1
|
Kapoor RT, Hasanuzzaman M. Unraveling the mechanisms of biochar and steel slag in alleviating lithium stress in tomato (Solanum lycopersicum L.) plants via modulation of antioxidant defense and methylglyoxal detoxification pathways. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109062. [PMID: 39178803 DOI: 10.1016/j.plaphy.2024.109062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
With progress in technology, soaring demand for lithium (Li) has led to its release into the environment. This study demonstrated the mitigation of the adverse effects of Li stress on tomato (Solanum lycopersicum L.) by the application of waste materials, namely coconut shell biochar (CBC) and steel slag (SS). To explore the impact of Li treatment on tomato plants different morphological, biochemical parameters and plant defense system were analyzed. Tomato plants exposed to Li had shorter roots and shoots, lower biomass and relative water contents, and showed decreases in physiological variables, as well as increases in electrolyte leakage and lipid peroxidation. However, the application of CBC and SS as passivators, either singly or in combination, increased growth variables of tomato and relieved Li-induced oxidative stress responses. The combined CBC and SS amendments reduced Li accumulation 82 and 90% in tomato roots and shoots, respectively, thereby minimizing the negative impacts of Li. Antioxidant enzymes SOD, CAT, APX and GR reflected 4, 5, 30, and 52% and glyoxalase enzymes I and II 7 and 250% enhancement in presence of both CBC and SS in Li treated soil, with a concurrent decrease in methylglyoxal content. Lithium treatment triggered oxidative stress, increased enzymatic and non-enzymatic antioxidant levels, and induced the synthesis of thiols and phytochelatins in roots and shoots. Hence, co-amendment with CBC and SS protected tomato plants from Li-induced oxidative damage by increasing antioxidant defenses and glyoxalase system activity. Both CBC, generated from agricultural waste, and SS, an industrial waste, are environmentally benign, safe, economical, and non-hazardous materials that can be easily applied on a large scale for crop production in Li-polluted soils. The present findings highlight the novel reutilization of waste materials as renewable assets to overcome soil Li problems and emphasize the conversion of waste into wealth and its potential for practical applications.
Collapse
Affiliation(s)
- Riti Thapar Kapoor
- Centre for Plant and Environmental Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201 313, Uttar Pradesh, India
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207, Bangladesh; Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
2
|
Recent Advances in Lithium Extraction Using Electrode Materials of Li-Ion Battery from Brine/Seawater. Processes (Basel) 2022. [DOI: 10.3390/pr10122654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
With the rapid development of industry, the demand for lithium resources is increasing. Traditional methods such as precipitation usually take 1–2 years, and depend on weather conditions. In addition, electrochemical lithium recovery (ELR) as a green chemical method has attracted a great deal of attention. Herein, we summarize the systems of electrochemical lithium extraction and the electrode materials of the Li-ion battery from brine/seawater. Some representative work on electrochemical lithium extraction is then introduced. Finally, we prospect the future opportunities and challenges of electrochemical lithium extraction. In all, this review explores electrochemical lithium extraction from brine/seawater in depth, with special attention to the systems and electrode of electrochemical lithium extraction, which could provide a useful guidance for reasonable electrochemical-lithium-extraction.
Collapse
|
4
|
Bolan N, Hoang SA, Tanveer M, Wang L, Bolan S, Sooriyakumar P, Robinson B, Wijesekara H, Wijesooriya M, Keerthanan S, Vithanage M, Markert B, Fränzle S, Wünschmann S, Sarkar B, Vinu A, Kirkham MB, Siddique KHM, Rinklebe J. From mine to mind and mobiles - Lithium contamination and its risk management. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118067. [PMID: 34488156 DOI: 10.1016/j.envpol.2021.118067] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/20/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
With the ever-increasing demand for lithium (Li) for portable energy storage devices, there is a global concern associated with environmental contamination of Li, via the production, use, and disposal of Li-containing products, including mobile phones and mood-stabilizing drugs. While geogenic Li is sparingly soluble, Li added to soil is one of the most mobile cations in soil, which can leach to groundwater and reach surface water through runoff. Lithium is readily taken up by plants and has relatively high plant accumulation coefficient, albeit the underlying mechanisms have not been well described. Therefore, soil contamination with Li could reach the food chain due to its mobility in surface- and ground-waters and uptake into plants. High environmental Li levels adversely affect the health of humans, animals, and plants. Lithium toxicity can be considerably managed through various remediation approaches such as immobilization using clay-like amendments and/or chelate-enhanced phytoremediation. This review integrates fundamental aspects of Li distribution and behaviour in terrestrial and aquatic environments in an effort to efficiently remediate Li-contaminated ecosystems. As research to date has not provided a clear picture of how the increased production and disposal of Li-based products adversely impact human and ecosystem health, there is an urgent need for further studies on this field.
Collapse
Affiliation(s)
- Nanthi Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia; The Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, Australia
| | - Son A Hoang
- The Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, Australia; Division of Urban Infrastructural Engineering, Mien Trung University of Civil Engineering, Phu Yen, 56000, Viet Nam
| | - Mohsin Tanveer
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, 7005, Australia; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, People's Republic of China
| | - Lei Wang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, People's Republic of China
| | - Shiv Bolan
- The Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, Australia
| | - Prasanthi Sooriyakumar
- The Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, Australia
| | - Brett Robinson
- School of Physical and Chemical Sciences, University of Canterbury, New Zealand
| | - Hasintha Wijesekara
- Department of Natural Resources, Faculty of Applied Sciences, Sabaragamuwa University of Sri Lanka, P.O. Box 02, Belihuloya, 70140, Sri Lanka
| | - Madhuni Wijesooriya
- Department of Natural Resources, Faculty of Applied Sciences, Sabaragamuwa University of Sri Lanka, P.O. Box 02, Belihuloya, 70140, Sri Lanka
| | - S Keerthanan
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Bernd Markert
- Environmental Institute of Scientific Networks (EISN-Institute), Fliederweg 17, D-49733, Haren, Germany
| | - Stefan Fränzle
- IHI Zittau, TU Dresden, Department of Bio- and Environmental Sciences, Zittau, Germany
| | - Simone Wünschmann
- Environmental Institute of Scientific Networks (EISN-Institute), Fliederweg 17, D-49733, Haren, Germany
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
| | - Ajayan Vinu
- The Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, Australia
| | - M B Kirkham
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia
| | - Jörg Rinklebe
- University of Wuppertal, Institute of Soil Engineering, Waste- and Water Science, Faculty of Architecture und Civil Engineering, Laboratory of Soil- and Groundwater-Management, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Xiao J, Niu B, Xu Z. Highly efficient selective recovery of lithium from spent lithium-ion batteries by thermal reduction with cheap ammonia reagent. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126319. [PMID: 34329006 DOI: 10.1016/j.jhazmat.2021.126319] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
The rapid development of new energy technology leads to explosive growth of lithium-ion batteries (LIBs) industry which greatly alleviates the problems of environmental pollution and energy shortage. However, how to realize resource circulation of critical metals including lithium (Li) and cobalt (Co) becomes the new problem of LIBs industry. This paper proposes an improved thermal reduction technology to efficiently recycle Li and Co from spent LIBs, where cheap urea is applied as the only additive to provide ammonia (NH3). By thermal reduction, LiCoO2 was thermally reduced into water-soluble lithium carbonate and water-insoluble cobalt metal Under the optimal conditions, 99.96% Li with nearly 100% selectivity was obtained by water leaching. More importantly, the concept of "oxygen elements removal (OER)" was proposed to explain the metal extraction from spent LIBs, which could help to describe the reaction mechanism as O-cage digestion mechanism. Furthermore, metal extraction from spent LIBs was re-understood as "seeking an applicable reductant", which provided a fresh perspective for understanding Li selective recovery. These concepts and findings can provide some inspiration for metal recovery from spent LIBs.
Collapse
Affiliation(s)
- Jiefeng Xiao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Bo Niu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Zhenming Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China.
| |
Collapse
|
7
|
Tan C, Ding R, Huang Y, Yan T, Huang Y, Yang F, Sun X, Gao P, Liu E. A vacancy-rich perovskite fluoride K 0.79Ni 0.25Co 0.36Mn 0.39F 2.83@rGO anode for advanced Na-based dual-ion batteries. Chem Commun (Camb) 2021; 57:5830-5833. [PMID: 34002733 DOI: 10.1039/d1cc01477c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A novel concept of Na-based dual-ion batteries (Na-DIBs) has been designed via a perovskite K0.79Ni0.25Co0.36Mn0.39F2.83@reduced graphene oxide (KNCMF@rGO) hetero-nanocrystal anode, showing surface conversion and insertion hybrid mechanisms. The KNCMF@rGO//graphite (KS6) DIBs deliver superior energy/power densities and cycling stability and have a significant impact on developing energy storage devices.
Collapse
Affiliation(s)
- Caini Tan
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, P. R. China.
| | - Rui Ding
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, P. R. China.
| | - Yuxi Huang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, P. R. China.
| | - Tong Yan
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, P. R. China.
| | - Yongfa Huang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, P. R. China.
| | - Feng Yang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, P. R. China.
| | - Xiujuan Sun
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, P. R. China.
| | - Ping Gao
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, P. R. China.
| | - Enhui Liu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, P. R. China.
| |
Collapse
|