1
|
The functional importance of bacterial oxidative phosphonate pathways. Biochem Soc Trans 2023; 51:487-499. [PMID: 36892197 DOI: 10.1042/bst20220479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/10/2023]
Abstract
Organophosphonates (Pns) are a unique class of natural products characterized by a highly stable C-P bond. Pns exhibit a wide array of interesting structures as well as useful bioactivities ranging from antibacterial to herbicidal. More structurally simple Pns are scavenged and catabolized by bacteria as a source of phosphorus. Despite their environmental and industrial importance, the pathways involved in the metabolism of Pns are far from being fully elucidated. Pathways that have been characterized often reveal unusual chemical transformations and new enzyme mechanisms. Among these, oxidative enzymes play an outstanding role during the biosynthesis and degradation of Pns. They are to a high extent responsible for the structural diversity of Pn secondary metabolites and for the break-down of both man-made and biogenic Pns. Here, we review our current understanding of the importance of oxidative enzymes for microbial Pn metabolism, discuss the underlying mechanistic principles, similarities, and differences between pathways. This review illustrates Pn biochemistry to involve a mix of classical redox biochemistry and unique oxidative reactions, including ring formations, rearrangements, and desaturations. Many of these reactions are mediated by specialized iron-dependent oxygenases and oxidases. Such enzymes are the key to both early pathway diversification and late-stage functionalization of complex Pns.
Collapse
|
2
|
Ramos-Figueroa JS, Palmer DRJ, Horsman GP. Phosphoenolpyruvate mutase-catalyzed C-P bond formation: mechanistic ambiguities and opportunities. Chembiochem 2022; 23:e202200285. [PMID: 35943842 DOI: 10.1002/cbic.202200285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/05/2022] [Indexed: 11/06/2022]
Abstract
Phosphonates are produced across all domains of life and used widely in medicine and agriculture. Biosynthesis almost universally originates from the enzyme phosphoenolpyruvate mutase (Ppm), EC 5.4.2.9, which catalyzes O-P bond cleavage in phosphoenolpyruvate (PEP) and forms a high energy C-P bond in phosphonopyruvate (PnPy). Mechanistic scrutiny of this unusual intramolecular O-to-C phosphoryl transfer began with the discovery of Ppm in 1988 and concluded in 2008 with computational evidence supporting a concerted phosphoryl transfer via a dissociative metaphosphatelike transition state. This mechanism deviates from the standard 'in-line attack' paradigm for enzymatic phosphoryl transfer that typically involves a phosphoryl-enzyme intermediate, but definitive evidence is sparse. Here we review the experimental evidence leading to our current mechanistic understanding and highlight the roles of previously underappreciated conserved active site residues. We then identify remaining opportunities to evaluate overlooked residues and unexamined substrates/inhibitors.
Collapse
Affiliation(s)
| | | | - Geoff P Horsman
- Wilfrid Laurier University, Chemistry & Biochemistry, 75 University Ave W, N2L 3C5, Waterloo, CANADA
| |
Collapse
|
3
|
Abstract
Microbial phosphonate biosynthetic machinery has been identified in ~5 % of bacterial genomes and encodes natural products like fosfomycin as well as cell surface decorations. Almost all biological phosphonates originate from the rearrangement of phosphoenolpyruvate (PEP) to phosphonopyruvate (PnPy) catalysed by PEP mutase (Ppm), and PnPy is often converted to phosphonoacetaldehyde (PnAA) by PnPy decarboxylase (Ppd). Seven enzymes are known or likely to act on either PnPy or PnAA as early branch points en route to diverse biosynthetic outcomes, and these enzymes may be broadly classified into three reaction types: hydride transfer, aminotransfer, and carbon-carbon bond formation. However, the relative abundance of these branch points in microbial phosphonate biosynthesis is unknown. Also unknown is the proportion of ppm-containing gene neighbourhoods encoding new branch point enzymes and potentially novel phosphonates. In this study we computationally sorted 434 ppm-containing gene neighbourhoods based on these seven branch point enzymes. Unsurprisingly, the majority (56 %) of these pathways encode for production of the common naturally occurring compound 2-aminoethylphosphonate (AEP) or a hydroxylated derivative. The next most abundant genetically encoded intermediates were phosphonoalanine (PnAla, 9.2 %), 2-hydroxyethylphosphonate (HEP, 8.5 %), and phosphonoacetate (PnAc, 6 %). Significantly, about 13 % of the gene neighbourhoods could not be assigned to any of the seven branch points and may encode novel phosphonates. Sequence similarity network analysis revealed families of unusual gene neighbourhoods including possible production of phosphonoacrylate and phosphonofructose, the apparent biosynthetic use of the C-P lyase operon, and a virus-encoded phosphonate. Overall, these results highlight the utility of branch point inventories to identify novel gene neighbourhoods and guide future phosphonate discovery efforts.
Collapse
Affiliation(s)
- Siwei Li
- Department of Chemistry & Biochemistry, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| | - Geoff P. Horsman
- Department of Chemistry & Biochemistry, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| |
Collapse
|
4
|
Rapp M, Margas-Musielak K, Kaczmarek P, Witkowska A, Cytlak T, Siodła T, Koroniak H. Highly Diastereoselective Construction of Carbon- Heteroatom Quaternary Stereogenic Centers in the Synthesis of Analogs of Bioactive Compounds: From Monofluorinated Epoxyalkylphosphonates to α-Fluoro-, β-, or γ-Amino Alcohol Derivatives of Alkylphosphonates. Front Chem 2021; 9:613633. [PMID: 34150715 PMCID: PMC8208234 DOI: 10.3389/fchem.2021.613633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/26/2021] [Indexed: 11/25/2022] Open
Abstract
The synthesis of the stable surrogates of an important amino acid (R)-4-amino-3-hydroxybutyric acid (GABOB) such as substituted hydroxy aminophosphonic acids bearing a quaternary stereogenic center is presented. Highly diastereoselective formations of fluorinated spiroepoxy alkylphosphonate or related tertiary carbon-containing oxiranes from β-keto phosphonates possessing methyl, phenyl, or cyclohexenyl substituents, are reported. Stereoselective acid-promoted epoxide opening by bromide or azide followed by reduction/protection afforded tertiary bromides or N-Boc derivatives of β-amino-γ-hydroxy alkylphosphonates in most cases, while the reactions of oxiranes with different amines yielded their β-hydroxy-γ-amino regioisomers. Surprisingly, during the synthesis of amino phosphonic acids, we observe that the acid-induced rearrangement proceeded in a high diastereospecific manner, leading finally to substituted β-hydroxy-γ-aminoalkylphosphonic acids.
Collapse
Affiliation(s)
- Magdalena Rapp
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Poznań, Poland
| | | | - Patrycja Kaczmarek
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Poznań, Poland
| | | | - Tomasz Cytlak
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Poznań, Poland
- Centre for Advanced Technologies Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Tomasz Siodła
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Henryk Koroniak
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Poznań, Poland
| |
Collapse
|
5
|
Zangelmi E, Stanković T, Malatesta M, Acquotti D, Pallitsch K, Peracchi A. Discovery of a New, Recurrent Enzyme in Bacterial Phosphonate Degradation: ( R)-1-Hydroxy-2-aminoethylphosphonate Ammonia-lyase. Biochemistry 2021; 60:1214-1225. [PMID: 33830741 PMCID: PMC8154272 DOI: 10.1021/acs.biochem.1c00092] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/26/2021] [Indexed: 01/09/2023]
Abstract
Phosphonates represent an important source of bioavailable phosphorus in certain environments. Accordingly, many microorganisms (particularly marine bacteria) possess catabolic pathways to degrade these molecules. One example is the widespread hydrolytic route for the breakdown of 2-aminoethylphosphonate (AEP, the most common biogenic phosphonate). In this pathway, the aminotransferase PhnW initially converts AEP into phosphonoacetaldehyde (PAA), which is then cleaved by the hydrolase PhnX to yield acetaldehyde and phosphate. This work focuses on a pyridoxal 5'-phosphate-dependent enzyme that is encoded in >13% of the bacterial gene clusters containing the phnW-phnX combination. This enzyme (which we termed PbfA) is annotated as a transaminase, but there is no obvious need for an additional transamination reaction in the established AEP degradation pathway. We report here that PbfA from the marine bacterium Vibrio splendidus catalyzes an elimination reaction on the naturally occurring compound (R)-1-hydroxy-2-aminoethylphosphonate (R-HAEP). The reaction releases ammonia and generates PAA, which can be then hydrolyzed by PhnX. In contrast, PbfA is not active toward the S enantiomer of HAEP or other HAEP-related compounds such as ethanolamine and d,l-isoserine, indicating a very high substrate specificity. We also show that R-HAEP (despite being structurally similar to AEP) is not processed efficiently by the PhnW-PhnX couple in the absence of PbfA. In summary, the reaction catalyzed by PbfA serves to funnel R-HAEP into the hydrolytic pathway for AEP degradation, expanding the scope and the usefulness of the pathway itself.
Collapse
Affiliation(s)
- Erika Zangelmi
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, I-43124 Parma, Italy
| | - Toda Stanković
- Institute
of Organic Chemistry, University of Vienna, Währingerstrasse 38, A-1090 Vienna, Austria
| | - Marco Malatesta
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, I-43124 Parma, Italy
| | - Domenico Acquotti
- Centro
di Servizi e Misure “Giuseppe Casnati”, University of Parma, I-43124 Parma, Italy
| | - Katharina Pallitsch
- Institute
of Organic Chemistry, University of Vienna, Währingerstrasse 38, A-1090 Vienna, Austria
| | - Alessio Peracchi
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, I-43124 Parma, Italy
| |
Collapse
|
6
|
Gama SR, Vogt M, Kalina T, Hupp K, Hammerschmidt F, Pallitsch K, Zechel DL. An Oxidative Pathway for Microbial Utilization of Methylphosphonic Acid as a Phosphate Source. ACS Chem Biol 2019; 14:735-741. [PMID: 30810303 DOI: 10.1021/acschembio.9b00024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Methylphosphonic acid is synthesized by marine bacteria and is a prominent component of dissolved organic phosphorus. Consequently, methylphosphonic acid also serves as a source of inorganic phosphate (Pi) for marine bacteria that are starved of this nutrient. Conversion of methylphosphonic acid into Pi is currently only known to occur through the carbon-phosphorus lyase pathway, yielding methane as a byproduct. In this work, we describe an oxidative pathway for the catabolism of methylphosphonic acid in Gimesia maris DSM8797. G. maris can use methylphosphonic acid as Pi sources despite lacking a phn operon encoding a carbon-phosphorus lyase pathway. Instead, the genome contains a locus encoding homologues of the non-heme Fe(II) dependent oxygenases HF130PhnY* and HF130PhnZ, which were previously shown to convert 2-aminoethylphosphonic acid into glycine and Pi. GmPhnY* and GmPhnZ1 were produced in E. coli and purified for characterization in vitro. The substrate specificities of the enzymes were evaluated with a panel of synthetic phosphonates. Via 31P NMR spectroscopy, it is demonstrated that the GmPhnY* converts methylphosphonic acid to hydroxymethylphosphonic acid, which in turn is oxidized by GmPhnZ1 to produce formic acid and Pi. In contrast, 2-aminoethylphosphonic acid is not a substrate for GmPhnY* and is therefore not a substrate for this pathway. These results thus reveal a new metabolic fate for methylphosphonic acid.
Collapse
Affiliation(s)
- Simanga R. Gama
- Department of Chemistry, Queen’s University, Kingston, Ontario, Canada
| | - Margret Vogt
- Institute of Organic Chemistry, University of Vienna, Vienna, Austria
| | - Thomas Kalina
- Institute of Organic Chemistry, University of Vienna, Vienna, Austria
| | - Kendall Hupp
- Department of Chemistry, Queen’s University, Kingston, Ontario, Canada
| | | | | | - David L. Zechel
- Department of Chemistry, Queen’s University, Kingston, Ontario, Canada
| |
Collapse
|
7
|
Harrison PJ, Dunn T, Campopiano DJ. Sphingolipid biosynthesis in man and microbes. Nat Prod Rep 2018; 35:921-954. [PMID: 29863195 PMCID: PMC6148460 DOI: 10.1039/c8np00019k] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Indexed: 12/20/2022]
Abstract
A new review covering up to 2018 Sphingolipids are essential molecules that, despite their long history, are still stimulating interest today. The reasons for this are that, as well as playing structural roles within cell membranes, they have also been shown to perform a myriad of cell signalling functions vital to the correct function of eukaryotic and prokaryotic organisms. Indeed, sphingolipid disregulation that alters the tightly-controlled balance of these key lipids has been closely linked to a number of diseases such as diabetes, asthma and various neuropathologies. Sphingolipid biogenesis, metabolism and regulation is mediated by a large number of enzymes, proteins and second messengers. There appears to be a core pathway common to all sphingolipid-producing organisms but recent studies have begun to dissect out important, species-specific differences. Many of these have only recently been discovered and in most cases the molecular and biochemical details are only beginning to emerge. Where there is a direct link from classic biochemistry to clinical symptoms, a number a drug companies have undertaken a medicinal chemistry campaign to try to deliver a therapeutic intervention to alleviate a number of diseases. Where appropriate, we highlight targets where natural products have been exploited as useful tools. Taking all these aspects into account this review covers the structural, mechanistic and regulatory features of sphingolipid biosynthetic and metabolic enzymes.
Collapse
Affiliation(s)
- Peter J. Harrison
- School of Chemistry
, University of Edinburgh
,
David Brewster Road
, Edinburgh
, EH9 3FJ
, UK
.
| | - Teresa M. Dunn
- Department of Biochemistry and Molecular Biology
, Uniformed Services University
,
Bethesda
, Maryland
20814
, USA
| | - Dominic J. Campopiano
- School of Chemistry
, University of Edinburgh
,
David Brewster Road
, Edinburgh
, EH9 3FJ
, UK
.
| |
Collapse
|
8
|
Ulrich EC, Kamat SS, Hove-Jensen B, Zechel DL. Methylphosphonic Acid Biosynthesis and Catabolism in Pelagic Archaea and Bacteria. Methods Enzymol 2018; 605:351-426. [DOI: 10.1016/bs.mie.2018.01.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
9
|
Abstract
Organophosphonic acids are unique as natural products in terms of stability and mimicry. The C-P bond that defines these compounds resists hydrolytic cleavage, while the phosphonyl group is a versatile mimic of transition-states, intermediates, and primary metabolites. This versatility may explain why a variety of organisms have extensively explored the use organophosphonic acids as bioactive secondary metabolites. Several of these compounds, such as fosfomycin and bialaphos, figure prominently in human health and agriculture. The enzyme reactions that create these molecules are an interesting mix of chemistry that has been adopted from primary metabolism as well as those with no chemical precedent. Additionally, the phosphonate moiety represents a source of inorganic phosphate to microorganisms that live in environments that lack this nutrient; thus, unusual enzyme reactions have also evolved to cleave the C-P bond. This review is a comprehensive summary of the occurrence and function of organophosphonic acids natural products along with the mechanisms of the enzymes that synthesize and catabolize these molecules.
Collapse
Affiliation(s)
- Geoff P Horsman
- Department of Chemistry and Biochemistry, Wilfrid Laurier University , Waterloo, Ontario N2L 3C5, Canada
| | - David L Zechel
- Department of Chemistry, Queen's University , Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
10
|
Poehlein A, Freese H, Daniel R, Simeonova DD. Genome sequence of Shinella sp. strain DD12, isolated from homogenized guts of starved Daphnia magna. Stand Genomic Sci 2016; 11:14. [PMID: 26865909 PMCID: PMC4748535 DOI: 10.1186/s40793-015-0129-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 12/30/2015] [Indexed: 11/10/2022] Open
Abstract
Shinella sp. strain DD12, a novel phosphite assimilating bacterium, has been isolated from homogenized guts of 4 days starved zooplankton Daphnia magna. Here we report the draft genome of this bacterium, which comprises 7,677,812 bp and 7505 predicted protein-coding genes.
Collapse
Affiliation(s)
- Anja Poehlein
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Georg-August University Göttingen, D-37077 Göttingen, Germany
| | - Heike Freese
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, 38124 Braunschweig, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Georg-August University Göttingen, D-37077 Göttingen, Germany
| | - Diliana D Simeonova
- Laboratory of Microbial Ecology, University of Konstanz, D-78457 Constance, Germany ; Current Address: Laboratory of Microbial Biochemistry, Department of General Microbiology, Institute of Microbiology, Bulgarian Academy of Sciences, 26 Georgi Bonchev str., 1113 Sofia, Bulgaria
| |
Collapse
|
11
|
Poehlein A, Daniel R, Simeonova DD. Genome sequence of Pedobacter glucosidilyticus DD6b, isolated from zooplankton Daphnia magna. Stand Genomic Sci 2015; 10:100. [PMID: 26566425 PMCID: PMC4642753 DOI: 10.1186/s40793-015-0086-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 10/19/2015] [Indexed: 11/10/2022] Open
Abstract
The phosphite assimilating bacterium, P. glucosidilyticus DD6b, was isolated from the gut of the zooplankton Daphnia magna. Its 3,872,381 bp high-quality draft genome is arranged into 93 contigs containing 3311 predicted protein-coding and 41 RNA-encoding genes. This genome report presents the specific properties and common features of P. glucosidilyticus DD6b genome in comparison with the genomes of P. glucosidilyticus type strain DSM 23,534, and another five Pedobacter type strains with publicly available completely sequenced genomes. Here, we present the first journal report on P. glucosidilyticus genome sequence and provide information on a new specific physiological determinant of P. glucosidilyticus species.
Collapse
Affiliation(s)
- Anja Poehlein
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Georg-August University Göttingen, D-37077 Göttingen, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Georg-August University Göttingen, D-37077 Göttingen, Germany
| | - Diliana D Simeonova
- Laboratory of Microbial Ecology, Department of Biology, University of Konstanz, Universitaetsstr. 10, D-78457 Konstanz, Germany ; Current address: Laboratory of Microbial Biochemistry, Department of General Microbiology, Institute of Microbiology, Bulgarian Academy of Sciences, 26 Georgi Bonchev str., 1113 Sofia, Bulgaria
| |
Collapse
|
12
|
Hu K, Werner WJ, Allen KD, Wang SC. Investigation of enzymatic C-P bond formation using multiple quantum HCP nuclear magnetic resonance spectroscopy. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2015; 53:267-272. [PMID: 25594737 PMCID: PMC4656027 DOI: 10.1002/mrc.4190] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/08/2014] [Accepted: 10/22/2014] [Indexed: 06/04/2023]
Abstract
The biochemical mechanism for the formation of the C-P-C bond sequence found in l-phosphinothricin, a natural product with antibiotic and herbicidal activity, remains unclear. To obtain further insight into the catalytic mechanism of PhpK, the P-methyltransferase responsible for the formation of the second C-P bond in l-phosphinothricin, we utilized a combination of stable isotopes and two-dimensional nuclear magnetic resonance spectroscopy. Exploiting the newly emerged Bruker QCI probe (Bruker Corp.), we specifically designed and ran a (13) C-(31) P multiple quantum (1) H-(13) C-(31) P (HCP) experiment in (1) H-(31) P two-dimensional mode directly on a PhpK-catalyzed reaction mixture using (13) CH3 -labeled methylcobalamin as the methyl group donor. This method is particularly advantageous because minimal sample purification is needed to maximize product visualization. The observed 3:1:1:3 multiplet specifically and unequivocally illustrates direct bond formation between (13) CH3 and (31) P. Related nuclear magnetic resonance experiments based upon these principles may be designed for the study of enzymatic and/or synthetic chemical reaction mechanisms.
Collapse
Affiliation(s)
- Kaifeng Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- National Magnetic Resonance Facility at Madison, Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Williard J. Werner
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA
| | - Kylie D. Allen
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Susan C. Wang
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
13
|
Maji B, Yamamoto H. Copper-Catalyzed Asymmetric Synthesis of Tertiary α-Hydroxy Phosphonic Acid Derivatives with In Situ Generated Nitrosocarbonyl Compounds as the Oxygen Source. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201408893] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Copper-Catalyzed Asymmetric Synthesis of Tertiary α-Hydroxy Phosphonic Acid Derivatives with In Situ Generated Nitrosocarbonyl Compounds as the Oxygen Source. Angew Chem Int Ed Engl 2014; 53:14472-5. [DOI: 10.1002/anie.201408893] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Indexed: 11/07/2022]
|
15
|
Allen KD, Wang SC. Spectroscopic characterization and mechanistic investigation of P-methyl transfer by a radical SAM enzyme from the marine bacterium Shewanella denitrificans OS217. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:2135-44. [PMID: 25224746 DOI: 10.1016/j.bbapap.2014.09.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 09/05/2014] [Accepted: 09/07/2014] [Indexed: 10/24/2022]
Abstract
Natural products containing carbon-phosphorus bonds elicit important bioactivity in many organisms. l-Phosphinothricin contains the only known naturally-occurring carbon-phosphorus-carbon bond linkage. In actinomycetes, the cobalamin-dependent radical S-adenosyl-l-methionine (SAM) methyltransferase PhpK catalyzes the formation of the second C-P bond to generate the complete C-P-C linkage in phosphinothricin. Here we use electron paramagnetic resonance and nuclear magnetic resonance spectroscopies to characterize and demonstrate the activity of a cobalamin-dependent radical SAM methyltransferase denoted SD_1168 from Shewanella denitrificans OS217, a marine bacterium that has not been reported to synthesize phosphinothricin. Recombinant, refolded, and reconstituted SD_1168 binds a four-iron, four-sulfur cluster that interacts with SAM and cobalamin. In the presence of SAM, a reductant, and methylcobalamin, SD_1168 surprisingly catalyzes the P-methylation of N-acetyl-demethylphosphinothricin and demethylphosphinothricin to produce N-acetyl-phosphinothricin and phosphinothricin, respectively. In addition, this enzyme is active in the absence of methylcobalamin if the strong reductant titanium (III) citrate and hydroxocobalamin are provided. When incubated with [methyl-(13)C] cobalamin and titanium citrate, both [methyl-(13)C] and unlabeled N-acetylphosphinothricin are produced. Our results suggest that SD_1168 catalyzes P-methylation using radical SAM-dependent chemistry with cobalamin as a coenzyme. In light of recent genomic information, the discovery of this P-methyltransferase suggests that S. denitrificans produces a phosphinate natural product.
Collapse
Affiliation(s)
- Kylie D Allen
- School of Molecular Biosciences, College of Veterinary Medicine, PO Box 647520, Washington State University, Pullman, WA 99164-7520, USA.
| | - Susan C Wang
- School of Molecular Biosciences, College of Veterinary Medicine, PO Box 647520, Washington State University, Pullman, WA 99164-7520, USA.
| |
Collapse
|
16
|
Karaś MA, Russa R. Ether-type moieties in the lipid part of glycoinositolphospholipids of Acanthamoeba rhysodes. Lipids 2014; 49:369-83. [PMID: 24535098 PMCID: PMC3964302 DOI: 10.1007/s11745-014-3884-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 01/28/2014] [Indexed: 11/01/2022]
Abstract
Ether lipids were identified among components liberated with HF and nitrous acid deamination from Acanthamoeba rhysodes whole cells and its membrane glycoinositolphospholipids (GIPL). Liberated ether glycerols were converted to various derivatives that served characterization thereof. These included TMS and isopropylidene derivatives, oxidation with sodium periodate to aldehyde followed by reduction with NaBH4 to alcohol, and reaction of the alcohol with acetic anhydrite to form acetate derivatives. Periodate sensitivity demonstrated that the alkyl side chains were linked to the sn-1 position of glycerol. Combined information from TLC, GC-MS analysis, MALDI-TOF spectrometry, and chemical degradation experiments indicated the presence of ether-linked saturated normal and branched hydrocarbons with a length of C20-23 in the phospholipid fraction, C20-24 in free GPI, and C21-23 in the LPG polymer. The distribution of particular classes of alkylglycerols was similar for phospholipid and GPI fractions, and amounted to 2.62% (±0.04-0.28) 1-O-eicosanyl-sn-glycerol, 16.66% (±0.32-1.1) 1-O-uncosanyl-sn-glycerol, 9.18% (±0.33-1.37) anteiso-1-O-docosanyl-sn-glycerol, 47.56% (±0.32-2.14) 1-O-docosanyl-sn-glycerol, 20.56% (±0.58-1.67) anteiso-1-O-tricosanyl-sn-glycerol, and 2.34% (±0.12-0.63) 1-O-tricosanyl-sn-glycerol. For LPG preparation, the most abundant were anteiso-1-O-tricosanyl-sn-glycerol (57.26%) and 1-O-docosanyl-sn-glycerol (30.12%). The data from TLC and GC-MS analysis showed that ether lipids from phospholipids probably represent the lyso-alkylglycerol type, while those derived from GIPL are alkylacylglycerol moieties.
Collapse
Affiliation(s)
- Magdalena A Karaś
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland,
| | | |
Collapse
|
17
|
Frings M, Thomé I, Schiffers I, Pan F, Bolm C. Catalytic, Asymmetric Synthesis of Phosphonic γ-(Hydroxyalkyl)butenolides with Contiguous Quaternary and Tertiary Stereogenic Centers. Chemistry 2014; 20:1691-700. [DOI: 10.1002/chem.201304331] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Indexed: 11/10/2022]
|
18
|
Diversity and abundance of phosphonate biosynthetic genes in nature. Proc Natl Acad Sci U S A 2013; 110:20759-64. [PMID: 24297932 DOI: 10.1073/pnas.1315107110] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phosphonates, molecules containing direct carbon-phosphorus bonds, compose a structurally diverse class of natural products with interesting and useful biological properties. Although their synthesis in protozoa was discovered more than 50 y ago, the extent and diversity of phosphonate production in nature remains poorly characterized. The rearrangement of phosphoenolpyruvate (PEP) to phosphonopyruvate, catalyzed by the enzyme PEP mutase (PepM), is shared by the vast majority of known phosphonate biosynthetic pathways. Thus, the pepM gene can be used as a molecular marker to examine the occurrence and abundance of phosphonate-producing organisms. Based on the presence of this gene, phosphonate biosynthesis is common in microbes, with ~5% of sequenced bacterial genomes and 7% of genome equivalents in metagenomic datasets carrying pepM homologs. Similarly, we detected the pepM gene in ~5% of random actinomycete isolates. The pepM-containing gene neighborhoods from 25 of these isolates were cloned, sequenced, and compared with those found in sequenced genomes. PEP mutase sequence conservation is strongly correlated with conservation of other nearby genes, suggesting that the diversity of phosphonate biosynthetic pathways can be predicted by examining PEP mutase diversity. We used this approach to estimate the range of phosphonate biosynthetic pathways in nature, revealing dozens of discrete groups in pepM amplicons from local soils, whereas hundreds were observed in metagenomic datasets. Collectively, our analyses show that phosphonate biosynthesis is both diverse and relatively common in nature, suggesting that the role of phosphonate molecules in the biosphere may be more important than is often recognized.
Collapse
|
19
|
Karaś MA, Russa R. New long chain bases in lipophosphonoglycan of Acanthamoeba castellanii. Lipids 2013; 48:639-50. [PMID: 23636605 DOI: 10.1007/s11745-013-3794-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 04/16/2013] [Indexed: 10/26/2022]
Abstract
The polymer called lipophosphonoglycan (LPG) was isolated from Acanthamoeba castellanii membranes after exhaustive delipidation and butanol extraction. A novel extremely long phytosphingosine was revealed in glycoinositolphosphosphingolipid (GIPSL). All data obtained by gas-liquid chromatography coupled with MS analyses of products liberated during acid methanolysis and products of sodium metaperiodate and permanganate-periodate oxidations showed an unusual pattern of long chain bases (LCB) with branched bases (anteiso-C₂₄, anteiso-C₂₅, anteiso-C₂₆, iso-C₂₆, anteiso-C₂₇, and anteiso-C28) and normal ones (C₂₄, C₂₅, C₂₆, C₂₇). The phytosphingosines with hexa-, hepta-, and octacosanoic chains have not been detected in Acanthamoeba cells up to now. Also, the isomer configuration of long chain bases in LPG of A. castellanii was not defined in earlier reports. In the GC-MS chromatograms, the component forming a peak corresponding to anteiso-C₂₅ phytosphingosine was the most abundant and constituted more than 50 % of all LCB.
Collapse
Affiliation(s)
- Magdalena A Karaś
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | | |
Collapse
|
20
|
Müller FD, Beck S, Strauch E, Linscheid MW. Bacterial Predators Possess Unique Membrane Lipid Structures. Lipids 2011; 46:1129-40. [DOI: 10.1007/s11745-011-3614-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 09/09/2011] [Indexed: 11/29/2022]
|
21
|
Membrane sphingolipids as essential molecular signals for Bacteroides survival in the intestine. Proc Natl Acad Sci U S A 2010; 108 Suppl 1:4666-71. [PMID: 20855611 DOI: 10.1073/pnas.1001501107] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
As predominant intestinal symbiotic bacteria, Bacteroides are essential in maintaining the health of the normal mammalian host; in return, the host provides a niche with plentiful nutrients for the symbionts. However, the intestinal environment is replete with chemical, physical, and biological challenges that require mechanisms for prompt and adept sensing of and responses to stress if the bacteria are to survive. Herein we propose that to persist in the intestine Bacteroides take advantage of their unusual bacterial sphingolipids to mediate signaling pathways previously known to be available only to higher organisms. Sphingolipids convey diverse signal transduction and stress response pathways and have profound physiological impacts demonstrated in a variety of eukaryotic cell types. We propose a mechanism by which the formation of specific sphingolipid membrane microdomains initiates signaling cascades that facilitate survival strategies within the bacteria. Our preliminary data suggest that sphingolipid signaling plays an important role in Bacteroides physiology, enabling these bacteria to persist in the intestine and to perform other functions related to symbiosis.
Collapse
|
22
|
Chemical Structure of Bacteriovorax stolpii Lipid A. Lipids 2010; 45:189-98. [DOI: 10.1007/s11745-010-3383-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 01/04/2010] [Indexed: 10/19/2022]
|
23
|
Nguyen NAT, Sallans L, Kaneshiro ES. The Major Glycerophospholipids of the Predatory and Parasitic Bacterium Bdellovibrio bacteriovorus HID5. Lipids 2008; 43:1053-63. [DOI: 10.1007/s11745-008-3235-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 08/20/2008] [Indexed: 11/29/2022]
|
24
|
A Predatory Patchwork: Membrane and Surface Structures of Bdellovibrio bacteriovorus. Adv Microb Physiol 2008; 54:313-61. [DOI: 10.1016/s0065-2911(08)00005-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Kaneshiro ES, Hunt SM, Watanabe Y. Bacteriovorax stolpii proliferation and predation without sphingophosphonolipids. Biochem Biophys Res Commun 2007; 367:21-5. [PMID: 18086555 DOI: 10.1016/j.bbrc.2007.12.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Accepted: 12/10/2007] [Indexed: 10/22/2022]
Abstract
Bacteriovorax stolpii strain UKi2, a facultative predator-parasite of larger Gram-negative bacteria, synthesizes distinct sphingophosphonolipids. These lipids are characterized by a direct P-C bond, the novel head group 1-hydroxy-2-aminoethylphosphonate, iso-branched long chain bases and fatty acids, and fatty acids dominated by those with alpha-hydroxy groups. Myriocin, an inhibitor of serine:fatty acyl CoA transferase, reversibly blocked sphingophosphonolipid synthesis in B. stolpii UKi2. However, the inhibitor did not block cell proliferation indicating that these lipids are not vital for B. stolpii UKi2 viability and growth. When mixed with Escherichia coli prey cells, control predator-parasite bacteria were effective in forming large E. coli bdelloplasts and cleared the suspension of the prey cells. Although myriocin-treated cells could attack prey cells and form bdelloplasts, their locomotory behavior was altered and fewer and smaller bdelloplasts were produced. These observations open up the possibility for a role of sphingophosphonolipids in B. stolpii UKi2 complex behavior.
Collapse
Affiliation(s)
- Edna S Kaneshiro
- Department of Biological Sciences, University of Cincinnati, 720 Rieveschl Hall, ML 0006, Cincinnati, OH 45221-0006, USA
| | | | | |
Collapse
|
26
|
Strauch E, Schwudke D, Linscheid M. Predatory mechanisms of Bdellovibrio and like organisms. Future Microbiol 2007; 2:63-73. [PMID: 17661676 DOI: 10.2217/17460913.2.1.63] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bdellovibrio and like organisms (BALOs) are predatory, Gram-negative delta-proteobacteria with a complex developmental lifecycle. In the free-living attack phase they are highly motile and seek out prey bacteria that they invade. The ensuing intracellular growth and replication is characterized by the development of a long filament that septates into individual cells that differentiate further into the flagellated attack-phase bacterium. The prey bacterium is lysed and motile predators are released. BALOs have recently been considered to have potential as living antibiotics. The idea of using predatory bacteria as therapeutic agents to combat pathogenic Gram-negative bacteria is intriguing, as they can prey upon human pathogenic bacteria including Salmonella, Pseudomonas and Escherichia coli. However, our current knowledge of the amazing biology of these prokaryotes that cause the systematic destruction of Gram-negative bacteria is still rather limited. More has to be learned about their predatory lifestyle before their application as therapeutic agents will become feasible.
Collapse
Affiliation(s)
- Eckhard Strauch
- Bundesinstitut für Risikobewertung, Federal Institute for Risk Assessment, Berlin, Germany.
| | | | | |
Collapse
|
27
|
Ikushiro H, Islam MM, Tojo H, Hayashi H. Molecular characterization of membrane-associated soluble serine palmitoyltransferases from Sphingobacterium multivorum and Bdellovibrio stolpii. J Bacteriol 2007; 189:5749-61. [PMID: 17557831 PMCID: PMC1951810 DOI: 10.1128/jb.00194-07] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Accepted: 05/10/2007] [Indexed: 11/20/2022] Open
Abstract
Serine palmitoyltransferase (SPT) is a key enzyme in sphingolipid biosynthesis and catalyzes the decarboxylative condensation of l-serine and palmitoyl coenzyme A (CoA) to form 3-ketodihydrosphingosine (KDS). Eukaryotic SPTs comprise tightly membrane-associated heterodimers belonging to the pyridoxal 5'-phosphate (PLP)-dependent alpha-oxamine synthase family. Sphingomonas paucimobilis, a sphingolipid-containing bacterium, contains an abundant water-soluble homodimeric SPT of the same family (H. Ikushiro et al., J. Biol. Chem. 276:18249-18256, 2001). This enzyme is suitable for the detailed mechanistic studies of SPT, although single crystals appropriate for high-resolution crystallography have not yet been obtained. We have now isolated three novel SPT genes from Sphingobacterium multivorum, Sphingobacterium spiritivorum, and Bdellovibrio stolpii, respectively. Each gene product exhibits an approximately 30% sequence identity to both eukaryotic subunits, and the putative catalytic amino acid residues are conserved. All bacterial SPTs were successfully overproduced in Escherichia coli and purified as water-soluble active homodimers. The spectroscopic properties of the purified SPTs are characteristic of PLP-dependent enzymes. The KDS formation by the bacterial SPTs was confirmed by high-performance liquid chromatography/mass spectrometry. The Sphingobacterium SPTs obeyed normal steady-state ordered Bi-Bi kinetics, while the Bdellovibrio SPT underwent a remarkable substrate inhibition at palmitoyl CoA concentrations higher than 100 microM, as does the eukaryotic enzyme. Immunoelectron microscopy showed that unlike the cytosolic Sphingomonas SPT, S. multivorum and Bdellovibrio SPTs were bound to the inner membrane of cells as peripheral membrane proteins, indicating that these enzymes can be a prokaryotic model mimicking the membrane-associated eukaryotic SPT.
Collapse
Affiliation(s)
- Hiroko Ikushiro
- Department of Biochemistry, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan.
| | | | | | | |
Collapse
|
28
|
Jayasimhulu K, Hunt SM, Kaneshiro ES, Watanabe Y, Giner JL. Detection and identification of Bacteriovorax stolpii UKi2 Sphingophosphonolipid molecular species. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2007; 18:394-403. [PMID: 17123828 DOI: 10.1016/j.jasms.2006.10.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 10/03/2006] [Accepted: 10/05/2006] [Indexed: 05/12/2023]
Abstract
Bacteriovorax stolpii is a predator of larger gram-negative bacteria and lives as a parasite in the intraperiplasmic space of the host cell. This bacterium is unusual among prokaryotes in that sphingolipids comprise a large proportion of its lipids. We here report the presence of 18 molecular species of B. stolpii UKi2 sphingophosphonolipids (SPNLs). (31)P NMR spectroscopy and analysis of P(i) released by a differential hydrolysis protocol confirmed the phosphonyl nature of these lipids. The SPNLs were dominated by those with 1-hydroxy-2-aminoethane phosphonate (hydroxy-aminoethylphosphonate) polar head groups; aminoethylphosphonate was also detected in minor SPNL components. The long-chain bases (LCBs) were dominated by C(17) iso-branched phytosphingosine; C(17) iso-branched dihydrosphingosine was also present in some SPNLs. The N-linked fatty acids were predominantly iso-branched and most contained an alpha-hydroxy group (C(15) alpha-hydroxy fatty acid was the major fatty acid). Minor molecular species containing nonhydroxy fatty acids were also detected. The definitive iso-structures of the predominant fatty acids and LCBs present in the B. stolpii SPNLs were established using (13)C and (3)H nuclear magnetic resonance spectroscopy; less than 20% were unbranched. Detection and analyses of intact compounds by MS-MS were performed by a hybrid quadrupole time-of-flight (Q-TOF-II) MS equipped with an electrospray ionization source. Analyses of peracetylated derivatives verified the structural assignments of these lipids.
Collapse
Affiliation(s)
- Koka Jayasimhulu
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio 45221-0006, USA
| | | | | | | | | |
Collapse
|
29
|
de Souza LM, Iacomini M, Gorin PAJ, Sari RS, Haddad MA, Sassaki GL. Glyco- and sphingophosphonolipids from the medusa Phyllorhiza punctata: NMR and ESI-MS/MS fingerprints. Chem Phys Lipids 2007; 145:85-96. [PMID: 17174289 DOI: 10.1016/j.chemphyslip.2006.11.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Revised: 10/31/2006] [Accepted: 11/07/2006] [Indexed: 11/17/2022]
Abstract
The medusa Phyllorhiza punctata has been found in Brazilian waters where it is an exotic species, having arrived in ballasts from the Indo-Pacific Ocean in the general region of North Australia and Indonesia. Fatty acids of the intact animal and its component umbrella, oral arms, and mucus were identified. Two different groups of glycolipids and a sphingolipid were isolated by silica-gel column chromatography and characterized using GC-MS, ESI-MS, 1D, 2D (13)C, (1)H and (31)P NMR spectroscopy. They were sulfoquinovosyldiacylglycerol (SQDG), monogalactosyldiacylglycerol (MGDG), and ceramide aminoethylphosphonate (CAEP). The CAEP long chain base (LCB) and its polar head group (PHG) formed by partial hydrolysis, were analyzed by ESI-MS/MS. The probable origin of MGDG and SQDG in the jellyfish is the result of an endosymbiotic association with a microalga of the Dinoflagellate group, since these lipids are commonly found in photosynthetic membranes.
Collapse
Affiliation(s)
- Lauro M de Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, CP 19046, CEP 81531-990, Curitiba, PR, Brazil
| | | | | | | | | | | |
Collapse
|
30
|
Affiliation(s)
- Lena J Heung
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Ave., BSB 503, Charleston, SC 29425, USA
| | | | | |
Collapse
|
31
|
Lu X, Byun HS, Bittman R. Synthesis of l-lyxo-Phytosphingosine and Its 1-Phosphonate Analogue Using a Threitol Acetal Synthon. J Org Chem 2004; 69:5433-8. [PMID: 15287793 DOI: 10.1021/jo0493065] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The first synthesis of an isosteric phosphonate analogue of the aminotriol lipid phytosphingosine (3), together with an improved synthesis of (2S,3S,4S)-phytosphingosine (2), are described. A key intermediate is 3-pentylidene acetal 9, which was prepared in two steps from dimethyl 2,3-O-benzylidene-d-tartrate (7).
Collapse
Affiliation(s)
- Xuequan Lu
- Department of Chemistry and Biochemistry, Queens College of The City University of New York, Flushing, New York 11367-1597, USA
| | | | | |
Collapse
|