1
|
Ghodsi A, Fashandi H. Influence of photothermal nanomaterials localization within the electrospun membrane structure on purification of saline oily wastewater based on photothermal vacuum membrane distillation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121866. [PMID: 39018852 DOI: 10.1016/j.jenvman.2024.121866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/05/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Today, synergistic combination of special nanomaterials (NMs) and electrospinning technique has emerged as a promising strategy to address both water scarcity and energy concerns through the development of photothermal membranes for wastewater purification and desalination. This work was organized to provide a new perspective on membrane design for photothermal vacuum membrane distillation (PVMD) through optimizing membrane performance by varying the localization of photothermal NMs. Poly(vinylidene fluoride) omniphobic photothermal membranes were prepared by localizing graphene oxide nanosheets (GO NSh) (1) on the surface (0.2 wt%), (2) within the nanofibers structure (10 wt%) or (3) in both positions. Considering the case 1, after 7 min exposure to the 1 sun intensity light, the highest temperature (∼93.5 °C) was recorded, which is assigned to the accessibility of GO NSh upon light exposure. The case 3 yielded to a small reduction in surface temperature (∼90.4 °C) compared to the case 1, indicating no need to localize NMs within the nanofibers structure when they are localized on the surface. The other extreme belonged to the case 2 with the lowest temperature of ∼71.3 °C, which is consistent with the less accessibility of GO NSh during irradiation. It was demonstrated that the accessibility of photothermal NMs plays more pronounced role in the membrane surface temperature compared to the light trapping. However, benefiting from higher surface temperature during PVMD due to enhanced accessibility of photothermal NMs is balanced out by decrease in the permeate flux (case 1: 1.51 kg/m2 h and case 2: 1.83 kg/m2 h) due to blocking some membrane surface pores by the binder. A trend similar to that for flux was also followed by the efficiency. Additionally, no change in rejection was observed for different GO NSh localizations.
Collapse
Affiliation(s)
- Ali Ghodsi
- Department of Textile Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Hossein Fashandi
- Department of Textile Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| |
Collapse
|
2
|
Chimanlal I, Nthunya LN, Mahlangu OT, Kirkebæk B, Ali A, Quist-Jensen CA, Richards H. Nanoparticle-Enhanced PVDF Flat-Sheet Membranes for Seawater Desalination in Direct Contact Membrane Distillation. MEMBRANES 2023; 13:317. [PMID: 36984704 PMCID: PMC10052890 DOI: 10.3390/membranes13030317] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
In this study, hydrophobic functionalized carbon nanotubes (fCNTs) and silica nanoparticles (fSiO2NPs) were incorporated into polyvinylidene fluoride (PVDF) flat-sheet membranes to improve their performance in membrane distillation (MD). The performance of the as-synthesized membranes was evaluated against commercial reference polytetrafluoroethylene (PTFE) flat-sheet membranes. The water contact angle (WCA) and liquid entry pressure (LEP) of the PVDF membrane were compromised after incorporation of hydrophilic pore forming polyvinylpyrrolidone (PVP). These parameters were key in ensuring high salt rejections in MD processes. Upon incorporation of fCNTS and fSiO2NPs, WCA and LEP improved to 103.61° and 590 kPa, respectively. Moreover, the NP additives enhanced membrane surface roughness. Thus, an increase in membrane roughness improved WCA and resistance to membrane wetting. High salt rejection (>99%) and stable fluxes (39.77 kg m-2 h-1) were recorded throughout a 3 h process evaluation where 3.5 wt% NaCl solution was used as feed. These findings were recorded at feed temperature of 60 ℃. Evidently, this study substantiated the necessity of high feed temperatures towards high rates of water recovery.
Collapse
Affiliation(s)
- Indira Chimanlal
- Molecular Sciences Institute, School of Chemistry, University of Witwatersrand, Private Bag X3, Johannesburg 2050, South Africa; (I.C.); (L.N.N.)
- Center for Membrane Technology, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark; (B.K.); (A.A.)
| | - Lebea N. Nthunya
- Molecular Sciences Institute, School of Chemistry, University of Witwatersrand, Private Bag X3, Johannesburg 2050, South Africa; (I.C.); (L.N.N.)
- Center for Membrane Technology, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark; (B.K.); (A.A.)
| | - Oranso T. Mahlangu
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, Johannesburg 1709, South Africa;
| | - Bastian Kirkebæk
- Center for Membrane Technology, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark; (B.K.); (A.A.)
| | - Aamer Ali
- Center for Membrane Technology, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark; (B.K.); (A.A.)
| | - Cejna A. Quist-Jensen
- Center for Membrane Technology, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark; (B.K.); (A.A.)
| | - Heidi Richards
- Molecular Sciences Institute, School of Chemistry, University of Witwatersrand, Private Bag X3, Johannesburg 2050, South Africa; (I.C.); (L.N.N.)
| |
Collapse
|
3
|
Chimanlal I, Nthunya LN, Quist-Jensen C, Richards H. Membrane distillation crystallization for water and mineral recovery: The occurrence of fouling and its control during wastewater treatment. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.1066027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Membrane distillation crystallization (MDC) is an emerging technology envisaged to manage challenges affecting the desalination industry. This technology can sustainably treat concentrated solutions of produced water and industrially discharged saline wastewater. Simultaneous recovery of clean water and minerals is achieved through the integration of crystallization to membrane distillation (MD). MDC has received vast research interest because of its potential to treat hypersaline solutions. However, MDC still faces challenges in harnessing its industrial applications. Technically, MDC is affected by fouling/scaling and wetting thereby hindering practical application at the industrial level. This study reviews the occurrence of membrane fouling and wetting experienced with MDC. Additionally, existing developments carried out to address these challenges are critically reviewed. Finally, prospects suggesting the sustainability of this technology are highlighted.
Collapse
|
4
|
Al Rasbi AWYA, Devi MG, Chandrasekhar G. Synthesis and application of silica and calcium carbonate nanoparticles in the reduction of organics from refinery wastewater. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Sathish T, Saravanan R, Vijayan V, Dinesh Kumar S. Investigations on influences of MWCNT composite membranes in oil refineries waste water treatment with Taguchi route. CHEMOSPHERE 2022; 298:134265. [PMID: 35283151 DOI: 10.1016/j.chemosphere.2022.134265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/24/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Most of the 'oil refineries' severally pollutes the water resources by depleting their untreated waste water like cooling water, storm water and unsanitary sewage water. These wastewaters are to be treated with high care to protect the human, pebbles, plants, fish and other water animals and from harmful effects. The present study focused to treat the oil refinery wastewater by means of Multi wall carbon nanotube (MWCNT) coated Polyvinylidene Fluoride (PVDF) membrane. The main objectives are: to increases the life of filter, reduce the percolation flux and reduce the formation of antifouling in the filter by using MWCNT composite membrane in it. Different process parameters of the proposed water treatment process, like diameter of MWCNT (15 nm, 20 nm, 25 nm and 30 nm), operating pressure (3 bar, 4 bar, 5 bar and 6 bar), pH value (3, 5, 7 and 9) and temperature (25 °C, 30 °C, 35 °C and 40 °C) temperature. Taguchi statistical technique is employed for designing experiments and for optimizing the process parameters of wastewater treatment process of an oil refinery. The proposed filter for wastewater treatment exhibited appreciable performance in removal rate of Percolation flux, percentage of chemical oxygen demand removal and percentage of total carbolic rejection as 27.2 kg/m2h, 78.51% and 95.33% respectively.
Collapse
Affiliation(s)
- T Sathish
- Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India.
| | - R Saravanan
- Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India
| | - V Vijayan
- Department of Mechanical Engineering, K.Ramakrishnan College of Technology, Trichy, Tamil Nadu, India
| | - S Dinesh Kumar
- Department of Mechanical Engineering, St.Peter's Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| |
Collapse
|
6
|
Gatidou G, Samanides CG, Fountoulakis MS, Vyrides I. Microbial electrolysis cell coupled with anaerobic granular sludge: A novel technology for real bilge water treatment. CHEMOSPHERE 2022; 296:133988. [PMID: 35181427 DOI: 10.1016/j.chemosphere.2022.133988] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/04/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
In the current study, treatment of undiluted real bilge water (BW) and the production of methane was examined for the first time using a membraneless single chamber Microbial Electrolysis Cell (MEC) with Anaerobic Granular Sludge (AGS) for its biodegradation. Initially, Anaerobic Toxicity Assays (ATAs) were used to evaluate the effect of undiluted real BW on the methanogenic activity of AGS. According to the results, BW shown higher impact to acetoclastics compared to hydrogenotrophic methanogens which proved to be more tolerant. However, dilution of BW caused lower inhibition allowing BW biodegradation. Maximum methane production (142.2 ± 4.8 mL) was observed at 50% of BW. Operation of MEC coupled with AGS, seemed to be very promising technology for BW treatment. During 80 days of operation in increasing levels of BW, R2 (1 V) reactor resulted in better performance than AGS alone. Exposure of AGS to gradual increase of BW content revealed that CH4 production was possible and reached 51% in five days even after feeding with 90% of BW using simple commercial iron electrodes. Successful chemical oxygen demand (sCOD) removal (up to 70%) was observed after gradual biomass acclimatization. Among the different monitored volatile fatty acids (VFAs), acetic and valeric acids were the most frequently detected compounds with concentrations up to 2.79 and 1.81 g L-1, respectively. The recalcitrant nature of BW did not allow the MEC-AD (anaerobic digester) to balance the consumed energy. Microbial profile analysis confirmed the existence of several methanogenic microorganisms of which Desulfovibrio and Methanobacterium presented significantly higher abundance in the cathodes compared to anodes and AGS.
Collapse
Affiliation(s)
- Georgia Gatidou
- Laboratory of Environmental Engineering, Department of Chemical Engineering, Cyprus University of Technology, Anexartisias 57 Str, Lemesos, 3603, Cyprus.
| | - Charis G Samanides
- Laboratory of Environmental Engineering, Department of Chemical Engineering, Cyprus University of Technology, Anexartisias 57 Str, Lemesos, 3603, Cyprus
| | - Michalis S Fountoulakis
- Water and Air Quality Laboratory, Department of Environment, University of the Aegean, University Hill, 81100, Mytilene, Greece
| | - Ioannis Vyrides
- Laboratory of Environmental Engineering, Department of Chemical Engineering, Cyprus University of Technology, Anexartisias 57 Str, Lemesos, 3603, Cyprus
| |
Collapse
|
7
|
Assessment of Bilge Water Degradation by Isolated Citrobacter sp. and Two Indigenous Strains and Identification of Organic Content by GC-MS. WATER 2022. [DOI: 10.3390/w14091350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Bilge water is oily saline wastewater accumulated on the hull at the bottom of a vessel, generated from leakage from pipes and engines and wash-down freshwater containing cleaning solvents. The present study focused on isolating microorganisms from oil-contaminated sites and indigenous species from raw bilge water and assessment of their ability to biodegrade bilge water. Using phenanthrene as a carbon source Citrobacter species was isolated from oil-contaminated sites and its optimum growth condition was found. The results indicated significant tolerance of the bacterium which presented great biodegradation ability for the tested carbon source. At high salinity (33 g L−1 of NaCl), sufficient phenathrene removal was achieved (81%), whereas variation of pH from 5 to 10 did not affected the survival of the microorganism. Regarding the effect of temperature and nutrients, Citrobacter sp. was better adapted at 30 °C, while lack of nutrients presented a negative impact on its growth. Halomonas and Exiguobacterium sp. were isolated from real bilge water using phenanthrene and phenol as a carbon source. The isolated strains independently exposed to high and low range bilge water pointed out around 83% and 53% chemical oxygen demand (COD) removal, respectively. Analysis of untreated bilge water by gas chromatography-mass spectrometry (GC-MS) was carried out, and the results confirmed the presence of organic compounds having a high similarity with Heptane, N-hexadecanoic acid, Methyl isobutyl Ketone and 1-butoxy-2-propanol. Chromatographic analysis of treated bilge water after exposure to isolated strains indicated the existence of new compounds. These metabolites presented high similarity with N-hexadecanoic, methyl ester, N-hexadecanoic and Octadecanoic acid methyl ester.
Collapse
|
8
|
Tomczak W, Gryta M. The Impact of Operational Parameters on Polypropylene Membrane Performance during the Separation of Oily Saline Wastewaters by the Membrane Distillation Process. MEMBRANES 2022; 12:membranes12040351. [PMID: 35448321 PMCID: PMC9027506 DOI: 10.3390/membranes12040351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 02/04/2023]
Abstract
In the present study, membrane distillation (MD) was applied for the treatment of oily saline wastewaters produced on ships sailing the Baltic Sea. For comparison purposes, experiments were also carried out with model NaCl solutions, the Baltic Seawater and oil in water emulsions. The commercial Accurel PP V8/2 membranes (Membrana GmbH, Germany) were used. In order to investigate the impact of the operational parameters on the process performance, the experiments were conducted under various values of the feed flow velocity (from 0.03 to 0.12 m/s) and the feed temperature (from 323 to 343 K). The obtained results highlight the potential of PP membranes application for a stable and reliable long-term treatment of oily wastewater. It was demonstrated that the permeate flux increased significantly with increasing feed temperature. However, the lower temperature ensured the limited scaling phenomenon during the treatment of oily wastewaters. Likewise, increasing the feed flow velocity was beneficial to the increase in the flux. Moreover, it was found that performing a cyclic rinsing of the module with a 3% HCl solution is an effective method to maintain a satisfactory module performance. The present study sheds light on improving the MD for the treatment of oily wastewaters.
Collapse
Affiliation(s)
- Wirginia Tomczak
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, 3 Seminaryjna Street, 85-326 Bydgoszcz, Poland
- Correspondence: (W.T.); (M.G.)
| | - Marek Gryta
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, ul. Pułaskiego 10, 70-322 Szczecin, Poland
- Correspondence: (W.T.); (M.G.)
| |
Collapse
|
9
|
El-badawy T, Othman MHD, Matsuura T, Bilad MR, Adam MR, Tai ZS, Ravi J, Ismail A, Rahman MA, Jaafar J, Usman J, Kurniawan TA. Progress in treatment of oilfield produced water using membrane distillation and potentials for beneficial re-use. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119494] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Nawaz MS, Son HS, Jin Y, Kim Y, Soukane S, Al-Hajji MA, Abu-Ghdaib M, Ghaffour N. Investigation of flux stability and fouling mechanism during simultaneous treatment of different produced water streams using forward osmosis and membrane distillation. WATER RESEARCH 2021; 198:117157. [PMID: 33933919 DOI: 10.1016/j.watres.2021.117157] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/11/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Forward osmosis-membrane distillation (FO-MD) hybrids were recently found suitable for produced water treatment. Exclusion of synthetic chemical draw solutions, typically used for FO, can reduce FO-MD operational costs and ease its onsite application. This study experimentally validates a novel concept for the simultaneous treatment of different produced water streams available at the same industrial site using an FO-MD hybrid system. The water oil separator outlet (WO) stream was selected as FO draw solution and it generated average fluxes ranging between 8.30 LMH and 26.78 LMH with four different feed streams. FO fluxes were found to be governed by the complex composition of the feed streams. On the other hand, with WO stream as MD feed, an average flux of 14.41 LMH was achieved. Calcium ions were found as a main reason for MD flux decline in the form of CaSO4 scaling and stimulating the interaction between the membrane and humic acid molecules to form scale layer causing reduction in heat transfer and decline in MD flux (6%). Emulsified oil solution was responsible for partial pore clogging resulting in further 2% flux decline. Ethylenediaminetetraaceticacid (EDTA) was able to mask a portion of calcium ions and resulted in a complete recovery of the original MD flux. Under hybrid FO-MD experiments MD fluxes between 5.62 LMH and 11.12 LMH were achieved. Therefore, the novel concept is validated to produce fairly stable FO and MD fluxes, with few streams, without severe fouling and producing excellent product water quality.
Collapse
Affiliation(s)
- Muhammad Saqib Nawaz
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia
| | - Hyuk Soo Son
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia
| | - Yong Jin
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia
| | - Youngjin Kim
- Department of Environmental Engineering, Sejong Campus, Korea University, 2511, Sejong-ro, Jochiwon-eup, Sejong-si, Republic of Korea
| | - Sofiane Soukane
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia
| | - Mohammed Ali Al-Hajji
- Energy Systems Division, Process & Control Systems Department (P&CSD), Saudi Aramco, Dhahran, Saudi Arabia
| | - Muhannad Abu-Ghdaib
- Energy Systems Division, Process & Control Systems Department (P&CSD), Saudi Aramco, Dhahran, Saudi Arabia
| | - Noreddine Ghaffour
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
11
|
Dayanandan N, Kapoor A, Sivaraman P. Studies on membrane distillation towards mitigating thermal pollution. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01525-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|