1
|
Ogawa N, Sugiyama T, Morita M, Suganuma Y, Kobayashi Y. Total Synthesis of Resolvin D5. J Org Chem 2017; 82:2032-2039. [DOI: 10.1021/acs.joc.6b02870] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Narihito Ogawa
- Department of Biotechnology, Tokyo Institute of Technology, B-52, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan
| | - Takuo Sugiyama
- Department of Biotechnology, Tokyo Institute of Technology, B-52, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan
| | - Masao Morita
- Department of Biotechnology, Tokyo Institute of Technology, B-52, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan
| | - Yuta Suganuma
- Department of Biotechnology, Tokyo Institute of Technology, B-52, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan
| | - Yuichi Kobayashi
- Department of Biotechnology, Tokyo Institute of Technology, B-52, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
2
|
Itoh T, Saito T, Yamamoto Y, Ishida H, Yamamoto K. Gram scale synthesis of specialized pro-resolving mediator 17(S)-HDHA using lipoxygenase enhanced by water-soluble reducing agent TCEP. Bioorg Med Chem Lett 2016; 26:343-345. [PMID: 26707393 DOI: 10.1016/j.bmcl.2015.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 11/22/2015] [Accepted: 12/04/2015] [Indexed: 12/31/2022]
Abstract
17(S)-Hydroxy docosahexaenoic acid (17(S)-HDHA) is a specialized pro-resolving mediator. The oxidation of docosahexaenoic acid (DHA) to 17(S)-HDHA using soybean lipoxygenase was accomplished in the presence of the reducing agent TCEP in high yield and high enantio excess. We demonstrated application of this strategy to the synthesis of other fatty acids and to gram scale synthesis of 17(S)-HDHA.
Collapse
Affiliation(s)
- Toshimasa Itoh
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Tomoko Saito
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Yoshinori Yamamoto
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Hiroaki Ishida
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Keiko Yamamoto
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan.
| |
Collapse
|
3
|
Serhan CN, Dalli J, Colas RA, Winkler JW, Chiang N. Protectins and maresins: New pro-resolving families of mediators in acute inflammation and resolution bioactive metabolome. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1851:397-413. [PMID: 25139562 PMCID: PMC4324013 DOI: 10.1016/j.bbalip.2014.08.006] [Citation(s) in RCA: 351] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 08/06/2014] [Accepted: 08/09/2014] [Indexed: 02/06/2023]
Abstract
Acute inflammatory responses are protective, yet without timely resolution can lead to chronic inflammation and organ fibrosis. A systems approach to investigate self-limited (self-resolving) inflammatory exudates in mice and structural elucidation uncovered novel resolution phase mediators in vivo that stimulate endogenous resolution mechanisms in inflammation. Resolving inflammatory exudates and human leukocytes utilize DHA and other n-3 EFA to produce three structurally distinct families of potent di- and trihydroxy-containing products, with several stereospecific potent mediators in each family. Given their potent and stereoselective picogram actions, specific members of these new families of mediators from the DHA metabolome were named D-series resolvins (Resolvin D1 to Resolvin D6), protectins (including protectin D1-neuroprotectin D1), and maresins (MaR1 and MaR2). In this review, we focus on a) biosynthesis of protectins and maresins as anti-inflammatory-pro-resolving mediators; b) their complete stereochemical assignments and actions in vivo in disease models. Each pathway involves the biosynthesis of epoxide-containing intermediates produced from hydroperoxy-containing precursors from human leukocytes and within exudates. Also, aspirin triggers an endogenous DHA metabolome that biosynthesizes potent products in inflammatory exudates and human leukocytes, namely aspirin-triggered Neuroprotectin D1/Protectin D1 [AT-(NPD1/PD1)]. Identification and structural elucidation of these new families of bioactive mediators in resolution has opened the possibility of diverse patho-physiologic actions in several processes including infection, inflammatory pain, tissue regeneration, neuroprotection-neurodegenerative disorders, wound healing, and others. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance".
Collapse
Affiliation(s)
- Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Jesmond Dalli
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Romain A Colas
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jeremy W Winkler
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Nan Chiang
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
4
|
Solvent-induced 7R-dioxygenase activity of soybean 15-lipoxygenase-1 in the formation of omega-3 DPA-derived resolvin analogs. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
5
|
Balas L, Guichardant M, Durand T, Lagarde M. Confusion between protectin D1 (PD1) and its isomer protectin DX (PDX). An overview on the dihydroxy-docosatrienes described to date. Biochimie 2014; 99:1-7. [DOI: 10.1016/j.biochi.2013.11.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 11/08/2013] [Indexed: 01/16/2023]
|
6
|
Dobson EP, Barrow CJ, Kralovec JA, Adcock JL. Controlled formation of mono- and dihydroxy-resolvins from EPA and DHA using soybean 15-lipoxygenase. J Lipid Res 2013; 54:1439-47. [PMID: 23471029 PMCID: PMC3622336 DOI: 10.1194/jlr.m036186] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 02/26/2013] [Indexed: 12/20/2022] Open
Abstract
Resolvins and protectins are important anti-inflammatory and pro-resolution compounds derived from the enzymatic oxidation of omega-3 fatty acids all-cis-5,8,11,14,17-eicosapentaenoic acid (EPA) and all-cis-4,7,10,13,16,19-docosahexaenoic acid (DHA). We have developed a simple, controlled method to synthesize an array of resolvin and protectin analogs from fatty acid starting materials using soybean 15-lipoxygenase. The conditions were optimized for the production of both mono- and dihydroxy derivatives, with enzyme concentration and pH found to have a significant effect on the reaction products. The methods were applied to five biologically important omega-3 and omega-6 fatty acid substrates. Mono- and dihydroxy compounds were successfully synthesized from all substrates and the products were characterized by normal phase (NP) HPLC, GC-MS, TOF-MS, UV-visible (UV-vis) spectroscopy, and NMR spectroscopy. The methods could be further applied to any polyunsaturated fatty acids containing the cis-1,4,7,10-undecatetraene moiety to produce a range of novel compounds with potential biological activity.
Collapse
Affiliation(s)
- Eleanor P. Dobson
- Centre for Chemistry and Biotechnology, Deakin University, Geelong, Victoria 3220, Australia; and
| | - Colin J. Barrow
- Centre for Chemistry and Biotechnology, Deakin University, Geelong, Victoria 3220, Australia; and
| | | | - Jacqui L. Adcock
- Centre for Chemistry and Biotechnology, Deakin University, Geelong, Victoria 3220, Australia; and
| |
Collapse
|
7
|
Basselin M, Kim HW, Chen M, Ma K, Rapoport SI, Murphy RC, Farias SE. Lithium modifies brain arachidonic and docosahexaenoic metabolism in rat lipopolysaccharide model of neuroinflammation. J Lipid Res 2010; 51:1049-56. [PMID: 20040630 PMCID: PMC2853431 DOI: 10.1194/jlr.m002469] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 12/22/2009] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation, caused by 6 days of intracerebroventricular infusion of a low dose of lipopolysaccharide (LPS; 0.5 ng/h), stimulates brain arachidonic acid (AA) metabolism in rats, but 6 weeks of lithium pretreatment reduces this effect. To further understand this action of lithium, we measured concentrations of eicosanoids and docosanoids generated from AA and docosahexaenoic acid (DHA), respectively, in high-energy microwaved rat brain using LC/MS/MS and two doses of LPS. In rats fed a lithium-free diet, low (0.5 ng/h)- or high (250 ng/h)-dose LPS compared with artificial cerebrospinal fluid increased brain unesterified AA and prostaglandin E(2) concentrations and activities of AA-selective Ca(2+)-dependent cytosolic phospholipase A(2) (cPLA(2))-IV and Ca(2+)-dependent secretory sPLA(2). LiCl feeding prevented these increments. Lithium had a significant main effect by increasing brain concentrations of lipoxygenase-derived AA metabolites, 5- hydroxyeicosatetraenoic acid (HETE), 5-oxo-eicosatetranoic acid, and 17-hydroxy-DHA by 1.8-, 4.3- and 1.9-fold compared with control diet. Lithium also increased 15-HETE in high-dose LPS-infused rats. Ca(2+)-independent iPLA(2)-VI activity and unesterified DHA and docosapentaenoic acid (22:5n-3) concentrations were unaffected by LPS or lithium. This study demonstrates, for the first time, that lithium can increase brain 17-hydroxy-DHA formation, indicating a new and potentially important therapeutic action of lithium.
Collapse
Affiliation(s)
- Mireille Basselin
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
The purpose of this review was to summarize the available information on lipidomic analysis of human meibum and tear film, and critically evaluate the pertinent past and present analytical procedures and results obtained in various laboratories. Human meibum was shown to be a very complex mixture of lipids of various classes. For decades, their exact structures have remained elusive. Because of the limitations of the then-current techniques, most of the complex lipids that constitute meibum could not be analyzed as whole molecules and required prior hydrolysis and/or transesterification of the entire lipid pool. These procedures effectively made it very difficult, and often impossible, to reconstruct the complete structures of the original intact compounds, which prompted us to call this The Meibomian Puzzle. Modern techniques such as high-performance liquid chromatography in combination with mass spectrometry help in solving this puzzle by allowing a researcher to detect and analyze intact molecules of complex lipid compounds, even if present in extremely low concentrations. This current de-facto standard procedure in lipidomic analysis of natural lipids and their mixtures is compared with other experimental techniques such as nuclear magnetic resonance spectroscopy, infrared spectroscopy, gas chromatography, and thin layer chromatography, among the others. The results obtained by older techniques, and their limitations and deficiencies are discussed. It appears that some of the earlier findings did not withstand a scrupulous re-evaluation and need to be modified and/or corrected. The most intriguing development is the virtual absence in meibum of typical phospholipids - an important group of amphiphilic compounds whose role in the human tear film was thought to be to stabilize the entire tear film structure. Instead, another group of previously unidentified compounds, very long chain (O-acyl)-omega-hydroxy fatty acids, appears to be a stabilizing factor which might be related to tear film stability and deterioration. Thus, these compounds may become an important target in biochemistry and (patho)physiology of ocular surface and dry eye research.
Collapse
Affiliation(s)
- Igor A Butovich
- Department of Ophthalmology and Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9057, USA.
| |
Collapse
|
9
|
Butovich IA, Wojtowicz JC, Molai M. Human tear film and meibum. Very long chain wax esters and (O-acyl)-omega-hydroxy fatty acids of meibum. J Lipid Res 2009; 50:2471-85. [PMID: 19535818 DOI: 10.1194/jlr.m900252-jlr200] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Human meibum was targetly analyzed for the presence of intact wax esters (WEs) and related compounds by means of reverse-phase HPLC in combination with ion trap mass spectrometry. The major detected WEs were based on C(18:n) (n = 1-4) unsaturated FAs ranking in the following order of abundance: C(18:1)>C(18:2)>C(18:3)>C(18:4). The major fatty alcohols (FAls) found in WE were of saturated nature and varied from C(18:0) to C(28:0). The three most abundant species were C(18:1)-FA esters of C(24:0), C(25:0), and C(26:0)-FAl. Typically, a major compound based on C(18:1)-FA and a saturated FAl was accompanied by a few related compounds based on a C(18:2), C(18:3), and C(18:4)-FA. Contrary to previous reports, no epoxy-WEs or epoxy-FAs were detected in fresh and 1-year-old meibum samples. More than 20 (O-acyl)-omega-hydroxy-FAs (OAHFAs) were observed. The main detected OAHFAs were based on very long-chain omega-hydroxy-FA (C(30:1), C(32:1), and C(34:1)) acylated through their omega-hydroxyls by a C(18:1)-FA. Due to their amphiphilic anionogenic nature, OAHFAs may be responsible for stabilization of the tear film lipid layer by creating an interface between the vast pool of strictly nonpolar lipids of meibum (WEs, cholesteryl esters, etc.) and the aqueous subphase beneath it, a role previously attributed to phospholipids.
Collapse
Affiliation(s)
- Igor A Butovich
- Department of Ophthalmology,University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | | | | |
Collapse
|
10
|
Dangi B, Obeng M, Nauroth JM, Teymourlouei M, Needham M, Raman K, Arterburn LM. Biogenic synthesis, purification, and chemical characterization of anti-inflammatory resolvins derived from docosapentaenoic acid (DPAn-6). J Biol Chem 2009; 284:14744-59. [PMID: 19324874 PMCID: PMC2685656 DOI: 10.1074/jbc.m809014200] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 03/25/2009] [Indexed: 12/14/2022] Open
Abstract
Enzymatically oxygenated derivatives of the omega-3 fatty acids cis-4,7,10,13,16,19-docosahexaenoic acid (DHA) and cis-5,8,11,14,17-eicosapentaenoic acid, known as resolvins, have potent inflammation resolution activity (Serhan, C. N., Clish, C. B., Brannon, J., Colgan, S. P., Chiang, N., and Gronert, K. (2000) J. Exp. Med. 192, 1197-1204; Hong, S., Gronert, K., Devchand, P. R., Moussignac, R., and Serhan, C. N. (2003) J. Biol. Chem. 278, 14677-14687). Our objective was to determine whether similar derivatives are enzymatically synthesized from other C-22 fatty acids and whether these molecules possess inflammation resolution properties. The reaction of DHA, DPAn-3, and DPAn-6 with 5-, 12-, and 15-lipoxygenases produced oxylipins, which were identified and characterized by liquid chromatography coupled with tandem mass-spectrometry. DPAn-6 and DPAn-3 proved to be good substrates for 15-lipoxygenase. 15-Lipoxygenase proved to be the most efficient enzyme of the three tested for conversion of long chain polyunsaturated fatty acids to corresponding oxylipins. Since DPAn-6 is a major component of Martek DHA-S oil, we focused our attention on reaction products obtained from the DPAn-6 and 15-lipoxygenase reaction. (17S)-hydroxy-DPAn-6 and (10,17S)-dihydroxy-DPAn-6 were the main products of this reaction. These compounds were purified by preparatory high performance liquid chromatography techniques and further characterized by NMR, UV spectrophotometry, and tandem mass spectrometry. We tested both compounds in two animal models of acute inflammation and demonstrated that both compounds are potent anti-inflammatory agents that are active on local intravenous as well as oral administration. These oxygenated DPAn-6 compounds can thus be categorized as a new class of DPAn-6-derived resolvins.
Collapse
Affiliation(s)
- Bindi Dangi
- Martek Biosciences Corporation, Columbia, Maryland 21045, USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
Butovich IA, Lukyanova SM. Inhibition of lipoxygenases and cyclooxygenases by linoleyl hydroxamic acid: comparative in vitro studies. J Lipid Res 2008; 49:1284-94. [PMID: 18305312 DOI: 10.1194/jlr.m700602-jlr200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this first comparative in vitro study, linoleyl hydroxamic acid (LHA), a simple and stable derivative of linoleic acid, was tested as an inhibitor of several enzymes involved in arachidonic acid metabolism in mammals. The tested enzymes were human recombinant 5-lipoxygenase (h5-LO), porcine leukocyte 12-LO, rabbit reticulocyte 15-LO, ovine cyclooxygenases 1/2 (COX1/COX2), and human microsomal prostaglandin E synthase-1 (mPGES-1). Potato tuber and soybean lipoxygenases (ptLOX and sLOX, respectively) were studied for comparative purposes. LHA inhibited most of the tested enzymes with the exception of mPGES-1. The LHA inhibitory activity increased as follows: mPGES-1 (no inhibition)<<COX1 = COX2<h5-LO = sLOX = ptLOX<12-LO<<15-LO. The IC(50) values for COX1/COX2, h5-LO, 12-LO, and 15-LO were 60, 7, 0.6, and 0.02 muM, respectively. sLOX was the only tested enzyme that was capable of aerobic oxygenation of LHA, producing 13-hydroperoxy-LHA. The enzyme rapidly inactivated during the reaction. Therefore, LHA could be used as an effective LO/LOX inhibitor without affecting COX1/COX2 and mPGES-1. Possible implications of this observation include treating diseases and pathological states that are caused by (or lead to) hyperproduction of LO-derived metabolites, e.g., inflammation, cardiovascular disorders, cancer, asthma, allergies, psoriasis, and stroke.
Collapse
Affiliation(s)
- Igor A Butovich
- Department of Ophthalmology and Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | | |
Collapse
|
12
|
Butovich IA, Lukyanova SM, Bachmann C. Dihydroxydocosahexaenoic acids of the neuroprotectin D family: synthesis, structure, and inhibition of human 5-lipoxygenase. J Lipid Res 2006; 47:2462-74. [PMID: 16899822 DOI: 10.1194/jlr.m600280-jlr200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During aerobic oxidation of docosahexaenoic acid (DHA), soybean lipoxygenase (sLOX) has been shown to form 7,17(S)-dihydro(pero)xydocosahexaenoic acid [7,17(S)-diH(P)DHA] along with its previously described positional isomer, 10,17(S)-dihydro(pero)xydocosahexa-4Z,7Z,11E,13Z,15E,19Z-enoic acid. 7,17(S)-diH(P)DHA was also obtained via sLOX-catalyzed oxidation of either 17(S)-hydroperoxydocosahexaenoic acid [17(S)-HPDHA] or 17(S)-hydroxydocosahexaenoic acid [17(S)-HDHA]. The structures of the products were elucidated by normal-phase, reverse-phase, and chiral-phase HPLC analyses and by ultraviolet, NMR, and tandem mass spectroscopy and GC-MS. 7,17(S)-diH(P)DHA was shown to have 4Z,8E,10Z,13Z,15E,19Z geometry of the double bonds. In addition, a compound apparently identical to the sLOX-derived 7,17(S)-diH(P)DHA was produced by another enzyme, potato tuber LOX, in the reactions of oxygenation of either 17(S)-HPDHA or 17(S)-HDHA. All of the dihydroxydocosahexaenoic acids (diHDHAs) formed by either of the enzymes were clearly produced through double lipoxygenation of the corresponding substrate. 7,17(S)-diHDHA inhibited human recombinant 5-lipoxygenase in the reaction of arachidonic acid (AA) oxidation. In standard conditions with 100 microM AA as substrate, the IC(50) value for 7,17(S)-diHDHA was found to be 7 microM, whereas IC(50) for 10,17(S)-DiHDHA was 15 microM. Similar inhibition by the diHDHAs was observed with sLOX, a quintessential 15LOX, although the strongest inhibition was produced by 10,17(S)-diHDHA (IC(50) = 4 microM). Inhibition of sLOX by 7,17(S)-diHDHA was slightly less potent, with an IC(50) value of 9 microM. These findings suggest that 7,17(S)-diHDHA along with its 10,17(S) counterpart might have anti-inflammatory and anticancer activities, which could be exerted, at least in part, through direct inhibition of 5LOX and 15LOX.
Collapse
Affiliation(s)
- Igor A Butovich
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9057, USA.
| | | | | |
Collapse
|
13
|
Butovich IA. A one-step method of 10,17-dihydro(pero)xydocosahexa-4Z,7Z,11E,13Z,15E,19Z-enoic acid synthesis by soybean lipoxygenase. J Lipid Res 2006; 47:854-63. [PMID: 16391324 DOI: 10.1194/jlr.d500042-jlr200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A product of lipoxygenase (LOX) oxidation of docosahexaenoic acid (DHA), 10,17-dihydro(pero)xydocosahexa-4Z,7Z,11E,13Z,15E,19Z-enoic acid [10,17(S)-diH(P)DHA] was obtained through various reaction pathways that involved DHA, 17(S)-hydro(pero)xydocosahexa-4Z,7Z,11Z,13Z,15E,19Z-enoic acid [17(S)-H(P)DHA], soybean lipoxygenase (sLOX), and potato tuber lipoxygenase (ptLOX) in various combinations. The structure of the product was confirmed by HPLC, ultraviolet (UV) light spectrometry, GC-MS, tandem MS, and NMR spectroscopy. It has been found that 10,17(S)-diH(P)DHA formed by sLOX through direct oxidation of either DHA or 17(S)-H(P)DHA was apparently identical to the product of ptLOX oxidation of the latter. The sLOX- and ptLOX-derived samples of 10,17-diHDHAs coeluted under the conditions of normal, reverse, and chiral phase HPLC analyses, displayed identical UV absorption spectra with maxima at 260, 270, and 280 nm, and had similar one-dimensional and two-dimensional proton NMR spectra. Analysis of their NMR spectra led to the conclusion that 10,17-diHDHA formed by sLOX had solely 11E,13Z,15E configuration of the conjugated triene fragment, which was identical to the previously published structure of its ptLOX-derived counterpart. Based on the cis,trans geometry of the reaction products, the conclusion is made that in the tested conditions sLOX catalyzed direct double dioxygenation of DHA. Compared with the previously described two-enzyme method that involved sLOX and ptLOX, the current simplified one-enzyme procedure uses only sLOX as the catalyst of both dioxygenation steps.
Collapse
Affiliation(s)
- Igor A Butovich
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9057, USA.
| |
Collapse
|
14
|
Serhan CN, Gotlinger K, Hong S, Lu Y, Siegelman J, Baer T, Yang R, Colgan SP, Petasis NA. Anti-inflammatory actions of neuroprotectin D1/protectin D1 and its natural stereoisomers: assignments of dihydroxy-containing docosatrienes. THE JOURNAL OF IMMUNOLOGY 2006; 176:1848-59. [PMID: 16424216 DOI: 10.4049/jimmunol.176.3.1848] [Citation(s) in RCA: 362] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Protectin D1, neuroprotectin D1 when generated by neural cells, is a member of a new family of bioactive products generated from docosahexaenoic acid. The complete stereochemistry of protectin D1 (10,17S-docosatriene), namely, chirality of the carbon-10 alcohol and geometry of the conjugated triene, required for bioactivity remained to be assigned. To this end, protectin D1/neuroprotectin D1 (PD1) generated by human neutrophils during murine peritonitis and by neural tissues was separated from natural isomers and subjected to liquid chromatography-tandem mass spectrometry and gas chromatography-mass spectrometry. Comparisons with six 10,17-dihydroxydocosatrienes prepared by total organic and biogenic synthesis showed that PD1 from human cells carrying potent bioactivity is 10R,17S-dihydroxy-docosa-4Z,7Z,11E,13E,15Z,19Z-hexaenoic acid. Additional isomers identified included trace amounts of Delta15-trans-PD1 (isomer III), 10S,17S-dihydroxy-docosa-4Z,7Z,11E,13Z,15E,19Z-hexaenoic acid (isomer IV), and a double dioxygenation product 10S,17S-dihydroxy-docosa-4Z,7Z,11E,13Z,15E,19Z-hexaenoic acid (isomer I), present in exudates. 18O2 labeling showed that 10S,17S-diHDHA (isomer I) carried 18O in the carbon-10 position alcohol, indicating sequential lipoxygenation, whereas PD1 formation proceeded via an epoxide. PD1 at 10 nM attenuated (approximately 50%) human neutrophil transmigration, whereas Delta15-trans-PD1 was essentially inactive. PD1 was a potent regulator of polymorphonuclear leukocyte (PMN) infiltration (approximately 40% at 1 ng/mouse) in peritonitis. The rank order at 1- to 10-ng dose was PD1 approximately PD1 methyl ester >> Delta15-trans-PD1 > 10S,17S-diHDHA (isomer I). 10S,17S-dihydroxy-docosa-4Z,7Z,11E,13E,15Z,19Z-hexaenoic acid (isomer VI) proved > or = PD1 in blocking PMN infiltration, but was not a major product of leukocytes. PD1 also reduced PMN infiltration after initiation (2 h) of inflammation and was additive with resolvin E1. These results indicate that PD1 is a potent stereoselective anti-inflammatory molecule.
Collapse
Affiliation(s)
- Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Butovich IA. On the structure and synthesis of neuroprotectin D1, a novel anti-inflammatory compound of the docosahexaenoic acid family. J Lipid Res 2005; 46:2311-4. [PMID: 16150835 DOI: 10.1194/jlr.c500015-jlr200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Potato tuber lipoxygenase was shown to convert 17(S)-hydro(pero)xydocasahexaenoic acid in 10,17(S)-dihydro(pero)xydocosahexa-4Z,7Z,11E,13Z,15E,19Z-enoic acid [10,17(S)-diHDHA] which was formed apparently through a double lipoxygenation mechanism. No traces of 10,17(S)-dihydro(pero)xydocosahexa-4Z,7Z,11E,13E,15Z,19Z-enoic acid were found among the reaction products. It is very likely that a described earlier "neuroprotectin D1" [or "10,17(S)docosatriene"], a novel and potent anti-inflammatory compound derived from docosahexaenoic acid, was, in fact, 10,17(S)-dihydroxydocosahexa-4Z,7Z,11E,13Z,15E,19Z-enoic acid formed through a double lipoxygenation mechanism instead of a previously thought epoxidation/isomerization mechanism.
Collapse
Affiliation(s)
- Igor A Butovich
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9057, USA.
| |
Collapse
|