1
|
Welling MS, van Rossum EFC, van den Akker ELT. Antiobesity Pharmacotherapy for Patients With Genetic Obesity Due to Defects in the Leptin-Melanocortin Pathway. Endocr Rev 2025; 46:418-446. [PMID: 39929239 PMCID: PMC12063102 DOI: 10.1210/endrev/bnaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Indexed: 05/10/2025]
Abstract
Lifestyle interventions are the cornerstone of obesity treatment. However, insufficient long-term effects are observed in patients with genetic obesity disorders, as their hyperphagia remains untreated. Hence, patients with genetic obesity often require additional pharmacotherapy to effectively manage and treat their hyperphagia and obesity. Recent advancements in antiobesity pharmacotherapy have expanded the range of available antiobesity medications (AOM). This includes the targeted AOM setmelanotide, approved for specific genetic obesity disorders, as well as nontargeted AOMs such as naltrexone-bupropion and glucagon-like peptide-1 analogues. Targeted AOMs have demonstrated significant weight loss, reduced obesity-related comorbidities, and improved hyperphagia and quality of life in patients with specific genetic obesity disorders. Small observational studies have shown that similar benefits from nontargeted AOMs or off-label pharmacotherapies can be achieved in patients with specific genetic obesity disorders, compared to common multifactorial obesity. In the future, novel and innovative pharmacotherapeutical options, including combination therapies and possibly gene therapy, will emerge, offering promising effects on body weight, hyperphagia, and, most importantly, quality of life for patients with a variety of genetic obesity disorders.
Collapse
Affiliation(s)
- Mila S Welling
- Obesity Center CGG, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3015 GD, The Netherlands
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3015 GD, The Netherlands
- Department of Pediatrics, Division of Endocrinology, Erasmus MC-Sophia Children's Hospital, University of Medical Center Rotterdam, Rotterdam 3015 GD, The Netherlands
| | - Elisabeth F C van Rossum
- Obesity Center CGG, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3015 GD, The Netherlands
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3015 GD, The Netherlands
| | - Erica L T van den Akker
- Obesity Center CGG, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3015 GD, The Netherlands
- Department of Pediatrics, Division of Endocrinology, Erasmus MC-Sophia Children's Hospital, University of Medical Center Rotterdam, Rotterdam 3015 GD, The Netherlands
| |
Collapse
|
2
|
Esbati R, Yazdani O, Simonetti J. Management of Obesity-Related Genetic Disorders. Endocrinol Metab Clin North Am 2025; 54:17-38. [PMID: 39919873 DOI: 10.1016/j.ecl.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
Obesity-related genetic disorders are marked by severe, early-onset obesity caused by mutations that disrupt key biological mechanisms regulating hunger, energy balance, and fat storage. These disorders commonly impact systems such as the hypothalamic leptin-melanocortin signaling network, which plays a crucial role in controlling appetite and body weight, mainly through the melanocortin-4 receptor (MC4R) pathway. This review explores current management strategies and emerging therapies for genetic obesity disorders, highlighting the importance of treatment approaches and expanded genetic diagnostics to improve outcomes for affected individuals.
Collapse
Affiliation(s)
- Romina Esbati
- Department of Medicine, Division of Endocrinology, Diabetes and Hypternsion, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Omid Yazdani
- Department of Medicine, Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical University, Boston, MA 02115, USA
| | - Juliana Simonetti
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Obesity Medicine Program, University of Utah, Salt Lake City, UT 84108, USA.
| |
Collapse
|
3
|
Collet TH, Schwitzgebel V. Exploring the therapeutic potential of precision medicine in rare genetic obesity disorders: a scientific perspective. Front Nutr 2024; 11:1509994. [PMID: 39777073 PMCID: PMC11705004 DOI: 10.3389/fnut.2024.1509994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
The prevalence of obesity is increasing worldwide, affecting both children and adults. This obesity epidemic is mostly driven by an increase in energy intake (abundance of highly palatable energy-dense food and drinks) and to a lesser degree a decrease in energy expenditure (sedentary lifestyle). A small proportion of individuals with obesity are affected by genetic forms of obesity, which often relate to mutations in the leptin-melanocortin pathway or are part of syndromes such as the Bardet-Biedl syndrome. These rare forms of obesity have provided valuable insights into the genetic architecture of obesity. Recent advances in understanding the molecular mechanisms that control appetite, hunger, and satiety have led to the development of drugs that can override genetic defects, enabling precision treatment. Leptin deficiency is uniquely treated with recombinant human metreleptin, while those with LEPR, PCSK1, or POMC deficiency can now be treated with the MC4R agonist setmelanotide. This review highlights the most frequent monogenic and syndromic forms of obesity, and the future outlook of precision treatment for these conditions.
Collapse
Affiliation(s)
- Tinh-Hai Collet
- Service of Endocrinology, Diabetes, Nutrition, and Therapeutic Education, Geneva University Hospitals, Geneva, Switzerland
- Faculty of Medicine, Diabetes Center, University of Geneva, Geneva, Switzerland
| | - Valerie Schwitzgebel
- Faculty of Medicine, Diabetes Center, University of Geneva, Geneva, Switzerland
- Pediatric Endocrine and Diabetes Unit, Department of Pediatrics, Obstetrics, and Gynecology, Geneva University Hospitals, Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| |
Collapse
|
4
|
Semenova E, Guo A, Liang H, Hernandez CJ, John EB, Thaker VV. The expanding landscape of genetic causes of obesity. Pediatr Res 2024:10.1038/s41390-024-03780-6. [PMID: 39690244 DOI: 10.1038/s41390-024-03780-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/18/2024] [Accepted: 11/03/2024] [Indexed: 12/19/2024]
Abstract
Obesity and weight regulation disorders are determined by the combined effects of genetics and environment. Polygenic obesity results from the combination of common variants in several genes which predisposes the individual to obesity and its related complications. In contrast, monogenic obesity results from changes in single genes, especially those in leptin-melanocortin pathway, and presents with early onset severe obesity, with or without other syndromic features. Rare variants in melanocortin 4 receptor are the commonest form of monogenic obesity. In addition, structural variation in small or large segments of chromosomes may also present with syndromic forms of obesity. Prader-Willi Syndrome, caused by imprinting errors in chromosome 15q11-13, is the most prevalent genetic cause of severe hyperphagia and obesity. With the advances in technologies, the past decade has witnessed a revolution in the identification of novel genetic causes of obesity, primarily in genes related to the leptin melanocortin pathway. The availability of safe melanocortin analogs holds the potential for targeted therapies for some of these disorders. This review summarizes known and novel rare genetic forms of obesity, along with approaches for the clinical investigation of copy number and sequence variants. The goal is to provide a reference for practicing clinicians to encourage genetic testing in obesity. IMPACT: What does this article add to the existing literature? Genetic obesity is an expanding frontier with potential to change management. Here, we summarize current information on the genetic causes of obesity and provide guidance for genetic testing. Emerging treatments may provide targeted precise treatment and change management practices.
Collapse
Affiliation(s)
- Ekaterina Semenova
- Division of Molecular Genetics, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Alex Guo
- Division of Molecular Genetics, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Harry Liang
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Cindy J Hernandez
- Division of Molecular Genetics, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Ella B John
- Division of Molecular Genetics, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Vidhu V Thaker
- Division of Molecular Genetics, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA.
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
- Division of Pediatric Endocrinology, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
5
|
Gad H, Mohammed I, Dauleh H, Pasha M, Al-Barazenji T, Hussain K, Malik RA. Case report: Nerve fiber regeneration in children with melanocortin 4 receptor gene mutation related obesity treated with semaglutide. Front Endocrinol (Lausanne) 2024; 15:1385463. [PMID: 38974580 PMCID: PMC11227249 DOI: 10.3389/fendo.2024.1385463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/07/2024] [Indexed: 07/09/2024] Open
Abstract
Melanocortin 4 receptor (MC4R) mutations are the commonest cause of monogenic obesity through dysregulation of neuronal pathways in the hypothalamus and prefrontal cortex that regulate hunger and satiety. MC4R also regulates neuropathic pain pathways via JNK signaling after nerve injury. We show evidence of corneal small fiber degeneration in 2 siblings carrying a heterozygous missense variant c.508A>G, p.Ille170Val in the MC4R gene. Both children were treated with once weekly semaglutide for 6 months with no change in weight, and only a minor improvement in HbA1c and lipid profile. However, there was evidence of nerve regeneration with an increase in corneal nerve fiber density (CNFD) [child A (13.9%), child B (14.7%)], corneal nerve branch density (CNBD) [child A (110.2%), child B (58.7%)] and corneal nerve fiber length (CNFL) [child A (21.5%), child B (44.0%)].
Collapse
Affiliation(s)
- Hoda Gad
- Research Department, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Idris Mohammed
- Endocrinology Department, Sidra Medicine, Doha, Qatar
- College of Health & Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Hajar Dauleh
- Endocrinology Department, Sidra Medicine, Doha, Qatar
| | - Maheen Pasha
- Endocrinology Department, Sidra Medicine, Doha, Qatar
| | | | | | - Rayaz A. Malik
- Research Department, Weill Cornell Medicine-Qatar, Doha, Qatar
- Institute of Cardiovascular Medicine, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
6
|
Zhang N, Wang H, Ran S, Wang Z, Zhou B, Wang S, Li Z, Liu B, Nie Y, Huang Y, Meng H. Mutations in the leptin-melanocortin pathway and weight loss after bariatric surgery: a systematic review and meta-analysis. Obesity (Silver Spring) 2024; 32:1047-1058. [PMID: 38577709 DOI: 10.1002/oby.24007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/31/2023] [Accepted: 01/03/2024] [Indexed: 04/06/2024]
Abstract
OBJECTIVE The objective of this meta-analysis was to quantify the overall effects of gene mutations in the leptin-melanocortin pathway on short- and long-term weight loss after bariatric surgery. METHODS MEDLINE, PubMed, and Embase were searched, and data were analyzed using ReviewManager (RevMan) version 5.4. The datasets were divided into two subgroups based on postoperative time, and the outcome measure was the percentage of total weight loss. Meta-regression analysis was performed, and the outcome was presented as the weighed mean difference of percentage of total weight loss. RESULTS The results showed that patients with mutations in the leptin-melanocortin pathway experienced 3.03% lower total weight loss after bariatric surgery (mean difference, -3.03; 95% CI: -3.63 to -2.44), mainly reflected in lower long-term postoperative weight loss (mean difference, -3.43; 95% CI: -4.09 to -2.77), whereas mutation carriers exhibited a magnitude of short-term postoperative weight loss that was similar to patients without such mutations (total difference value, -1.13; 95% CI: -2.57 to 0.31). CONCLUSIONS Mutations in leptin-melanocortin pathway genes reduce long-term weight loss after bariatric surgery, whereas this effect may not be reflected during the period of rapid weight loss within 12 months. These genetic variants increase the difficulties in maintaining patients' long-term weight loss.
Collapse
Affiliation(s)
- Nianrong Zhang
- General Surgery Department & Obesity and Metabolic Disease Center, China-Japan Friendship Hospital, Beijing, China
| | - Hao Wang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Shuman Ran
- General Surgery Department & Obesity and Metabolic Disease Center, China-Japan Friendship Hospital, Beijing, China
| | - Zhe Wang
- General Surgery Department & Obesity and Metabolic Disease Center, China-Japan Friendship Hospital, Beijing, China
| | - Biao Zhou
- General Surgery Department & Obesity and Metabolic Disease Center, China-Japan Friendship Hospital, Beijing, China
| | - Siqi Wang
- General Surgery Department & Obesity and Metabolic Disease Center, China-Japan Friendship Hospital, Beijing, China
| | - Zhengqi Li
- General Surgery Department & Obesity and Metabolic Disease Center, China-Japan Friendship Hospital, Beijing, China
| | - Baoyin Liu
- General Surgery Department & Obesity and Metabolic Disease Center, China-Japan Friendship Hospital, Beijing, China
| | - Yuntao Nie
- General Surgery Department & Obesity and Metabolic Disease Center, China-Japan Friendship Hospital, Beijing, China
| | - Yishan Huang
- General Surgery Department & Obesity and Metabolic Disease Center, China-Japan Friendship Hospital, Beijing, China
| | - Hua Meng
- General Surgery Department & Obesity and Metabolic Disease Center, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
7
|
Mainieri F, La Bella S, Rinaldi M, Chiarelli F. Rare genetic forms of obesity in childhood and adolescence: A narrative review of the main treatment options with a focus on innovative pharmacological therapies. Eur J Pediatr 2024; 183:1499-1508. [PMID: 38227053 DOI: 10.1007/s00431-024-05427-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
The prevalence of obesity in children and adolescents is increasing, and it is recognised as a complex disorder that often begins in early childhood and persists throughout life. Both polygenic and monogenic obesity are influenced by a combination of genetic predisposition and environmental factors. Rare genetic obesity forms are caused by specific pathogenic variants in single genes that have a significant impact on weight regulation, particularly genes involved in the leptin-melanocortin pathway. Genetic testing is recommended for patients who exhibit rapid weight gain in infancy and show additional clinical features suggestive of monogenic obesity as an early identification allows for appropriate treatment, preventing the development of obesity-related complications, avoiding the failure of traditional treatment approaches. In the past, the primary recommendations for managing obesity in children and teenagers have been focused on making multiple lifestyle changes that address diet, physical activity, and behaviour, with the goal of maintaining these changes long-term. However, achieving substantial and lasting weight loss and improvements in body mass index (BMI) through lifestyle interventions alone is rare. Recently the progress made in genetic analysis has paved the way for innovative pharmacological treatments for different forms of genetic obesity. By understanding the molecular pathways that contribute to the development of obesity, it is now feasible to identify specific patients who can benefit from targeted treatments based on their unique genetic mechanisms. Conclusion: However, additional preclinical research and studies in the paediatric population are required, both to develop more personalised prevention and therapeutic programs, particularly for the early implementation of innovative and beneficial management options, and to enable the translation of these novel therapy approaches into clinical practice. What is Known: • The prevalence of obesity in the paediatric population is increasing, and it is considered as a multifaceted condition that often begins in early childhood and persists in the adult life. Particularly, rare genetic forms of obesity are influenced by a combination of genetic predisposition and environmental factors and are caused by specific pathogenic variants in single genes showing a remarkable impact on weight regulation, particularly genes involved in the leptin-melanocortin pathway. • Patients who present with rapid weight gain in infancy and show additional clinical characteristics indicative of monogenic obesity should undergo genetic testing, which, by enabling a correct diagnosis, can prevent the development of obesity-related consequences through the identification for appropriate treatment. What is New: • In recent years, advances made in genetic analysis has made it possible to develop innovative pharmacological treatments for various forms of genetic obesity. In fact, it is now achievable to identify specific patients who can benefit from targeted treatments based on their unique genetic mechanisms by understanding the molecular pathways involved in the development of obesity. • As demonstrated over the last years, two drugs, setmelanotide and metreleptin, have been identified as potentially effective interventions in the treatment of certain rare forms of monogenic obesity caused by loss-of-function mutations in genes involved in the leptin-melanocortin pathway. Recent advancements have led to the development of novel treatments, including liraglutide, semaglutide and retatrutide, that have the potential to prevent the progression of metabolic abnormalities and improve the prognosis of individuals with these rare and severe forms of obesity. However, extensive preclinical research and, specifically, additional studies in the paediatric population are necessary to facilitate the translation of these innovative treatment techniques into clinical practice.
Collapse
Affiliation(s)
| | | | - Marta Rinaldi
- Paediatric Department, Stoke Mandeville Hospital - Thames Valley Deanery, Oxford, UK
| | | |
Collapse
|
8
|
Adeva-Andany MM, Domínguez-Montero A, Adeva-Contreras L, Fernández-Fernández C, Carneiro-Freire N, González-Lucán M. Body Fat Distribution Contributes to Defining the Relationship between Insulin Resistance and Obesity in Human Diseases. Curr Diabetes Rev 2024; 20:e160823219824. [PMID: 37587805 DOI: 10.2174/1573399820666230816111624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/28/2023] [Accepted: 05/31/2023] [Indexed: 08/18/2023]
Abstract
The risk for metabolic and cardiovascular complications of obesity is defined by body fat distribution rather than global adiposity. Unlike subcutaneous fat, visceral fat (including hepatic steatosis) reflects insulin resistance and predicts type 2 diabetes and cardiovascular disease. In humans, available evidence indicates that the ability to store triglycerides in the subcutaneous adipose tissue reflects enhanced insulin sensitivity. Prospective studies document an association between larger subcutaneous fat mass at baseline and reduced incidence of impaired glucose tolerance. Case-control studies reveal an association between genetic predisposition to insulin resistance and a lower amount of subcutaneous adipose tissue. Human peroxisome proliferator-activated receptorgamma (PPAR-γ) promotes subcutaneous adipocyte differentiation and subcutaneous fat deposition, improving insulin resistance and reducing visceral fat. Thiazolidinediones reproduce the effects of PPAR-γ activation and therefore increase the amount of subcutaneous fat while enhancing insulin sensitivity and reducing visceral fat. Partial or virtually complete lack of adipose tissue (lipodystrophy) is associated with insulin resistance and its clinical manifestations, including essential hypertension, hypertriglyceridemia, reduced HDL-c, type 2 diabetes, cardiovascular disease, and kidney disease. Patients with Prader Willi syndrome manifest severe subcutaneous obesity without insulin resistance. The impaired ability to accumulate fat in the subcutaneous adipose tissue may be due to deficient triglyceride synthesis, inadequate formation of lipid droplets, or defective adipocyte differentiation. Lean and obese humans develop insulin resistance when the capacity to store fat in the subcutaneous adipose tissue is exhausted and deposition of triglycerides is no longer attainable at that location. Existing adipocytes become large and reflect the presence of insulin resistance.
Collapse
Affiliation(s)
- María M Adeva-Andany
- Nephrology Division, Department of Internal Medicine, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | - Alberto Domínguez-Montero
- Nephrology Division, Department of Internal Medicine, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | | | - Carlos Fernández-Fernández
- Nephrology Division, Department of Internal Medicine, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | - Natalia Carneiro-Freire
- Nephrology Division, Department of Internal Medicine, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | - Manuel González-Lucán
- Nephrology Division, Department of Internal Medicine, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| |
Collapse
|
9
|
Han JC, Rasmussen MC, Forte AR, Schrage SB, Zafar SK, Haqq AM. Management of Monogenic and Syndromic Obesity. Gastroenterol Clin North Am 2023; 52:733-750. [PMID: 37919024 DOI: 10.1016/j.gtc.2023.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Similar to the general population, lifestyle interventions focused on nutrition and physical activity form the foundation for treating obesity caused by rare genetic disorders. Additional therapies, including metreleptin and setmelanotide, that target defects within the leptin signaling pathway can effectively synergize with lifestyle efforts to treat monogenic disorders of leptin, leptin receptor, proopiomelanocortin (POMC), and proprotein convertase subtilisin/kexin type 1 (PCSK1) and syndromic conditions, such as the ciliopathies Bardet-Biedl and Alström syndromes, whose pathophysiological mechanisms also converge on the leptin pathway. Investigational treatments for Prader-Willi syndrome target specific defects caused by reduced expression of paternally derived genes within the chromosome 15q region.
Collapse
Affiliation(s)
- Joan C Han
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Marcus C Rasmussen
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alison R Forte
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stephanie B Schrage
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarah K Zafar
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrea M Haqq
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
10
|
Anazco D, Ghusn W, Campos A, Cifuentes L, Fansa S, Tama E, Bublitz JT, Gala K, Hurtado MD, Olson JE, Acosta A. Type 2 Diabetes Remission in Patients with Heterozygous Variants in the Leptin-Melanocortin Pathway after Roux-en-Y Gastric Bypass: A Matched Case-Control Study. Obes Surg 2023; 33:3502-3509. [PMID: 37798511 DOI: 10.1007/s11695-023-06859-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/13/2023] [Accepted: 09/24/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND Roux-en-Y gastric bypass (RYGB) is associated with a high rate of type 2 diabetes (T2D) remission. Carriers of heterozygous variants in the leptin-melanocortin pathway (LMP) are more likely to experience weight recurrence after RYGB. Our aim was to investigate if carrier status and associated weight regain affects the rate of T2D remission after RYGB. METHODS Carriers of LMP variants with a diagnosis of T2D prior to RYGB (N = 16) were matched to non-carriers (N = 32) based on sex, age, and BMI. We assessed for post-operative T2D remission status post-surgery on a yearly basis, for up to 15 years. Our primary endpoint was the proportion of patients achieving T2D remission at 1 year. We conducted a survival analysis for all patients that achieved remission at least at one time-point to evaluate for maintenance of T2D remission by using a log-rank test. RESULTS Both carriers and non-carriers had similar baseline and procedural characteristics. The proopiomelanocortin gene in the LMP pathway had the most variants (n = 5, 31%). Carriers had a lower total body weight loss percentage at nadir (28.7% ± 6.9) than non-carriers (33.7% ± 8.8, p = 0.04). The proportion of patients achieving T2D remission at 1 year was 68.8% for carriers and 71.9% for non-carriers (p = 1.0). Survival curves for maintenance of first remission were similar for both groups (p = 0.73), with a median survival of 8 years for both carriers and non-carriers. CONCLUSIONS Despite inferior weight loss outcomes at nadir, carriers had similar T2D remission rates when compared to non-carriers. Weight-independent metabolic benefits of RYGB might contribute to this observation.
Collapse
Affiliation(s)
- Diego Anazco
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, 200 First St. S.W., Rochester, MN, 55902, USA
| | - Wissam Ghusn
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, 200 First St. S.W., Rochester, MN, 55902, USA
| | - Alejandro Campos
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, 200 First St. S.W., Rochester, MN, 55902, USA
| | - Lizeth Cifuentes
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, 200 First St. S.W., Rochester, MN, 55902, USA
| | - Sima Fansa
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, 200 First St. S.W., Rochester, MN, 55902, USA
| | - Elif Tama
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, 200 First St. S.W., Rochester, MN, 55902, USA
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Department of Medicine, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Joshua T Bublitz
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, 55902, USA
| | - Khushboo Gala
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, 200 First St. S.W., Rochester, MN, 55902, USA
| | - Maria D Hurtado
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, 200 First St. S.W., Rochester, MN, 55902, USA
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Department of Medicine, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Janet E Olson
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, 55902, USA
| | - Andres Acosta
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, 200 First St. S.W., Rochester, MN, 55902, USA.
| |
Collapse
|
11
|
Gong Y, Wu Q, Huang S, Fu Z, Ye J, Liu R, Lin S, Guan W, Yang N, Li JZ, Liang H, Zhou H. Functional Characterization of MC4R Variants in Chinese Morbid Obese Patients and Weight Loss after Bariatric Surgery. Adv Biol (Weinh) 2023; 7:e2300007. [PMID: 37140139 DOI: 10.1002/adbi.202300007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/04/2023] [Indexed: 05/05/2023]
Abstract
Mutations in MC4R are the most common genetic cause of obesity. In the reported Chinese morbid obesity cohort, 10 out of 59 harbor six MC4R variants, including Y35C, T53I, V103I, R165W, G233S, and C277X, among which V103I has a relatively high frequency, while other five variants are rare in the population. The prevalence of MC4R carriers in Chinese morbid obese patients (body mass index ≥ 45 kg m-2 ) is detected as 16.9% in this study. R165W and C277X are loss-of-function variants. The patient with R165W achieves excess weight loss (%EWL) as high as 20.6% and 50.3% at 1 and 8 months after surgery, respectively. G233S is reported for the first time in Asia obese population. The patient harboring G233S has a %EWL as 23.3% one month postsurgery. It is concluded that morbid obese patients with rare MC4R variants can benefit from metabolic surgery. More importantly, the choice of surgery procedure and MC4R variant should be taken into consideration for personalized treatment. In the future, a larger size cohort, accompanied with regular and longer follow-up, would be helpful.
Collapse
Affiliation(s)
- Yingyun Gong
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Qinyi Wu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Shushu Huang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zhenzhen Fu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jingya Ye
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Ruiping Liu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Shibo Lin
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Wei Guan
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Ningli Yang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - John Zhong Li
- The Key Laboratory of Rare Metabolic Diseases, The Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, 211166, China
- Shanghai Qi Zhi Institute, Shanghai, 200232, China
| | - Hui Liang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hongwen Zhou
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Shanghai Qi Zhi Institute, Shanghai, 200232, China
| |
Collapse
|
12
|
Dubern B, Faccioli N, Poitou C, Clément K. Novel therapeutics in rare genetic obesities: A narrative review. Pharmacol Res 2023; 191:106763. [PMID: 37037398 DOI: 10.1016/j.phrs.2023.106763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/12/2023]
Abstract
The better understanding of the molecular causes of rare genetic obesities and its associated phenotype involving the hypothalamus allows today to consider innovative therapeutics focused on hunger control. Several new pharmacological molecules benefit patients with monogenic or syndromic obesity. They are likely to be among the treatment options for these patients in the coming years, helping clinicians and patients prevent rapid weight progression and eventually limit bariatric surgery procedures, which is less effective in these patients. Their positioning in the management of such patients will be needed to be well defined to develop precision medicine in genetic forms of obesity.
Collapse
Affiliation(s)
- Beatrice Dubern
- Assistance Publique Hôpitaux de Paris, Trousseau Hospital, Pediatric Nutrition and Gastroenterology Department, French Reference Center for Prader-Willi Syndrome and other rare obesities (PRADORT), Paris, France; Sorbonne Université, INSERM, Nutrition and obesities; systemic approaches, NutriOmics research group, 75013, Paris, France.
| | - Nathan Faccioli
- Assistance Publique Hôpitaux de Paris, Trousseau Hospital, Pediatric Nutrition and Gastroenterology Department, French Reference Center for Prader-Willi Syndrome and other rare obesities (PRADORT), Paris, France; Sorbonne Université, INSERM, Nutrition and obesities; systemic approaches, NutriOmics research group, 75013, Paris, France
| | - Christine Poitou
- Assistance Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Nutrition Department, Paris, France; Sorbonne Université, INSERM, Nutrition and obesities; systemic approaches, NutriOmics research group, 75013, Paris, France
| | - Karine Clément
- Assistance Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Nutrition Department, Paris, France; Sorbonne Université, INSERM, Nutrition and obesities; systemic approaches, NutriOmics research group, 75013, Paris, France
| |
Collapse
|
13
|
Luli M, Yeo G, Farrell E, Ogden J, Parretti H, Frew E, Bevan S, Brown A, Logue J, Menon V, Isack N, Lean M, McEwan C, Gately P, Williams S, Astbury N, Bryant M, Clare K, Dimitriadis GK, Finlayson G, Heslehurst N, Johnson B, Le Brocq S, Roberts A, McGinley P, Mueller J, O'Kane M, Batterham RL, Miras AD. The implications of defining obesity as a disease: a report from the Association for the Study of Obesity 2021 annual conference. EClinicalMedicine 2023; 58:101962. [PMID: 37090435 PMCID: PMC10119881 DOI: 10.1016/j.eclinm.2023.101962] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 04/25/2023] Open
Abstract
Unlike various countries and organisations, including the World Health Organisation and the European Parliament, the United Kingdom does not formally recognise obesity as a disease. This report presents the discussion on the potential impact of defining obesity as a disease on the patient, the healthcare system, the economy, and the wider society. A group of speakers from a wide range of disciplines came together to debate the topic bringing their knowledge and expertise from backgrounds in medicine, psychology, economics, and politics as well as the experience of people living with obesity. The aim of their debate was not to decide whether obesity should be classified as a disease but rather to explore what the implications of doing so would be, what the gaps in the available data are, as well as to provide up-to-date information on the topic from experts in the field. There were four topics where speakers presented their viewpoints, each one including a question-and-answer section for debate. The first one focused on the impact that the recognition of obesity could have on people living with obesity regarding the change in their behaviour, either positive and empowering or more stigmatising. During the second one, the impact of defining obesity as a disease on the National Health Service and the wider economy was discussed. The primary outcome was the need for more robust data as the one available does not represent the actual cost of obesity. The third topic was related to the policy implications regarding treatment provision, focusing on the public's power to influence policy. Finally, the last issue discussed, included the implications of public health actions, highlighting the importance of the government's actions and private stakeholders. The speakers agreed that no matter where they stand on this debate, the goal is common: to provide a healthcare system that supports and protects the patients, strategies that protect the economy and broader society, and policies that reduce stigma and promote health equity. Many questions are left to be answered regarding how these goals can be achieved. However, this discussion has set a good foundation providing evidence that can be used by the public, clinicians, and policymakers to make that happen.
Collapse
Affiliation(s)
- Migena Luli
- Division of Medicine and Integrated Care, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Giles Yeo
- Department of Clinical Biochemistry, Institute of Metabolic Science, Cambridge University, Cambridge, United Kingdom
| | - Emma Farrell
- School of Education, University College Dublin, Dublin, Ireland
| | - Jane Ogden
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Surrey, United Kingdom
| | - Helen Parretti
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, United Kingdom
| | - Emma Frew
- Health Economics Unit, Institute of Applied Health Research, University of Birmingham, United Kingdom
| | - Stephen Bevan
- HR Research Development, Institute for Employment, Brighton, United Kingdom
| | - Adrian Brown
- Department of Experimental and Translational Medicine, Faculty of Medical Sciences, University College London, London, United Kingdom
| | - Jennifer Logue
- Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Vinod Menon
- Department of Upper Gastrointestinal Team, University Hospitals and Coventry & Warwickshire NHS Trust, Coventry, United Kingdom
| | - Nadya Isack
- Obesity Empowerment Network, London, United Kingdom
| | - Michael Lean
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, Scotland, United Kingdom
| | | | - Paul Gately
- Obesity Institute, Leeds Beckett University, Leeds, United Kingdom
| | | | - Nerys Astbury
- Nuffield Department of Primary Care Sciences, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Maria Bryant
- Department of Health Sciences and the Hull York Medical School, University of York, York, United Kingdom
| | - Kenneth Clare
- European Coalition for People Living with Obesity, United Kingdom
| | - Georgios K. Dimitriadis
- Department of Endocrinology ASO/EASO COM, King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Graham Finlayson
- School of Psychology, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Nicola Heslehurst
- Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, United Kingdom
| | - Brett Johnson
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | | | - Audrey Roberts
- European Coalition for People Living with Obesity, United Kingdom
| | - Patrick McGinley
- Department of Finance, Maidstone & Tunbridge Wells NHS Trust, Kent, United Kingdom
| | - Julia Mueller
- Epidemiology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Mary O'Kane
- Dietetic Department, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Rachel L. Batterham
- School of Life and Medical Sciences, University College London, London, United Kingdom
| | - Alexander Dimitri Miras
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
- School of Medicine, Ulster University, United Kingdom
| |
Collapse
|
14
|
Welling MS, Mohseni M, van der Valk ES, van Hagen JM, Burgerhart JS, van Haelst MM, van Rossum EFC. Successful naltrexone-bupropion treatment after several treatment failures in a patient with severe monogenic obesity. iScience 2023; 26:106199. [PMID: 36876127 PMCID: PMC9982263 DOI: 10.1016/j.isci.2023.106199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/10/2022] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
We describe the therapeutic journey of a 33-year-old patient with early-onset obesity (BMI 56.7 kg/m2) and hyperphagia due to a likely pathogenic heterozygous melanocortin-4 receptor (MC4R) gene variant. She was unsuccessfully treated with several intensive lifestyle interventions, gastric bypass surgery (-40 kg weight loss, followed by +39.8 kg weight regain), liraglutide 3 mg (-3.8% weight loss with sustained hyperphagia), and metformin treatment. However, naltrexone-bupropion treatment led to -48.9 kg (-26.7%) weight loss, of which -39.9 kg (-38.3%) was fat mass, in 17 months of treatment. Importantly, she reported improved hyperphagia and quality of life. We describe the potential beneficial effects of naltrexone-bupropion on weight, hyperphagia, and quality of life in a patient with genetic obesity. This extensive journey shows that various anti-obesity agents can be initiated, subsequently terminated when ineffective and substituted with other anti-obesity agents to identify the most efficient anti-obesity treatment.
Collapse
Affiliation(s)
- Mila S Welling
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, South-Holland, the Netherlands.,Obesity Center CGG, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, South-Holland, the Netherlands
| | - Mostafa Mohseni
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, South-Holland, the Netherlands.,Obesity Center CGG, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, South-Holland, the Netherlands
| | - Eline S van der Valk
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, South-Holland, the Netherlands.,Obesity Center CGG, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, South-Holland, the Netherlands
| | - Johanna M van Hagen
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, North-Holland, the Netherlands
| | - Jan Steven Burgerhart
- Department of Internal Medicine, University Medical Center Utrecht, 3584 CX Utrecht, Utrecht, the Netherlands
| | - Mieke M van Haelst
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, North-Holland, the Netherlands
| | - Elisabeth F C van Rossum
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, South-Holland, the Netherlands.,Obesity Center CGG, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, South-Holland, the Netherlands
| |
Collapse
|
15
|
Albaugh VL, He Y, Münzberg H, Morrison CD, Yu S, Berthoud HR. Regulation of body weight: Lessons learned from bariatric surgery. Mol Metab 2023; 68:101517. [PMID: 35644477 PMCID: PMC9938317 DOI: 10.1016/j.molmet.2022.101517] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 05/04/2022] [Accepted: 05/21/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Bariatric or weight loss surgery is currently the most effective treatment for obesity and metabolic disease. Unlike dieting and pharmacology, its beneficial effects are sustained over decades in most patients, and mortality is among the lowest for major surgery. Because there are not nearly enough surgeons to implement bariatric surgery on a global scale, intensive research efforts have begun to identify its mechanisms of action on a molecular level in order to replace surgery with targeted behavioral or pharmacological treatments. To date, however, there is no consensus as to the critical mechanisms involved. SCOPE OF REVIEW The purpose of this non-systematic review is to evaluate the existing evidence for specific molecular and inter-organ signaling pathways that play major roles in bariatric surgery-induced weight loss and metabolic benefits, with a focus on Roux-en-Y gastric bypass (RYGB) and vertical sleeve gastrectomy (VSG), in both humans and rodents. MAJOR CONCLUSIONS Gut-brain communication and its brain targets of food intake control and energy balance regulation are complex and redundant. Although the relatively young science of bariatric surgery has generated a number of hypotheses, no clear and unique mechanism has yet emerged. It seems increasingly likely that the broad physiological and behavioral effects produced by bariatric surgery do not involve a single mechanism, but rather multiple signaling pathways. Besides a need to improve and better validate surgeries in animals, advanced techniques, including inducible, tissue-specific knockout models, and the use of humanized physiological traits will be necessary. State-of-the-art genetically-guided neural identification techniques should be used to more selectively manipulate function-specific pathways.
Collapse
Affiliation(s)
- Vance L Albaugh
- Translational and Integrative Gastrointestinal and Endocrine Research Laboratory, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Yanlin He
- Brain Glycemic and Metabolism Control Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Heike Münzberg
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Christopher D Morrison
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Sangho Yu
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Hans-Rudolf Berthoud
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
16
|
Gala K, Ghusn W, Fansa S, Abu Dayyeh BK, Ghanem OM, Kellogg T, Acosta A. Effects of Heterozygous Variants in the Leptin-Melanocortin Pathway on Transoral Outlet Reduction After Roux-en-Y Gastric Bypass: A Case-Control Study and Review of Literature. Obes Surg 2023; 33:1284-1288. [PMID: 36708466 DOI: 10.1007/s11695-023-06462-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/09/2023] [Accepted: 01/17/2023] [Indexed: 01/29/2023]
Abstract
BACKGROUND Transoral outlet reduction (TORe) is a safe and effective technique for management of weight regain (WR) after Roux-en-Y Gastric Bypass (RYGB). Carriers of a heterozygous variant in the leptin melanocortin pathway (LMP) have been shown to be at high risk for WR in the mid- and long-term after RYGB. Our case series includes four patients with heterozygous LMP variants and presents novel data on their weight loss after TORe. METHODS We performed a retrospective study of the Mayo Clinic Biobank and identified adult participants who had been genotyped and found to have or do not have a heterozygous variant in the LMP ("carriers" vs "non-carriers", respectively) and had undergone a TORe procedure. TBWL% at 1, 3, 6, 9, and 12 months ± 15 days were calculated based on baseline weight at TORe procedure. RESULTS A total of 14 patients were included in the analysis: four patients (mean age 51.0 [5.2] years, 100% females, body mass index [BMI] 40.5 [8.7] kg/m2) with LMP variant and 10 non-carriers (age 55.4 [15.3] years, 90% females, BMI 37.3 [7.7] kg/m2). There were no baseline differences between carriers and non-carriers at time of TORe procedure. After TORE, carriers lost less weight when compared to non-carriers at 3, 6, 9, and 12 months. The difference at 12 months was statistically significant (1.6 vs 12.3%; p = 0.03). CONCLUSIONS Patients with a LMP variant and that underwent RYGB showed decreased weight loss after undergoing TORe. Further and larger studies are needed to comprehend the effect of TORe on patients with LMP variants.
Collapse
Affiliation(s)
- Khushboo Gala
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Charlton 8-142, 200 First St. S. W, Rochester, MN, 55902, USA
| | - Wissam Ghusn
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Charlton 8-142, 200 First St. S. W, Rochester, MN, 55902, USA.,Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, 55902, USA
| | - Sima Fansa
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Charlton 8-142, 200 First St. S. W, Rochester, MN, 55902, USA.,Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, 55902, USA
| | - Barham K Abu Dayyeh
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Charlton 8-142, 200 First St. S. W, Rochester, MN, 55902, USA.,Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, 55902, USA
| | - Omar M Ghanem
- Division of Endocrine & Metabolic Surgery, Department of Surgery, Mayo Clinic, Rochester, MN, 55902, USA
| | - Todd Kellogg
- Division of Endocrine & Metabolic Surgery, Department of Surgery, Mayo Clinic, Rochester, MN, 55902, USA
| | - Andres Acosta
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Charlton 8-142, 200 First St. S. W, Rochester, MN, 55902, USA. .,Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, 55902, USA.
| |
Collapse
|
17
|
Effect of the Melanocortin 4-Receptor Ile269Asn Mutation on Weight Loss Response to Dietary, Phentermine and Bariatric Surgery Interventions. Genes (Basel) 2022; 13:genes13122267. [PMID: 36553534 PMCID: PMC9778600 DOI: 10.3390/genes13122267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/05/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
The loss of function melanocortin 4-receptor (MC4R) Ile269Asn mutation has been proposed as one of the most important genetic contributors to obesity in the Mexican population. However, whether patients bearing this mutation respond differently to weight loss treatments is unknown. We tested the association of this mutation with obesity in 1683 Mexican adults, and compared the response of mutation carriers and non-carriers to three different weight loss interventions: dietary restriction intervention, phentermine 30 mg/day treatment, and Roux-en-Y gastric bypass (RYGB) surgery. The Ile269Asn mutation was associated with obesity [OR = 3.8, 95% CI (1.5-9.7), p = 0.005]. Regarding interventions, in the dietary restriction group only two patients were MC4R Ile269Asn mutation carriers. After 1 month of treatment, both mutation carriers lost weight: -4.0 kg (-2.9%) in patient 1, and -1.8 kg (-1.5%) in patient 2; similar to the mean weight loss observed in six non-carrier subjects (-2.9 kg; -2.8%). Phentermine treatment produced similar weight loss in six carriers (-12.7 kg; 15.5%) and 18 non-carriers (-11.3 kg; 13.6%) after 6 months of pharmacological treatment. RYGB also caused similar weight loss in seven carriers (29.9%) and 24 non-carriers (27.8%), 6 months after surgery. Our findings suggest that while the presence of a single MC4R loss of function Ile269Asn allele significantly increases obesity risk, the presence of at least one functional MC4R allele seems sufficient to allow short-term weight loss in response to dietary restriction, phentermine and RYGB. Thus, these three different interventions may be useful for the short-term treatment of obesity in MC4R Ile269Asn mutation carriers.
Collapse
|
18
|
Hinney A, Körner A, Fischer-Posovszky P. The promise of new anti-obesity therapies arising from knowledge of genetic obesity traits. Nat Rev Endocrinol 2022; 18:623-637. [PMID: 35902734 PMCID: PMC9330928 DOI: 10.1038/s41574-022-00716-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/17/2022] [Indexed: 02/07/2023]
Abstract
Obesity is a multifactorial and complex disease that often manifests in early childhood with a lifelong burden. Polygenic and monogenic obesity are driven by the interaction between genetic predisposition and environmental factors. Polygenic variants are frequent and confer small effect sizes. Rare monogenic obesity syndromes are caused by defined pathogenic variants in single genes with large effect sizes. Most of these genes are involved in the central nervous regulation of body weight; for example, genes of the leptin-melanocortin pathway. Clinically, patients with monogenic obesity present with impaired satiety, hyperphagia and pronounced food-seeking behaviour in early childhood, which leads to severe early-onset obesity. With the advent of novel pharmacological treatment options emerging for monogenic obesity syndromes that target the central melanocortin pathway, genetic testing is recommended for patients with rapid weight gain in infancy and additional clinical suggestive features. Likewise, patients with obesity associated with hypothalamic damage or other forms of syndromic obesity involving energy regulatory circuits could benefit from these novel pharmacological treatment options. Early identification of patients affected by syndromic obesity will lead to appropriate treatment, thereby preventing the development of obesity sequelae, avoiding failure of conservative treatment approaches and alleviating stigmatization of patients and their families.
Collapse
Affiliation(s)
- Anke Hinney
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy and University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
- Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| | - Antje Körner
- Leipzig University, Medical Faculty, Hospital for Children and Adolescents, Centre of Paediatric Research (CPL), Leipzig, Germany
- LIFE Child, Leipzig Research Centre for Civilization Diseases, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | | |
Collapse
|
19
|
Campos A, Cifuentes L, Hashem A, Busebee B, Hurtado-Andrade MD, Ricardo-Silgado ML, McRae A, De la Rosa A, Feris F, Bublitz JT, Hensrud D, Camilleri M, Kellogg TA, Eckel-Passow JE, Olson J, Acosta A. Effects of Heterozygous Variants in the Leptin-Melanocortin Pathway on Roux-en-Y Gastric Bypass Outcomes: a 15-Year Case-Control Study. Obes Surg 2022; 32:2632-2640. [PMID: 35654930 PMCID: PMC9721531 DOI: 10.1007/s11695-022-06122-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Heterozygous variants in the leptin-melanocortin pathway are associated with obesity. However, their effect on the long-term outcomes after Roux-en-Y gastric bypass (RYGB) is still unknown. METHODS In this matched case-control study, 701 participants from the Mayo Clinic Biobank with a history of RYGB were genotyped. Sixty-three patients had a heterozygous variant in the leptin-melanocortin pathway. After excluding patients with potential confounders, carriers were randomly matched (on sex, age, body mass index [BMI], and years since surgery) with two non-carrier controls. The electronic medical record of carriers and matched non-carriers was reviewed for up to 15 years after RYGB. RESULTS A total of 50 carriers and 100 matched non-carriers with a history of RYGB were included in the study. Seven different genes (LEPR, PCSK1, POMC, SH2B1, SRC1, MC4R, and SIM1) in the leptin-melanocortin pathway were identified. At the time of surgery, the mean age was 50.8 ± 10.6 years, BMI 45.6 ± 7.3 kg/m2, and 79% women. There were no differences in postoperative years of follow-up, Roux limb length, or gastric pouch size between groups. Fifteen years after RYGB, the percentage of total body weight loss (%TBWL) in carriers was - 16.6 ± 10.7 compared with - 28.7 ± 12.9 in non-carriers (diff = 12.1%; 95% CI, 4.8 to 19.3) and the percentage of weight regain after maximum weight loss was 52.7 ± 29.7 in carriers compared with 29.8 ± 20.7 in non-carriers (diff = 22.9%; 95% CI, 5.3 to 40.5). The nadir %TBWL was lower - 32.1 ± 8.1 in carriers compared with - 36.8 ± 10.4 in non-carriers (diff = 4.8%; 95% CI 1.8 to 7.8). CONCLUSIONS Carriers of a heterozygous variant in the leptin-melanocortin pathway have a progressive and significant weight regain in the mid- and long-term after RYGB. Genotyping patients experiencing significant weight regain after RYGB could help implement multidisciplinary and individualized weight loss interventions to improve weight maintenance after surgery.
Collapse
Affiliation(s)
- Alejandro Campos
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Charlton 8-142, 200 First St. S.W, Rochester, MN, 55902, USA
| | - Lizeth Cifuentes
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Charlton 8-142, 200 First St. S.W, Rochester, MN, 55902, USA
| | - Anas Hashem
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Charlton 8-142, 200 First St. S.W, Rochester, MN, 55902, USA
| | - Bradley Busebee
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Charlton 8-142, 200 First St. S.W, Rochester, MN, 55902, USA
| | - Maria D Hurtado-Andrade
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Charlton 8-142, 200 First St. S.W, Rochester, MN, 55902, USA
| | - Maria L Ricardo-Silgado
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Charlton 8-142, 200 First St. S.W, Rochester, MN, 55902, USA
| | - Alison McRae
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Charlton 8-142, 200 First St. S.W, Rochester, MN, 55902, USA
| | - Alan De la Rosa
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Charlton 8-142, 200 First St. S.W, Rochester, MN, 55902, USA
| | - Fauzi Feris
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Charlton 8-142, 200 First St. S.W, Rochester, MN, 55902, USA
| | - Joshua T Bublitz
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Donald Hensrud
- Division of General Internal Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Michael Camilleri
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Charlton 8-142, 200 First St. S.W, Rochester, MN, 55902, USA
| | - Todd A Kellogg
- Division of Endocrine & Metabolic Surgery, Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Jeanette E Eckel-Passow
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Janet Olson
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Andres Acosta
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Charlton 8-142, 200 First St. S.W, Rochester, MN, 55902, USA.
| |
Collapse
|
20
|
Tao YX. Mutations in melanocortin-4 receptor: From fish to men. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 189:215-257. [PMID: 35595350 DOI: 10.1016/bs.pmbts.2022.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Melanocortin-4 receptor (MC4R), expressed abundantly in the hypothalamus, is a critical regulator of energy homeostasis, including both food intake and energy expenditure. Shortly after the publication in 1997 of the Mc4r knockout phenotypes in mice, including increased food intake and severe obesity, the first mutations in MC4R were reported in humans in 1998. Studies in the subsequent two decades have established MC4R mutation as the most common monogenic form of obesity, especially in early-onset severe obesity. Studies in animals, from fish to mammals, have established the conserved physiological roles of MC4R in all vertebrates in regulating energy balance. Drug targeting MC4R has been recently approved for treating morbid genetic obesity. How the MC4R can be exploited for animal production is highly worthy of active investigation.
Collapse
Affiliation(s)
- Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States.
| |
Collapse
|
21
|
Roberts KJ, Ariza AJ, Selvaraj K, Quadri M, Mangarelli C, Neault S, Davis EE, Binns HJ. Testing for rare genetic causes of obesity: findings and experiences from a pediatric weight management program. Int J Obes (Lond) 2022; 46:1493-1501. [PMID: 35562395 PMCID: PMC9105591 DOI: 10.1038/s41366-022-01139-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Genetic screening for youth with obesity in the absence of syndromic findings has not been part of obesity management. For children with early onset obesity, genetic screening is recommended for those having clinical features of genetic obesity syndromes (including hyperphagia). OBJECTIVES The overarching goal of this work is to report the findings and experiences from one pediatric weight management program that implemented targeted sequencing analysis for genes known to cause rare genetic disorders of obesity. SUBJECTS/METHODS This exploratory study evaluated youth tested over an 18-month period using a panel of 40-genes in the melanocortin 4 receptor pathway. Medical records were reviewed for demographic and visit information, including body mass index (BMI) percent of 95th percentile (%BMIp95) and two eating behaviors. RESULTS Of 117 subjects: 51.3% were male; 53.8% Hispanic; mean age 10.2 years (SD 3.8); mean %BMIp95 157% (SD 29%). Most subjects were self- or caregiver-reported to have overeating to excess or binge eating (80.3%) and sneaking food or eating in secret (59.0%). Among analyzed genes, 72 subjects (61.5%) had at least one variant reported; 50 (42.7%) had a single variant reported; 22 (18.8%) had 2-4 variants reported; most variants were rare (<0.05% minor allele frequency [MAF]), and of uncertain significance; all variants were heterozygous. Nine subjects (7.7%) had a variant reported as PSCK1 "risk" or MC4R "likely pathogenic"; 39 (33.3%) had a Bardet-Biedl Syndrome (BBS) gene variant (4 with "pathogenic" or "likely pathogenic" variants). Therefore, 9 youth (7.7%) had gene variants previously identified as increasing risk for obesity and 4 youth (3.4%) had BBS carrier status. CONCLUSIONS Panel testing identified rare variants of uncertain significance in most youth tested, and infrequently identified variants previously reported to increase the risk for obesity. Further research in larger cohorts is needed to understand how genetic variants influence the expression of non-syndromic obesity.
Collapse
Affiliation(s)
- Karyn J Roberts
- College of Nursing, University of Wisconsin-Milwaukee, PO Box 413, Milwaukee, WI, 53201-0413, USA. .,Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.
| | - Adolfo J Ariza
- Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.,Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.,Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Kavitha Selvaraj
- Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.,Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Maheen Quadri
- Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.,Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Caren Mangarelli
- Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.,Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Sarah Neault
- Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Erica E Davis
- Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.,Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Helen J Binns
- Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.,Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.,Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| |
Collapse
|