1
|
Ul Huda N, Ul-Hamid A, Khan MA, Shahida S, Zaheer M. Mesoporous Silica (MCM-41) Containing Dispersed Palladium Nanoparticles as Catalyst for Dehydrogenation, Methanolysis, and Reduction Reactions. Chempluschem 2023; 88:e202300338. [PMID: 37736704 DOI: 10.1002/cplu.202300338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 09/23/2023]
Abstract
Generating highly dispersed metal NPs of the desired size on surfaces such as porous silica is challenging due to wettability issues. Here, we report highly active and well-dispersed Pd incorporated mesoporous MCM-41 (Pd@MCM) using a facile impregnation via a molecular approach based on hydrogen bonding interaction of a palladium β-diketone complex with surface silanol groups of mesoporous silica. Controlled thermal treatment of so obtained materials in air, argon, and hydrogen provided the catalysts characterized by electron microscopy, nitrogen physisorption, X-ray diffraction and spectroscopy. Gratifyingly, our catalyst provided the lowest ever activation energy (14.3 kJ/mol) reported in literature for dehydrogenation of NaBH4 . Moreover, the rate constant (7×10-3 s-1 ) for the reduction of 4-nitrophenol outperformed the activity of commercial Pd/C (4×10-3 s-1 ) and Pd/Al2 O3 (5×10-3 s-1 ) catalysts.
Collapse
Affiliation(s)
- Noor Ul Huda
- Department of chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences (LUMS), Sector U, DHA, Lahore, 54792, Pakistan
| | - Anwar Ul-Hamid
- Core Research Facilities, King Fahd University of Petroleum and Mineral, Dhahran, 31261, Saudi Arabia
| | - Muhammad Abdullah Khan
- Renewable Energy Advancement Laboratory, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Shabnam Shahida
- Department of Chemistry, University of Poonch Rawalakot Azad Jammu and Kashmir, Rawalakot, Pakistan
| | - Muhammad Zaheer
- Department of chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences (LUMS), Sector U, DHA, Lahore, 54792, Pakistan
| |
Collapse
|
2
|
Fertal DR, Monai M, Proaño L, Bukhovko MP, Park J, Ding Y, Weckhuysen BM, Banerjee AC. Calcination temperature effects on Pd/alumina catalysts: Particle size, surface species and activity in methane combustion. Catal Today 2021. [DOI: 10.1016/j.cattod.2021.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
3
|
Particle Size and PdO–Support Interactions in PdO/CeO2-γ Al2O3 Catalysts and Effect on Methane Combustion. Catalysts 2020. [DOI: 10.3390/catal10090976] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this study, we investigated the effects of sequential impregnation in two PdO/CeO2/Al2O3 nanocatalysts (4Pd-20CeO2/Al2O3 and 20CeO2-4Pd/Al2O₃) on catalytic properties, particle sizes, and metal oxide–support interactions. Pulse chemisorption indicated significantly higher dispersion and smaller particle size in the 20CeO2-4Pd/Al2O₃ catalyst. STEM images of the 4Pd-20CeO2/Al2O₃ catalyst showed PdO nanoparticles on the surface of crystalline Al2O₃. In the 20CeO2-4Pd/Al2O3 catalyst, PdO nanoparticles were strongly embedded on ceria indicating PdO-ceria interactions. Both supports were on separate sites in the two catalysts suggesting weak interactions. PdO particle sizes were 6–12 nm in the 4Pd-20CeO2/Al2O₃ catalyst and 4–8 nm in the 20CeO2-4Pd/Al2O₃ catalyst. Methane conversion was 100% at 275 °C after a 20-min run with the 4Pd-20CeO2/Al2O3 catalyst compared to 25% conversion by the 20CeO2-4Pd/Al2O₃ catalyst under same conditions. The support alumina could stabilize the PdO species and facilitated oxygen migration on the surface and from the bulk in the 4Pd-20CeO2/Al2O3 catalyst. The lower activities in the 20CeO2-4Pd/Al2O₃ catalyst could be due to inaccessibility of PdO active sites at low temperature due to embedment of PdO nanoparticles on ceria. We could infer from our data that sequence of impregnation in catalyst synthesis could significantly influence catalytic properties and methane combustion due to PdO–support interactions.
Collapse
|
4
|
Structure-activity relationship in Pd/CeO2 methane oxidation catalysts. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(19)63510-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
5
|
Rao C, Peng C, Peng H, Zhang L, Liu W, Wang X, Zhang N, Wu P. In Situ Embedded Pseudo Pd-Sn Solid Solution in Micropores Silica with Remarkable Catalytic Performance for CO and Propane Oxidation. ACS APPLIED MATERIALS & INTERFACES 2018; 10:9220-9224. [PMID: 29498506 DOI: 10.1021/acsami.8b01450] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Most of the industrial and environmental catalytic reactions are operated at high temperature for a long time, and the sintering of the active centers is the main factor leading to catalysts deactivation, especially for noble metal catalysts. Herein we develop a dual confinement (enhanced metal-oxide interaction and the porous shell confinement) strategy to prepare Pd-Sn pseudo solid solution and in situ embedded in microporous silica for the first time and showed superior catalytic performance for CO and propane total oxidation (two main vehicle emission gases), even stored more than 640 days.
Collapse
Affiliation(s)
- Cheng Rao
- Institute of Applied Chemistry, College of Chemistry , Nanchang University , 999 Xuefu Road , Nanchang , Jiangxi 330031 , China
| | - Cheng Peng
- Institute of Applied Chemistry, College of Chemistry , Nanchang University , 999 Xuefu Road , Nanchang , Jiangxi 330031 , China
| | - Honggen Peng
- Institute of Applied Chemistry, College of Chemistry , Nanchang University , 999 Xuefu Road , Nanchang , Jiangxi 330031 , China
- Chemical Sciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - Li Zhang
- Institute of Applied Chemistry, College of Chemistry , Nanchang University , 999 Xuefu Road , Nanchang , Jiangxi 330031 , China
| | - Wenming Liu
- Institute of Applied Chemistry, College of Chemistry , Nanchang University , 999 Xuefu Road , Nanchang , Jiangxi 330031 , China
| | - Xiang Wang
- Institute of Applied Chemistry, College of Chemistry , Nanchang University , 999 Xuefu Road , Nanchang , Jiangxi 330031 , China
| | - Ning Zhang
- Institute of Applied Chemistry, College of Chemistry , Nanchang University , 999 Xuefu Road , Nanchang , Jiangxi 330031 , China
| | - Peng Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry and Molecular Engineering , East China Normal University , North Zhongshan Road 3663 , 200062 Shanghai , China
| |
Collapse
|
6
|
Han Z, Li S, Jiang F, Wang T, Ma X, Gong J. Propane dehydrogenation over Pt-Cu bimetallic catalysts: the nature of coke deposition and the role of copper. NANOSCALE 2014; 6:10000-10008. [PMID: 24933477 DOI: 10.1039/c4nr02143f] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This paper describes an investigation of the promotional effect of Cu on the catalytic performance of Pt/Al2O3 catalysts for propane dehydrogenation. We have shown that Pt/Al2O3 catalysts possess higher propylene selectivity and lower deactivation rate as well as enhanced anti-coking ability upon Cu addition. The optimized loading content of Cu is 0.5 wt%, which increases the propylene selectivity to 90.8% with a propylene yield of 36.5%. The origin of the enhanced catalytic performance and anti-coking ability of the Pt-Cu/Al2O3 catalyst is ascribed to the intimate interaction between Pt and Cu, which is confirmed by the change of particle morphology and atomic electronic environment of the catalyst. The Pt-Cu interaction inhibits propylene adsorption and elevates the energy barrier of C-C bond rupture. The inhibited propylene adsorption diminishes the possibility of coke formation and suppresses the cracking reaction towards the formation of lighter hydrocarbons on Pt-Cu/Al2O3, while a higher energy barrier for C-C bond cleavage suppresses the methane formation.
Collapse
Affiliation(s)
- Zhiping Han
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China.
| | | | | | | | | | | |
Collapse
|
7
|
Javaid R, Kawasaki SI, Suzuki A, Suzuki TM. Simple and rapid hydrogenation of p-nitrophenol with aqueous formic acid in catalytic flow reactors. Beilstein J Org Chem 2013; 9:1156-63. [PMID: 23843908 PMCID: PMC3701373 DOI: 10.3762/bjoc.9.129] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 05/23/2013] [Indexed: 11/23/2022] Open
Abstract
The inner surface of a metallic tube (i.d. 0.5 mm) was coated with a palladium (Pd)-based thin metallic layer by flow electroless plating. Simultaneous plating of Pd and silver (Ag) from their electroless-plating solution produced a mixed distributed bimetallic layer. Preferential acid leaching of Ag from the Pd–Ag layer produced a porous Pd surface. Hydrogenation of p-nitrophenol was examined in the presence of formic acid simply by passing the reaction solution through the catalytic tubular reactors. p-Aminophenol was the sole product of hydrogenation. No side reaction occurred. Reaction conversion with respect to p-nitrophenol was dependent on the catalyst layer type, the temperature, pH, amount of formic acid, and the residence time. A porous and oxidized Pd (PdO) surface gave the best reaction conversion among the catalytic reactors examined. p-Nitrophenol was converted quantitatively to p-aminophenol within 15 s of residence time in the porous PdO reactor at 40 °C. Evolution of carbon dioxide (CO2) was observed during the reaction, although hydrogen (H2) was not found in the gas phase. Dehydrogenation of formic acid did not occur to any practical degree in the absence of p-nitrophenol. Consequently, the nitro group was reduced via hydrogen transfer from formic acid to p-nitrophenol and not by hydrogen generated by dehydrogenation of formic acid.
Collapse
Affiliation(s)
- Rahat Javaid
- Research Center for Compact Chemical System, National Institute of Advanced Industrial Science and Technology, AIST, 4-2-1 Nigatake, Miyagino-ku, Sendai, Miyagi 983-8551, Japan
| | | | | | | |
Collapse
|
8
|
Effect of a promoter on the methanation activity of a Mo-based sulfur-resistant catalyst. Front Chem Sci Eng 2012. [DOI: 10.1007/s11705-013-1301-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|