1
|
Beyene HB, Olshansky G, T. Smith AA, Giles C, Huynh K, Cinel M, Mellett NA, Cadby G, Hung J, Hui J, Beilby J, Watts GF, Shaw JS, Moses EK, Magliano DJ, Meikle PJ. High-coverage plasma lipidomics reveals novel sex-specific lipidomic fingerprints of age and BMI: Evidence from two large population cohort studies. PLoS Biol 2020; 18:e3000870. [PMID: 32986697 PMCID: PMC7544135 DOI: 10.1371/journal.pbio.3000870] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 10/08/2020] [Accepted: 09/01/2020] [Indexed: 12/11/2022] Open
Abstract
Obesity and related metabolic diseases show clear sex-related differences. The growing burden of these diseases calls for better understanding of the age- and sex-related metabolic consequences. High-throughput lipidomic analyses of population-based cohorts offer an opportunity to identify disease-risk-associated biomarkers and to improve our understanding of lipid metabolism and biology at a population level. Here, we comprehensively examined the relationship between lipid classes/subclasses and molecular species with age, sex, and body mass index (BMI). Furthermore, we evaluated sex specificity in the association of the plasma lipidome with age and BMI. Some 747 targeted lipid measures, representing 706 molecular lipid species across 36 classes/subclasses, were measured using a high-performance liquid chromatography coupled mass spectrometer on a total of 10,339 participants from the Australian Diabetes, Obesity and Lifestyle Study (AusDiab), with 563 lipid species being validated externally on 4,207 participants of the Busselton Health Study (BHS). Heat maps were constructed to visualise the relative differences in lipidomic profile between men and women. Multivariable linear regression analyses, including sex-interaction terms, were performed to assess the associations of lipid species with cardiometabolic phenotypes. Associations with age and sex were found for 472 (66.9%) and 583 (82.6%) lipid species, respectively. We further demonstrated that age-associated lipidomic fingerprints differed by sex. Specific classes of ether-phospholipids and lysophospholipids (calculated as the sum composition of the species within the class) were inversely associated with age in men only. In analyses with women alone, higher triacylglycerol and lower lysoalkylphosphatidylcholine species were observed among postmenopausal women compared with premenopausal women. We also identified sex-specific associations of lipid species with obesity. Lysophospholipids were negatively associated with BMI in both sexes (with a larger effect size in men), whilst acylcarnitine species showed opposing associations based on sex (positive association in women and negative association in men). Finally, by utilising specific lipid ratios as a proxy for enzymatic activity, we identified stearoyl CoA desaturase (SCD-1), fatty acid desaturase 3 (FADS3), and plasmanylethanolamine Δ1-desaturase activities, as well as the sphingolipid metabolic pathway, as constituent perturbations of cardiometabolic phenotypes. Our analyses elucidate the effect of age and sex on lipid metabolism by offering a comprehensive view of the lipidomic profiles associated with common cardiometabolic risk factors. These findings have implications for age- and sex-dependent lipid metabolism in health and disease and suggest the need for sex stratification during lipid biomarker discovery, establishing biological reference intervals for assessment of disease risk.
Collapse
Affiliation(s)
- Habtamu B. Beyene
- Baker Heart and Diabetes Institute, Melbourne, Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| | | | | | - Corey Giles
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Kevin Huynh
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Michelle Cinel
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | | | - Gemma Cadby
- School of Population and Global Health, University of Western Australia, Perth, Australia
| | - Joseph Hung
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
| | - Jennie Hui
- School of Population and Global Health, University of Western Australia, Perth, Australia
- PathWest Laboratory Medicine of Western Australia, Nedlands, Western Australia
| | - John Beilby
- PathWest Laboratory Medicine of Western Australia, Nedlands, Western Australia
| | - Gerald F. Watts
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
- Lipid Disorders Clinic, Department of Cardiology, Royal Perth Hospital, Perth, Australia
| | | | - Eric K. Moses
- Menzies Institute for Medical Research, University of Tasmania, Tasmania, Australia
| | - Dianna J. Magliano
- Baker Heart and Diabetes Institute, Melbourne, Australia
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Peter J. Meikle
- Baker Heart and Diabetes Institute, Melbourne, Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
2
|
Omega-3 Docosahexaenoic Acid Is a Mediator of Fate-Decision of Adult Neural Stem Cells. Int J Mol Sci 2019; 20:ijms20174240. [PMID: 31480215 PMCID: PMC6747551 DOI: 10.3390/ijms20174240] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 12/11/2022] Open
Abstract
The mammalian brain is enriched with lipids that serve as energy catalyzers or secondary messengers of essential signaling pathways. Docosahexaenoic acid (DHA) is an omega-3 fatty acid synthesized de novo at low levels in humans, an endogenous supply from its precursors, and is mainly incorporated from nutrition, an exogeneous supply. Decreased levels of DHA have been reported in the brains of patients with neurodegenerative diseases. Preventing this decrease or supplementing the brain with DHA has been considered as a therapy for the DHA brain deficiency that could be linked with neuronal death or neurodegeneration. The mammalian brain has, however, a mechanism of compensation for loss of neurons in the brain: neurogenesis, the birth of neurons from neural stem cells. In adulthood, neurogenesis is still present, although at a slower rate and with low efficiency, where most of the newly born neurons die. Neural stem/progenitor cells (NSPCs) have been shown to require lipids for proper metabolism for proliferation maintenance and neurogenesis induction. Recent studies have focused on the effects of these essential lipids on the neurobiology of NSPCs. This review aimed to introduce the possible use of DHA to impact NSPC fate-decision as a therapy for neurodegenerative diseases.
Collapse
|
3
|
Herrera JL, Ordoñez-Gutierrez L, Fabrias G, Casas J, Morales A, Hernandez G, Acosta NG, Rodriguez C, Prieto-Valiente L, Garcia-Segura LM, Alonso R, Wandosell FG. Ovarian Function Modulates the Effects of Long-Chain Polyunsaturated Fatty Acids on the Mouse Cerebral Cortex. Front Cell Neurosci 2018; 12:103. [PMID: 29740285 PMCID: PMC5928148 DOI: 10.3389/fncel.2018.00103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/29/2018] [Indexed: 12/31/2022] Open
Abstract
Different dietary ratios of n−6/n−3 long-chain polyunsaturated fatty acids (LC-PUFAs) may alter brain lipid profile, neural activity, and brain cognitive function. To determine whether ovarian hormones influence the effect of diet on the brain, ovariectomized and sham-operated mice continuously treated with placebo or estradiol were fed for 3 months with diets containing low or high n−6/n−3 LC-PUFA ratios. The fatty acid (FA) profile and expression of key neuronal proteins were analyzed in the cerebral cortex, with intact female mice on standard diet serving as internal controls of brain lipidome composition. Diets containing different concentrations of LC-PUFAs greatly modified total FAs, sphingolipids, and gangliosides in the cerebral cortex. Some of these changes were dependent on ovarian hormones, as they were not detected in ovariectomized animals, and in the case of complex lipids, the effect of ovariectomy was partially or totally reversed by continuous administration of estradiol. However, even though differential dietary LC-PUFA content modified the expression of neuronal proteins such as synapsin and its phosphorylation level, PSD-95, amyloid precursor protein (APP), or glial proteins such as glial fibrillary acidic protein (GFAP), an effect also dependent on the presence of the ovary, chronic estradiol treatment was unable to revert the dietary effects on brain cortex synaptic proteins. These results suggest that, in addition to stable estradiol levels, other ovarian hormones such as progesterone and/or cyclic ovarian secretory activity could play a physiological role in the modulation of dietary LC-PUFAs on the cerebral cortex, which may have clinical implications for post-menopausal women on diets enriched with different proportions of n−3 and n−6 LC-PUFAs.
Collapse
Affiliation(s)
- Jose L Herrera
- Departamento de Ciencias Médicas Básica and Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Universidad de La Laguna, La Laguna, Spain
| | - Lara Ordoñez-Gutierrez
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain
| | - Gemma Fabrias
- Instituto de Química Avanzada de Cataluña (IQAC-CSIC), Barcelona, Spain
| | - Josefina Casas
- Instituto de Química Avanzada de Cataluña (IQAC-CSIC), Barcelona, Spain
| | - Araceli Morales
- Departamento de Ciencias Médicas Básica and Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Universidad de La Laguna, La Laguna, Spain
| | - Guadalberto Hernandez
- Departamento de Ciencias Médicas Básica and Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Universidad de La Laguna, La Laguna, Spain
| | - Nieves G Acosta
- Departamento de Biología Animal, Edafología y Geología, and Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Universidad de La Laguna, Tenerife, Spain
| | - Covadonga Rodriguez
- Departamento de Ciencias Médicas Básica and Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Universidad de La Laguna, La Laguna, Spain.,Departamento de Biología Animal, Edafología y Geología, and Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Universidad de La Laguna, Tenerife, Spain
| | | | - Luis M Garcia-Segura
- Instituto Cajal (CSIC) and Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Madrid, Spain
| | - Rafael Alonso
- Departamento de Ciencias Médicas Básica and Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Universidad de La Laguna, La Laguna, Spain
| | - Francisco G Wandosell
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain
| |
Collapse
|
4
|
Le Bon AM, Deprêtre N, Sibille E, Cabaret S, Grégoire S, Soubeyre V, Masson E, Acar N, Bretillon L, Grosmaitre X, Berdeaux O. Comprehensive study of rodent olfactory tissue lipid composition. Prostaglandins Leukot Essent Fatty Acids 2018; 131:32-43. [PMID: 29628048 DOI: 10.1016/j.plefa.2018.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/20/2018] [Accepted: 03/21/2018] [Indexed: 11/20/2022]
Abstract
The peripheral olfactory tissue (OT) plays a primordial role in the detection and transduction of olfactory information. Recent proteomic and transcriptomic studies have provided valuable insight into proteins and RNAs expressed in this tissue. Paradoxically, there is little information regarding the lipid composition of mammalian OT. To delve further into this issue, using a set of complementary state-of-the-art techniques, we carried out a comprehensive analysis of OT lipid composition in rats and mice fed with standard diets. The results showed that phospholipids are largely predominant, the major classes being phosphatidylcholine and phosphatidylethanolamine. Two types of plasmalogens, plasmenyl-choline and plasmenyl-ethanolamine, as well as gangliosides were also detected. With the exception of sphingomyelin, substantial levels of n-3 polyunsaturated fatty acids, mainly docosahexaenoic acid (22:6n-3; DHA), were found in the different phospholipid classes. These findings demonstrate that the rodent OT shares several features in common with other neural tissues, such as the brain and retina.
Collapse
Affiliation(s)
- Anne Marie Le Bon
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France.
| | - Nicolas Deprêtre
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Estelle Sibille
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Stéphanie Cabaret
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Stéphane Grégoire
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Vanessa Soubeyre
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Elodie Masson
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Niyazi Acar
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Lionel Bretillon
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Xavier Grosmaitre
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Olivier Berdeaux
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France
| |
Collapse
|
5
|
Murphy EJ. Ether lipids and their elusive function in the nervous system: a role for plasmalogens: An Editorial Highlight for 'Reduced muscle strength in ether lipid-deficient mice is accompanied by altered development and function of the neuromuscular junction' on page 569. J Neurochem 2017; 143:463-466. [PMID: 28944460 DOI: 10.1111/jnc.14156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/16/2017] [Accepted: 08/16/2017] [Indexed: 11/27/2022]
Abstract
In this editorial, we highlight the recent work of Dorninger et al. that demonstrates a reduction in plasmalogens in the motor end plate is associated with a reduction in motor end plate function. This reduction in function is illuminated in reduced muscle function in these mice, corresponding with the reduction in acetylcholine release and in its receptor density observed in these mice.
Collapse
Affiliation(s)
- Eric J Murphy
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| |
Collapse
|
6
|
Bessa RJB, Alves SP, Santos-Silva J. Constraints and potentials for the nutritional modulation of the fatty acid composition of ruminant meat. EUR J LIPID SCI TECH 2015. [DOI: 10.1002/ejlt.201400468] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Rui J. B. Bessa
- CIISA, Faculdade de Medicina Veterinária (FMV); Universidade de Lisboa (ULisboa); Lisboa Portugal
| | - Susana P. Alves
- CIISA, Faculdade de Medicina Veterinária (FMV); Universidade de Lisboa (ULisboa); Lisboa Portugal
| | - José Santos-Silva
- Unidade Estratégica de Investigação e Serviços em Produção e Saúde Animal; Instituto Nacional de Investigação Agrária e Veterinária (UEISPA-INIAV); Lisboa Portugal
| |
Collapse
|
7
|
Domenichiello AF, Kitson AP, Bazinet RP. Is docosahexaenoic acid synthesis from α-linolenic acid sufficient to supply the adult brain? Prog Lipid Res 2015; 59:54-66. [DOI: 10.1016/j.plipres.2015.04.002] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 04/09/2015] [Indexed: 12/13/2022]
|
8
|
Saab S, Mazzocco J, Creuzot-Garcher CP, Bron AM, Bretillon L, Acar N. Plasmalogens in the retina: From occurrence in retinal cell membranes to potential involvement in pathophysiology of retinal diseases. Biochimie 2014; 107 Pt A:58-65. [DOI: 10.1016/j.biochi.2014.07.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/26/2014] [Indexed: 10/24/2022]
|
9
|
Erythrocyte DHA level as a biomarker of DHA status in specific brain regions of n-3 long-chain PUFA-supplemented aged rats. Br J Nutr 2014; 112:1805-18. [PMID: 25331622 DOI: 10.1017/s0007114514002529] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
n-3 Long-chain PUFA (n-3 LC-PUFA), particularly EPA and DHA, play a key role in the maintenance of brain functions such as learning and memory that are impaired during ageing. Ageing is also associated with changes in the DHA content of brain membranes that could contribute to memory impairment. Limited studies have investigated the effects of ageing and n-3 LC-PUFA supplementation on both blood and brain fatty acid compositions. Therefore, we assessed the relationship between fatty acid contents in plasma and erythrocyte membranes and those in the hippocampus, striatum and cerebral cortex during ageing, and after a 5-month period of EPA/DHA supplementation in rats. In the blood, ageing was associated with an increase in plasma DHA content, whereas the DHA content remained stable in erythrocyte membranes. In the brain, ageing was associated with a decrease in DHA content, which was both region-specific and phospholipid class-specific. In EPA/DHA-supplemented aged rats, DHA contents were increased both in the blood and brain compared with the control rats. The present results demonstrated that n-3 LC-PUFA level in the plasma was not an accurate biomarker of brain DHA status during ageing. Moreover, we highlighted a positive relationship between the DHA levels in erythrocyte phosphatidylethanolamine (PE) and those in the hippocampus and prefrontal cortex in EPA/DHA-supplemented aged rats. Within the framework of preventive dietary supplementation to delay brain ageing, these results suggest the possibility of using erythrocyte PE DHA content as a reliable biomarker of DHA status in specific brain regions.
Collapse
|
10
|
Kaddurah-Daouk R, McEvoy J, Baillie R, Zhu H, K Yao J, Nimgaonkar VL, Buckley PF, Keshavan MS, Georgiades A, Nasrallah HA. Impaired plasmalogens in patients with schizophrenia. Psychiatry Res 2012; 198:347-52. [PMID: 22513041 DOI: 10.1016/j.psychres.2012.02.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 02/16/2012] [Accepted: 02/20/2012] [Indexed: 12/24/2022]
Abstract
Plasmalogens are a subclass of glycerophospholipids and ubiquitous constituents of cellular membranes and serum lipoproteins. Several neurological disorders show decreased level of plasmogens. An earlier study found differences in plasma phospholipids between unmedicated patients with schizophrenia and matched healthy control subjects. We here report a comparison of plasma plasmalogen levels across 20 drug-naïve patients experiencing first psychotic episodes, 20 recently unmedicated patients experiencing psychotic relapses after failing to comply with prescribed medications, and 17 matched healthy control subjects. Multiple plasma phosphatidylcholine and phosphatidylethanolamine plasmalogen levels were significantly lower in first episode patients and patients with recurrent disease compared to healthy controls. Reduced plasmalogen levels appear to be a trait evident at the onset of psychotic illness and after multiple psychotic relapses. It is implied that reductions in plasmalogen levels are not related to antipsychotic treatment but due to the illness itself. Reduced plasmalogen levels suggest impairments in membrane structure and function in patients with schizophrenia that might happen early in development. This may serve as a clue to the neurobiology of schizophrenia and should be studied as a potential biomarker for individuals at risk for schizophrenia.
Collapse
Affiliation(s)
- Rima Kaddurah-Daouk
- Duke University Medical Center, Department of Psychiatry and Behavioral Sciences, DUMC Box 3950 Durham, NC 27710, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Moser AB, Steinberg SJ, Watkins PA, Moser HW, Ramaswamy K, Siegmund KD, Lee DR, Ely JJ, Ryder OA, Hacia JG. Human and great ape red blood cells differ in plasmalogen levels and composition. Lipids Health Dis 2011; 10:101. [PMID: 21679470 PMCID: PMC3129581 DOI: 10.1186/1476-511x-10-101] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 06/17/2011] [Indexed: 02/06/2023] Open
Abstract
Background Plasmalogens are ether phospholipids required for normal mammalian developmental, physiological, and cognitive functions. They have been proposed to act as membrane antioxidants and reservoirs of polyunsaturated fatty acids as well as influence intracellular signaling and membrane dynamics. Plasmalogens are particularly enriched in cells and tissues of the human nervous, immune, and cardiovascular systems. Humans with severely reduced plasmalogen levels have reduced life spans, abnormal neurological development, skeletal dysplasia, impaired respiration, and cataracts. Plasmalogen deficiency is also found in the brain tissue of individuals with Alzheimer disease. Results In a human and great ape cohort, we measured the red blood cell (RBC) levels of the most abundant types of plasmalogens. Total RBC plasmalogen levels were lower in humans than bonobos, chimpanzees, and gorillas, but higher than orangutans. There were especially pronounced cross-species differences in the levels of plasmalogens with a C16:0 moiety at the sn-1 position. Humans on Western or vegan diets had comparable total RBC plasmalogen levels, but the latter group showed moderately higher levels of plasmalogens with a C18:1 moiety at the sn-1 position. We did not find robust sex-specific differences in human or chimpanzee RBC plasmalogen levels or composition. Furthermore, human and great ape skin fibroblasts showed only modest differences in peroxisomal plasmalogen biosynthetic activity. Human and chimpanzee microarray data indicated that genes involved in plasmalogen biosynthesis show cross-species differential expression in multiple tissues. Conclusion We propose that the observed differences in human and great ape RBC plasmalogens are primarily caused by their rates of biosynthesis and/or turnover. Gene expression data raise the possibility that other human and great ape cells and tissues differ in plasmalogen levels. Based on the phenotypes of humans and rodents with plasmalogen disorders, we propose that cross-species differences in tissue plasmalogen levels could influence organ functions and processes ranging from cognition to reproduction to aging.
Collapse
Affiliation(s)
- Ann B Moser
- Hugo W. Moser Research Institute at Kennedy Krieger, and Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Red blood cell plasmalogens and docosahexaenoic acid are independently reduced in primary open-angle glaucoma. Exp Eye Res 2009; 89:840-53. [DOI: 10.1016/j.exer.2009.07.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 07/15/2009] [Accepted: 07/15/2009] [Indexed: 11/21/2022]
|
13
|
Lessig J, Fuchs B. HOCl-mediated glycerophosphocholine and glycerophosphoethanolamine generation from plasmalogens in phospholipid mixtures. Lipids 2009; 45:37-51. [PMID: 19937395 DOI: 10.1007/s11745-009-3365-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 07/03/2009] [Indexed: 11/30/2022]
Abstract
Many mammalian tissues and cells contain, in addition to (diacyl) phospholipids, considerable amounts of plasmalogens, which may function as important antioxidants. Apart from the "scavenger" function mediated by the high sensitivity of the vinyl-ether bond, the functional role of plasmalogens is so far widely unknown. Furthermore, there is increasing evidence that plasmalogen degradation products have harmful effects in inflammatory processes. In a previous investigation glycerophosphocholine (GPC) formation was verified as a novel plasmalogen degradation pathway upon oxidation with hypochlorous acid (HOCl), however these investigations were performed in simple model systems. Herein, we examine plasmalogen degradation in a more complex system in order to evaluate if GPC generation is also a major pathway in the presence of other highly unsaturated glycerophospholipids (GPL) representing an additional reaction site of HOCl targets. Using MALDI-TOF mass spectrometry and (31)P NMR spectroscopy, we confirmed that the first step of the HOCl-induced degradation of GPL mixtures containing plasmalogens is the attack of the vinyl-ether bond resulting in the generation of 1-lysophosphatidylcholine (lysoPtdCho) or 1-lysophosphatidylethanolamine. In the second step HOCl reacts with the fatty acyl residue in the sn-2 position of 1-lysoPtdCho. This reaction is about three times faster in comparison to comparable diacyl-GPL. Thus, the generation of GPC and glycerophosphoethanolamine (GPE) from plasmalogens are relevant products formed from HOCl attack on the vinyl-ether bond of plasmalogens under pathological conditions.
Collapse
Affiliation(s)
- Jacqueline Lessig
- Medical Faculty, Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstrasse 16-18, 04107 Leipzig, Germany
| | | |
Collapse
|
14
|
Norris C, Fong B, MacGibbon A, McJarrow P. Analysis of Phospholipids in Rat Brain Using Liquid Chromatography–Mass Spectrometry. Lipids 2009; 44:1047-54. [DOI: 10.1007/s11745-009-3357-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Accepted: 09/28/2009] [Indexed: 12/12/2022]
|
15
|
Alpha-linolenic acid and its conversion to longer chain n-3 fatty acids: benefits for human health and a role in maintaining tissue n-3 fatty acid levels. Prog Lipid Res 2009; 48:355-74. [PMID: 19619583 DOI: 10.1016/j.plipres.2009.07.002] [Citation(s) in RCA: 375] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 06/13/2009] [Accepted: 07/14/2009] [Indexed: 11/22/2022]
Abstract
There is little doubt regarding the essential nature of alpha-linolenic acid (ALA), yet the capacity of dietary ALA to maintain adequate tissue levels of long chain n-3 fatty acids remains quite controversial. This simple point remains highly debated despite evidence that removal of dietary ALA promotes n-3 fatty acid inadequacy, including that of docosahexaenoic acid (DHA), and that many experiments demonstrate that dietary inclusion of ALA raises n-3 tissue fatty acid content, including DHA. Herein we propose, based upon our previous work and that of others, that ALA is elongated and desaturated in a tissue-dependent manner. One important concept is to recognize that ALA, like many other fatty acids, rapidly undergoes beta-oxidation and that the carbons are conserved and reused for synthesis of other products including cholesterol and fatty acids. This process and the differences between utilization of dietary DHA or liver-derived DHA as compared to ALA have led to the dogma that ALA is not a useful fatty acid for maintaining tissue long chain n-3 fatty acids, including DHA. Herein, we propose that indeed dietary ALA is a crucial dietary source of n-3 fatty acids and its dietary inclusion is critical for maintaining tissue long chain n-3 levels.
Collapse
|
16
|
Leclercq S, Skrzypski J, Courvoisier A, Gondcaille C, Bonnetain F, André A, Chardigny JM, Bellenger S, Bellenger J, Narce M, Savary S. Effect of dietary polyunsaturated fatty acids on the expression of peroxisomal ABC transporters. Biochimie 2008; 90:1602-7. [PMID: 18585430 DOI: 10.1016/j.biochi.2008.05.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Accepted: 05/29/2008] [Indexed: 11/30/2022]
Abstract
Peroxisomal ABC transporters encoded by the ABCD genes are thought to participate in the import of specific fatty acids in the peroxisomal matrix. ABCD1 deficiency is associated with X-linked adrenoleukodystrophy (X-ALD), the most frequent peroxisomal disorder which is characterized by the accumulation of saturated very-long-chain fatty acids (VLCFA). ABCD2 (the closest homolog of ABCD1) and ABCD3 have been shown to have partial functional redundancy with ABCD1; only when overexpressed, they can compensate for VLCFA accumulation. Other lipids, for instance polyunsaturated fatty acids (PUFA), should be possible candidate substrates for the ABCD2 and ABCD3 gene products, ALDRP and PMP70 respectively. Moreover, PUFA, which are known regulators of gene expression, could therefore represent potent inducers of the ABCD genes. To test this hypothesis, littermates of n-3-deficient rats were subjected to an n-3-deficient diet or equilibrated diets containing ALA (alpha-linolenic acid, 18:3n-3) as unique source of n-3 fatty acids or ALA plus DHA (docosahexaenoic acid, 22:6n-3) at two different doses. We analyzed the expression of peroxisomal ABC transporters and of the peroxisomal acyl-CoA oxidase gene 1 (Acox1) in adrenals, brain and liver. Whatever the diet, we did not observe any difference in gene expression in adrenals and brain. However, the hepatic expression level of Abcd2 and Abcd3 genes was found to be significantly higher in the n-3-deficient rats than in the rats fed the ALA diet or the DHA supplemented diets. This was accompanied by important changes in hepatic fatty acid composition. In summary, the hepatic expression of Abcd2 and Abcd3 but not of Abcd1 and Abcd4 appears to be highly sensitive towards dietary PUFA. This difference could be linked to the substrate specificity of the peroxisomal ABC transporters and a specific involvement of Abcd2 and Abcd3 in PUFA metabolism.
Collapse
|
17
|
Mazza M, Pomponi M, Janiri L, Bria P, Mazza S. Omega-3 fatty acids and antioxidants in neurological and psychiatric diseases: an overview. Prog Neuropsychopharmacol Biol Psychiatry 2007; 31:12-26. [PMID: 16938373 DOI: 10.1016/j.pnpbp.2006.07.010] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 07/21/2006] [Accepted: 07/31/2006] [Indexed: 12/21/2022]
Abstract
RATIONALE Omega-3 fatty acids are known to play a role in nervous system activity, cognitive development, memory-related learning, neuroplasticity of nerve membranes, synaptogenesis and synaptic transmission. The brain is considered abnormally sensitive to oxidative damage, and aging is considered one of the most significant risk factors for degenerative neurological disorders. Recently, clinical trials of several neurodegenerative diseases have increasingly targeted the evaluation of the effectiveness of various antioxidants. OBJECTIVES The effects of omega-3 fatty acids and antioxidants on the anatomic and functional central nervous system development and their possible therapeutical use in some neurological and psychiatric pathologies are evaluated. RESULTS A number of critical trials have confirmed the benefits of dietary supplementation with omega-3 fatty acids not only in several psychiatric conditions, but also in inflammatory and autoimmune and neurodegenerative diseases. Many evidences indicate that antioxidants are also essential in maintaining a correct neurophysiology. CONCLUSIONS Omega-3 fatty acids could be useful in the prevention of different pathologies, such as cardiovascular, psychiatric, neurological, dermatological and rheumatological disorders. A number of studies suggest that antioxidants can prevent the oxidation of various macromolecules such as DNA, proteins, and lipids. The ideal use of antioxidants should be a prophylactic and continue treatment before aging.
Collapse
Affiliation(s)
- Marianna Mazza
- Institute of Psychiatry and Psychology, Catholic University of Sacred Heart, Rome, Italy.
| | | | | | | | | |
Collapse
|
18
|
André A, Cabaret S, Berdeaux O, Juanéda P, Sébédio JL, Chardigny JM. Bioequivalence of docosahexaenoic acid and α-linolenic acid supplementations on plasmalogen, long-chain aldehyde, and docosahexaenoic acid levels in the brain of very old rats. Nutr Res 2006. [DOI: 10.1016/j.nutres.2006.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|