipose tissue and skeletal muscle metabolism are crucial in weight regulation, and obesity is linked to mitochondrial dysfunction in both tissues. The impact of bariatric surgery versus dieting on adipose tissue and skeletal muscle mitochondrial metabolism remains to be elucidated. Understanding the molecular pathways that modulate tissue metabolism following weight loss holds potential for identifying novel therapeutic targets in obesity management. This narrative review summarizes current knowledge on mitochondrial metabolism following bariatric surgery and diet-induced weight loss in adipose tissue and skeletal muscle, and sheds light on their respective effects.
Collapse
Affiliation(s)
- Birgitta W van der Kolk
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Eija Pirinen
- Research Program for Clinical and Molecular Metabolism, University of Helsinki, Finland; Faculty of Medicine, Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland; Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Rachel Nicoll
- Research Program for Clinical and Molecular Metabolism, University of Helsinki, Finland
| | - Kirsi H Pietiläinen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland; HealthyWeightHub, Endocrinology, Abdominal Center, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - Sini Heinonen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Internal Medicine, Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
2
|
González L, Gonzalez-Riano C, Fernández-García P, Cereijo R, Valls A, Soria-Gondek A, Real N, Requena B, Bel-Comos J, Corrales P, Jiménez-Pavón D, Barbas C, Villarroya F, Sánchez-Infantes D, Murillo M. Effect of rhGH treatment on lipidome and brown fat activity in prepuberal small for gestational age children: a pilot study. Sci Rep 2025; 15:4710. [PMID: 39922928 PMCID: PMC11807155 DOI: 10.1038/s41598-025-89546-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 02/06/2025] [Indexed: 02/10/2025] Open
Abstract
Recombinant human growth hormone (rhGH) therapy is the primary treatment for children born small for gestational age (SGA) who fail to show spontaneous catch-up growth by two or four years. While its effects on white adipose tissue are well-documented, this pilot study aimed to investigate its impact on the lipidome and the thermogenic and endocrine activities of brown adipose tissue (BAT) in SGA children following rhGH treatment. The study involved 11 SGA children divided into two groups: (a) SGA children who were not treated with rhGH (n = 4) and (b) SGA children who received rhGH treatment with Saizen® (n = 7). This second group of seven SGA children was followed for 12 months after initiating rhGH treatment. Interventions included 12-hour fasting blood extraction and infrared thermography at baseline and 3 and 12 months post-treatment. Five appropriate-for-gestational-age (AGA) children served as controls. Exclusion criteria included endocrinological, genetic, or chronic diseases. Untargeted lipidomics analysis was performed using liquid chromatography-mass spectrometry (LC-MS), and serum biomarker levels were measured using ELISA assays. Serum lipidomic analysis revealed that free fatty acids (FFAs) increased to levels close to those of the AGA group after three months of rhGH administration, including polyunsaturated fatty acids, correlating with reduced leptin levels. Elevated levels of 1a,1b-dihomo-PGJ2 and adrenic acid suggested potential aging markers. rhGH treatment also significantly reduced meteorin-like (METRNL) and monocyte chemoattractant protein-1 (MCP1) serum levels to control levels. rhGH influences the serum lipidome, promoting changes in maturation and metabolism. Further research is required to clarify the direct effects of rhGH on specific lipid species and batokines, potentially addressing metabolic disturbances linked to obesity and aging.
Collapse
Affiliation(s)
- Lorena González
- Fundació Institut Germans Trias i Pujol, Barcelona, E-08916, Spain
| | - Carolina Gonzalez-Riano
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660, Spain
| | - Pablo Fernández-García
- Department of Basic Health Sciences, University Rey Juan Carlos (URJC), Campus Alcorcón, Madrid, E-28922, Spain
| | - Rubén Cereijo
- Departament of Biochemistry and Molecular Biomedicine, and Institut de Biomedicina (IBUB), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, E-28029, Spain
| | - Aina Valls
- Pediatric Department, Hospital Universitari Germans Trias i Pujol, Badalona, E-08916, Spain
| | - Andrea Soria-Gondek
- Pediatric Department, Hospital Universitari Germans Trias i Pujol, Badalona, E-08916, Spain
| | - Nativitat Real
- Pediatric Department, Hospital Universitari Germans Trias i Pujol, Badalona, E-08916, Spain
| | - Belén Requena
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660, Spain
| | - Joan Bel-Comos
- Pediatric Department, Hospital Universitari Germans Trias i Pujol, Badalona, E-08916, Spain
| | - Patricia Corrales
- Department of Basic Health Sciences, University Rey Juan Carlos (URJC), Campus Alcorcón, Madrid, E-28922, Spain
| | - David Jiménez-Pavón
- MOVE-IT Research Group, Department of Physical Education, Faculty of Education Sciences, University of Cadiz, Cadiz, Spain
- Biomedical Research and Innovation Institute of Cádiz (INiBICA), Cadiz, Spain
- Centro de Investigación Biomédica en Red of Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, Madrid, E-28029, Spain
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660, Spain
| | - Francesc Villarroya
- Departament of Biochemistry and Molecular Biomedicine, and Institut de Biomedicina (IBUB), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, E-28029, Spain
| | - David Sánchez-Infantes
- Department of Basic Health Sciences, University Rey Juan Carlos (URJC), Campus Alcorcón, Madrid, E-28922, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, E-28029, Spain.
| | - Marta Murillo
- Pediatric Department, Hospital Universitari Germans Trias i Pujol, Badalona, E-08916, Spain.
| |
Collapse
|
3
|
Latteri S, Sofia M, Puleo S, Di Vincenzo A, Cinti S, Castorina S. Mechanisms linking bariatric surgery to adipose tissue, glucose metabolism, fatty liver disease and gut microbiota. Langenbecks Arch Surg 2023; 408:101. [PMID: 36826628 PMCID: PMC9957865 DOI: 10.1007/s00423-023-02821-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 01/25/2023] [Indexed: 02/25/2023]
Abstract
PURPOSE In the last 20 years, bariatric surgery has achieved an important role in translational and clinical research because of obesity comorbidities. Initially, a tool to lose weight, bariatric surgery now has been shown to be involved in several metabolic pathways. METHODS We conducted a narrative review discussing the underlying mechanisms that could explain the impact of bariatric surgery and the relationship between obesity and adipose tissue, T2D, gut microbiota, and NAFLD. RESULTS Bariatric surgery has an impact in the relation between obesity and type 2 diabetes, but in addition it induces the white-to-brown adipocyte trans-differentiation, by enhancing thermogenesis. Another issue is the connection of bariatric surgery with the gut microbiota and its role in the complex mechanism underlying weight gain. CONCLUSION Bariatric surgery modifies gut microbiota, and these modifications influence lipid metabolism, leading to improvement of non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Saverio Latteri
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| | - Maria Sofia
- Department of General Surgery, Cannizzaro Hospital, Via Messina 829, 95126, Catania, Italy.
| | - Stefano Puleo
- Mediterranean Foundation "GB Morgagni", Catania, Italy
| | - Angelica Di Vincenzo
- Department of Experimental and Clinical Medicine, Center of Obesity, Marche Polytechnic University, Via Tronto 10A, 60020, Ancona, Italy
| | - Saverio Cinti
- Department of Experimental and Clinical Medicine, Center of Obesity, Marche Polytechnic University, Via Tronto 10A, 60020, Ancona, Italy
| | - Sergio Castorina
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
- Mediterranean Foundation "GB Morgagni", Catania, Italy
| |
Collapse
|
4
|
Increased Aquaporin-7 Expression Is Associated with Changes in Rat Brown Adipose Tissue Whitening in Obesity: Impact of Cold Exposure and Bariatric Surgery. Int J Mol Sci 2023; 24:ijms24043412. [PMID: 36834823 PMCID: PMC9963055 DOI: 10.3390/ijms24043412] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/24/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Glycerol is a key metabolite for lipid accumulation in insulin-sensitive tissues. We examined the role of aquaporin-7 (AQP7), the main glycerol channel in adipocytes, in the improvement of brown adipose tissue (BAT) whitening, a process whereby brown adipocytes differentiate into white-like unilocular cells, after cold exposure or bariatric surgery in male Wistar rats with diet-induced obesity (DIO) (n = 229). DIO promoted BAT whitening, evidenced by increased BAT hypertrophy, steatosis and upregulation of the lipogenic factors Pparg2, Mogat2 and Dgat1. AQP7 was detected in BAT capillary endothelial cells and brown adipocytes, and its expression was upregulated by DIO. Interestingly, AQP7 gene and protein expressions were downregulated after cold exposure (4 °C) for 1 week or one month after sleeve gastrectomy in parallel to the improvement of BAT whitening. Moreover, Aqp7 mRNA expression was positively associated with transcripts of the lipogenic factors Pparg2, Mogat2 and Dgat1 and regulated by lipogenic (ghrelin) and lipolytic (isoproterenol and leptin) signals. Together, the upregulation of AQP7 in DIO might contribute to glycerol influx used for triacylglycerol synthesis in brown adipocytes, and hence, BAT whitening. This process is reversible by cold exposure and bariatric surgery, thereby suggesting the potential of targeting BAT AQP7 as an anti-obesity therapy.
Collapse
|
5
|
Hankir MK, Seyfried F. Do Bariatric Surgeries Enhance Brown/Beige Adipose Tissue Thermogenesis? Front Endocrinol (Lausanne) 2020; 11:275. [PMID: 32425889 PMCID: PMC7203442 DOI: 10.3389/fendo.2020.00275] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022] Open
Abstract
Bariatric surgeries induce marked and durable weight loss in individuals with morbid obesity through powerful effects on both food intake and energy expenditure. While alterations in gut-brain communication are increasingly implicated in the improved eating behavior following bariatric surgeries, less is known about the mechanistic basis for energy expenditure changes. Brown adipose tissue (BAT) and beige adipose tissue (BeAT) have emerged as major regulators of whole-body energy metabolism in humans as well as in rodents due to their ability to convert the chemical energy in circulating glucose and fatty acids into heat. In this Review, we critically discuss the steadily growing evidence from preclinical and clinical studies suggesting that Roux-en-Y gastric bypass (RYGB) and vertical sleeve gastrectomy (VSG), the two most commonly performed bariatric surgeries, enhance BAT/BeAT thermogenesis. We address the documented mechanisms, highlight study limitations and finish by outlining unanswered questions in the subject. Further understanding how and to what extent bariatric surgeries enhance BAT/BeAT thermogenesis may not only aid in the development of improved obesity pharmacotherapies that safely and optimally target both sides of the energy balance equation, but also in the development of novel hyperglycemia and/or hyperlipidemia pharmacotherapies.
Collapse
Affiliation(s)
- Mohammed K. Hankir
- Department of Experimental Surgery, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Florian Seyfried
- Department of General, Visceral, Vascular and Pediatric Surgery, University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|