1
|
Křen V, Bojarová P. Rutinosidase and other diglycosidases: Rising stars in biotechnology. Biotechnol Adv 2023; 68:108217. [PMID: 37481095 DOI: 10.1016/j.biotechadv.2023.108217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/09/2023] [Accepted: 07/16/2023] [Indexed: 07/24/2023]
Abstract
Diglycosidases are a special class of glycosidases (EC 3.2.1) that catalyze the separation of intact disaccharide moieties from the aglycone part. The main diglycosidase representatives comprise rutinosidases that cleave rutinose (α-l-Rha-(1-6)-β-d-Glc) from rutin or other rutinosides, and (iso)primeverosidases processing (iso)primeverosides (d-Xyl-(1-6)-β-d-Glc), but other activities are known. Notably, some diglycosidases may be ranked as monoglucosidases with enlarged substrate specificity. Diglycosidases are found in various microorganisms and plants. Diglycosidases are used in the food industry for aroma enhancement and flavor modification. Besides their hydrolytic activity, they also possess pronounced synthetic (transglycosylating) capabilities. Recently, they have been demonstrated to glycosylate various substrates in a high yield, including peculiar species like inorganic azide or carboxylic acids, which is a unique feature in biocatalysis. Rhamnose-containing compounds such as rutinose are currently receiving increased attention due to their proven activity in anti-cancer and dermatological experimental studies. This review demonstrates the vast and yet underrated biotechnological potential of diglycosidases from various sources (plant, microbial), and reveals perspectives on the use of these catalysts as well as of their products in biotechnology.
Collapse
Affiliation(s)
- Vladimír Křen
- Institute of Microbiology of the Czech Academy of Sciences, Laboratory of Biotransformation, Vídeňská 1083, CZ 14200 Prague 4, Czech Republic.
| | - Pavla Bojarová
- Institute of Microbiology of the Czech Academy of Sciences, Laboratory of Biotransformation, Vídeňská 1083, CZ 14200 Prague 4, Czech Republic.
| |
Collapse
|
2
|
Qian M, Ismail BB, He Q, Zhang X, Yang Z, Ding T, Ye X, Liu D, Guo M. Inhibitory mechanisms of promising antimicrobials from plant byproducts: A review. Compr Rev Food Sci Food Saf 2023; 22:2523-2590. [PMID: 37070214 DOI: 10.1111/1541-4337.13152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 04/19/2023]
Abstract
Plant byproducts and waste present enormous environmental challenges and an opportunity for valorization and industrial application. Due to consumer demands for natural compounds, the evident paucity of novel antimicrobial agents against foodborne pathogens, and the urgent need to improve the arsenal against infectious diseases and antimicrobial resistance (AMR), plant byproduct compounds have attracted significant research interest. Emerging research highlighted their promising antimicrobial activity, yet the inhibitory mechanisms remain largely unexplored. Therefore, this review summarizes the overall research on the antimicrobial activity and inhibitory mechanisms of plant byproduct compounds. A total of 315 natural antimicrobials from plant byproducts, totaling 1338 minimum inhibitory concentrations (MIC) (in μg/mL) against a broad spectrum of bacteria, were identified, and a particular emphasis was given to compounds with high or good antimicrobial activity (typically <100 μg/mL MIC). Moreover, the antimicrobial mechanisms, particularly against bacterial pathogens, were discussed in-depth, summarizing the latest research on using natural compounds to combat pathogenic microorganisms and AMR. Furthermore, safety concerns, relevant legislation, consumer perspective, and current gaps in the valorization of plant byproducts-derived compounds were comprehensively discussed. This comprehensive review covering up-to-date information on antimicrobial activity and mechanisms represents a powerful tool for screening and selecting the most promising plant byproduct compounds and sources for developing novel antimicrobial agents.
Collapse
Affiliation(s)
- Mengyan Qian
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Balarabe B Ismail
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Department of Food Science and Technology, Bayero University Kano, Kano, Nigeria
| | - Qiao He
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Xinhui Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Zhehao Yang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Tian Ding
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Mingming Guo
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| |
Collapse
|
3
|
Zhang X, Tao F, Cui T, Luo C, Zhou Z, Huang Y, Tan L, Peng W, Wu C. Sources, Transformations, Syntheses, and Bioactivities of Monoterpene Pyridine Alkaloids and Cyclopenta[c]pyridine Derivatives. Molecules 2022; 27:7187. [PMID: 36364013 PMCID: PMC9656638 DOI: 10.3390/molecules27217187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 07/30/2023] Open
Abstract
Monoterpene pyridine alkaloids (MTPAs) are alkaloids derived from iridoid glycosides (IGs). The common molecular structure of MTPAs is the pyridine ring, while some of them have a cyclopenta[c]pyridine skeleton. Some compounds containing this structure are potentially bioactive medicinal agents. In this paper, seven drug candidates (A-G), ninety natural source products (1-90), thirty-seven synthesized compounds (91-127), as well as twenty-six key intermediates (S1-S26) were summarized. We categorized five types of MTPAs and one type of cyclopenta[c]pyridine alkaloids in all. Additionally, their possible genetic pathways were proposed. Then, the chemical transformation, biotransformation, chemical synthesis, as well as the bioactivity of MTPAs and cyclopenta[c]pyridine derivatives were analyzed and summarized. Cyclopenta[c]pyridine derivatives can be concisely and chirally synthesized, and they have shown potentials with antibacterial, insecticidal, antiviral, anti-inflammatory, and neuropharmacological activities.
Collapse
Affiliation(s)
- Xuejian Zhang
- Research and Development Centre, China Tobacco Sichuan Industrial Co., Ltd., Chengdu 610066, China
- Sichuan Sanlian New Material Co., Ltd., Chengdu 610041, China
| | - Feiyan Tao
- Research and Development Centre, China Tobacco Sichuan Industrial Co., Ltd., Chengdu 610066, China
- Sichuan Sanlian New Material Co., Ltd., Chengdu 610041, China
- Harmful Components and Tar Reduction in Cigarette Sichuan Key Laboratory, Chengdu 610066, China
| | - Tao Cui
- Research and Development Centre, China Tobacco Sichuan Industrial Co., Ltd., Chengdu 610066, China
| | - Cheng Luo
- Research and Development Centre, China Tobacco Sichuan Industrial Co., Ltd., Chengdu 610066, China
| | - Zhigang Zhou
- Research and Development Centre, China Tobacco Sichuan Industrial Co., Ltd., Chengdu 610066, China
| | - Yuchuan Huang
- Research and Development Centre, China Tobacco Sichuan Industrial Co., Ltd., Chengdu 610066, China
- Sichuan Sanlian New Material Co., Ltd., Chengdu 610041, China
| | - Lanlan Tan
- Research and Development Centre, China Tobacco Sichuan Industrial Co., Ltd., Chengdu 610066, China
- Harmful Components and Tar Reduction in Cigarette Sichuan Key Laboratory, Chengdu 610066, China
| | - Wei Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chunjie Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
4
|
Nowak B, Moniuszko-Szajwaj B, Skorupka M, Puchalska J, Kozłowska M, Bocianowski J, Kołodziejski PA, Szumacher-Strabel M, Patra AK, Stochmal A, Cieslak A. Effect of Paulownia Leaves Extract Levels on In Vitro Ruminal Fermentation, Microbial Population, Methane Production, and Fatty Acid Biohydrogenation. Molecules 2022; 27:4288. [PMID: 35807533 PMCID: PMC9268131 DOI: 10.3390/molecules27134288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/01/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
Paulownia is a fast-growing tree that produces a huge mass of leaves as waste that can be used as a feed source for ruminants. The previous study showed that phenolic compounds were the most active biological substances in Paulownia leaves, which affected the ruminal parameters and methane concentration. However, there are no scientific reports on the Paulownia leaves extract (PLE) containing phenolic compounds for their mode of action in the rumen. Phenolics constituted the main group of bioactive compounds in PLE (84.4 mg/g dry matter). PLE lowered the concentration of ammonia, modulated the VFA profile in the ruminal fluid, and decreased methane production. The PLE caused a significant reduction of in vitro dry matter degradability, reduced the number of methanogens and protozoa, and affected selected bacteria populations. PLE had a promising effect on the fatty acid profile in the ruminal fluid. Paulownia as a new dietary component or its extract as a feed additive may be used to mitigate ruminal methanogenesis, resulting in environmental protection and reducing ruminal biohydrogenation, improving milk and meat quality.
Collapse
Affiliation(s)
- Bogumiła Nowak
- Department of Animal Nutrition, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland; (B.N.); (M.S.); (J.P.); (M.K.); (M.S.-S.)
| | - Barbara Moniuszko-Szajwaj
- Department of Biochemistry, Institute of Soil Science and Plant Cultivation, State Research Institute, Czartoryskich 8, 24-100 Pulawy, Poland; (B.M.-S.); (A.S.)
| | - Maria Skorupka
- Department of Animal Nutrition, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland; (B.N.); (M.S.); (J.P.); (M.K.); (M.S.-S.)
| | - Julia Puchalska
- Department of Animal Nutrition, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland; (B.N.); (M.S.); (J.P.); (M.K.); (M.S.-S.)
| | - Martyna Kozłowska
- Department of Animal Nutrition, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland; (B.N.); (M.S.); (J.P.); (M.K.); (M.S.-S.)
| | - Jan Bocianowski
- Department of Mathematical and Statistical Methods, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637 Poznan, Poland;
| | - Paweł Antoni Kołodziejski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, Wolynska 35, 60-637 Poznan, Poland;
| | - Małgorzata Szumacher-Strabel
- Department of Animal Nutrition, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland; (B.N.); (M.S.); (J.P.); (M.K.); (M.S.-S.)
| | - Amlan Kumar Patra
- Department of Animal Nutrition, West Bengal University of Animal and Fishery Sciences, 37 K. B. Sarani, Kolkata 700037, India;
| | - Anna Stochmal
- Department of Biochemistry, Institute of Soil Science and Plant Cultivation, State Research Institute, Czartoryskich 8, 24-100 Pulawy, Poland; (B.M.-S.); (A.S.)
| | - Adam Cieslak
- Department of Animal Nutrition, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland; (B.N.); (M.S.); (J.P.); (M.K.); (M.S.-S.)
| |
Collapse
|
5
|
Stochmal A, Moniuszko-Szajwaj B, Zuchowski J, Pecio Ł, Kontek B, Szumacher-Strabel M, Olas B, Cieslak A. Qualitative and Quantitative Analysis of Secondary Metabolites in Morphological Parts of Paulownia Clon In Vitro 112 ® and Their Anticoagulant Properties in Whole Human Blood. Molecules 2022; 27:980. [PMID: 35164250 PMCID: PMC8840654 DOI: 10.3390/molecules27030980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 12/17/2022] Open
Abstract
It is not easy to find data in the scientific literature on the quantitative content of individual phytochemicals. It is possible to find groups of compounds and even individual compounds rather easily, but it is not known what their concentration is in cultivated or wild plants. Therefore, the subject of this study was to determine the content of individual compounds in the new Paulownia species, Oxytree, developed in a biotechnology laboratory in 2008 at La Mancha University in Spain. Six secondary metabolites were isolated, and their chemical structure was confirmed by spectral methods. An analytical method was developed, which was then used to determine the content of individual compounds in leaves, twigs, flowers and fruits of Paulownia Clon in Vitro 112®. No flavonoids were found in twigs and fruits of Oxytree, while the highest phenylethanoid glycosides were found in twigs. In this study, we also focused on biological properties (anticoagulant or procoagulant) of extract and four fractions (A-D) of different chemical composition from Paulownia Clon in Vitro 112 leaves using whole human blood. These properties were determined based on the thrombus-formation analysis system (T-TAS), which imitates in vivo conditions to assess whole blood thrombogenecity. We observed that three fractions (A, C and D) from leaves decrease AUC10 measured by T-TAS. In addition, fraction D rich in triterpenoids showed the strongest anticoagulant activity. However, in order to clarify the exact mechanism of action of the active substances present in this plant, studies closer to physiological conditions, i.e., in vivo studies, should be performed, which will also allow to determine the effects of their long-term effects.
Collapse
Affiliation(s)
- Anna Stochmal
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland; (A.S.); (B.M.-S.); (J.Z.); (Ł.P.)
| | - Barbara Moniuszko-Szajwaj
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland; (A.S.); (B.M.-S.); (J.Z.); (Ł.P.)
| | - Jerzy Zuchowski
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland; (A.S.); (B.M.-S.); (J.Z.); (Ł.P.)
| | - Łukasz Pecio
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland; (A.S.); (B.M.-S.); (J.Z.); (Ł.P.)
| | - Bogdan Kontek
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Łódź, Poland;
| | - Malgorzata Szumacher-Strabel
- Department of Animal Nutrition, Poznań University of Life Sciences, Wołyńska 33, 60-637 Poznań, Poland; (M.S.-S.); (A.C.)
| | - Beata Olas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Łódź, Poland;
| | - Adam Cieslak
- Department of Animal Nutrition, Poznań University of Life Sciences, Wołyńska 33, 60-637 Poznań, Poland; (M.S.-S.); (A.C.)
| |
Collapse
|
6
|
Jubair N, Rajagopal M, Chinnappan S, Abdullah NB, Fatima A. Review on the Antibacterial Mechanism of Plant-Derived Compounds against Multidrug-Resistant Bacteria (MDR). EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:3663315. [PMID: 34447454 PMCID: PMC8384518 DOI: 10.1155/2021/3663315] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/27/2021] [Accepted: 07/24/2021] [Indexed: 02/06/2023]
Abstract
Microbial resistance has progressed rapidly and is becoming the leading cause of death globally. The spread of antibiotic-resistant microorganisms has been a significant threat to the successful therapy against microbial infections. Scientists have become more concerned about the possibility of a return to the pre-antibiotic era. Thus, searching for alternatives to fight microorganisms has become a necessity. Some bacteria are naturally resistant to antibiotics, while others acquire resistance mainly by the misuse of antibiotics and the emergence of new resistant variants through mutation. Since ancient times, plants represent the leading source of drugs and alternative medicine for fighting against diseases. Plants are rich sources of valuable secondary metabolites, such as alkaloids, quinones, tannins, terpenoids, flavonoids, and polyphenols. Many studies focus on plant secondary metabolites as a potential source for antibiotic discovery. They have the required structural properties and can act by different mechanisms. This review analyses the antibiotic resistance strategies produced by multidrug-resistant bacteria and explores the phytochemicals from different classes with documented antimicrobial action against resistant bacteria, either alone or in combination with traditional antibiotics.
Collapse
Affiliation(s)
- Najwan Jubair
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Mogana Rajagopal
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Sasikala Chinnappan
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | | | - Ayesha Fatima
- Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul, Turkey
| |
Collapse
|
7
|
Alibi S, Crespo D, Navas J. Plant-Derivatives Small Molecules with Antibacterial Activity. Antibiotics (Basel) 2021; 10:231. [PMID: 33668943 PMCID: PMC7996626 DOI: 10.3390/antibiotics10030231] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 12/16/2022] Open
Abstract
The vegetal world constitutes the main factory of chemical products, in particular secondary metabolites like phenols, phenolic acids, terpenoids, and alkaloids. Many of these compounds are small molecules with antibacterial activity, although very few are actually in the market as antibiotics for clinical practice or as food preservers. The path from the detection of antibacterial activity in a plant extract to the practical application of the active(s) compound(s) is long, and goes through their identification, purification, in vitro and in vivo analysis of their biological and pharmacological properties, and validation in clinical trials. This review presents an update of the main contributions published on the subject, focusing on the compounds that showed activity against multidrug-resistant relevant bacterial human pathogens, paying attention to their mechanisms of action and synergism with classical antibiotics.
Collapse
Affiliation(s)
- Sana Alibi
- Analysis and Process Applied to the Environment UR17ES32, Higher Institute of Applied Sciences and Technology, Mahdia 5121, Tunisia;
| | - Dámaso Crespo
- BIOMEDAGE Group, Faculty of Medicine, Cantabria University, 39011 Santander, Spain;
| | - Jesús Navas
- BIOMEDAGE Group, Faculty of Medicine, Cantabria University, 39011 Santander, Spain;
- Instituto de Investigación Valdecilla (IDIVAL), 39011 Santander, Spain
| |
Collapse
|
8
|
Dembitsky VM, Ermolenko E, Savidov N, Gloriozova TA, Poroikov VV. Antiprotozoal and Antitumor Activity of Natural Polycyclic Endoperoxides: Origin, Structures and Biological Activity. Molecules 2021; 26:686. [PMID: 33525706 PMCID: PMC7865715 DOI: 10.3390/molecules26030686] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 02/08/2023] Open
Abstract
Polycyclic endoperoxides are rare natural metabolites found and isolated in plants, fungi, and marine invertebrates. The purpose of this review is a comparative analysis of the pharmacological potential of these natural products. According to PASS (Prediction of Activity Spectra for Substances) estimates, they are more likely to exhibit antiprotozoal and antitumor properties. Some of them are now widely used in clinical medicine. All polycyclic endoperoxides presented in this article demonstrate antiprotozoal activity and can be divided into three groups. The third group includes endoperoxides, which show weak antiprotozoal activity with a reliability of up to 70%, and this group includes only 1.1% of metabolites. The second group includes the largest number of endoperoxides, which are 65% and show average antiprotozoal activity with a confidence level of 70 to 90%. Lastly, the third group includes endoperoxides, which are 33.9% and show strong antiprotozoal activity with a confidence level of 90 to 99.6%. Interestingly, artemisinin and its analogs show strong antiprotozoal activity with 79 to 99.6% confidence against obligate intracellular parasites which belong to the genera Plasmodium, Toxoplasma, Leishmania, and Coccidia. In addition to antiprotozoal activities, polycyclic endoperoxides show antitumor activity in the proportion: 4.6% show weak activity with a reliability of up to 70%, 65.6% show an average activity with a reliability of 70 to 90%, and 29.8% show strong activity with a reliability of 90 to 98.3%. It should also be noted that some polycyclic endoperoxides, in addition to antiprotozoal and antitumor properties, show other strong activities with a confidence level of 90 to 97%. These include antifungal activity against the genera Aspergillus, Candida, and Cryptococcus, as well as anti-inflammatory activity. This review provides insights on further utilization of polycyclic endoperoxides by medicinal chemists, pharmacologists, and the pharmaceutical industry.
Collapse
Affiliation(s)
- Valery M. Dembitsky
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada;
- A.V. Zhirmunsky National Scientific Center of Marine Biology, 17 Palchevsky Str., 690041 Vladivostok, Russia;
| | - Ekaterina Ermolenko
- A.V. Zhirmunsky National Scientific Center of Marine Biology, 17 Palchevsky Str., 690041 Vladivostok, Russia;
| | - Nick Savidov
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada;
| | - Tatyana A. Gloriozova
- Institute of Biomedical Chemistry, 10 Pogodinskaya Str., 119121 Moscow, Russia; (T.A.G.); (V.V.P.)
| | - Vladimir V. Poroikov
- Institute of Biomedical Chemistry, 10 Pogodinskaya Str., 119121 Moscow, Russia; (T.A.G.); (V.V.P.)
| |
Collapse
|
9
|
Ermolenko EV, Imbs AB, Gloriozova TA, Poroikov VV, Sikorskaya TV, Dembitsky VM. Chemical Diversity of Soft Coral Steroids and Their Pharmacological Activities. Mar Drugs 2020; 18:613. [PMID: 33276570 PMCID: PMC7761492 DOI: 10.3390/md18120613] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/21/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023] Open
Abstract
The review is devoted to the chemical diversity of steroids produced by soft corals and their determined and potential activities. There are about 200 steroids that belong to different types of steroids such as secosteroids, spirosteroids, epoxy- and peroxy-steroids, steroid glycosides, halogenated steroids, polyoxygenated steroids and steroids containing sulfur or nitrogen heteroatoms. Of greatest interest is the pharmacological activity of these steroids. More than 40 steroids exhibit antitumor and related activity with a confidence level of over 90 percent. A group of 32 steroids shows anti-hypercholesterolemic activity with over 90 percent confidence. Ten steroids exhibit anti-inflammatory activity and 20 steroids can be classified as respiratory analeptic drugs. Several steroids exhibit rather rare and very specific activities. Steroids exhibit anti-osteoporotic properties and can be used to treat osteoporosis, as well as have strong anti-eczemic and anti-psoriatic properties and antispasmodic properties. Thus, this review is probably the first and exclusive to present the known as well as the potential pharmacological activities of 200 marine steroids.
Collapse
Affiliation(s)
- Ekaterina V. Ermolenko
- A.V. Zhirmunsky National Scientific Center of Marine Biology, 17 Palchevsky Str., 690041 Vladivostok, Russia; (E.V.E.); (A.B.I.); (T.V.S.)
| | - Andrey B. Imbs
- A.V. Zhirmunsky National Scientific Center of Marine Biology, 17 Palchevsky Str., 690041 Vladivostok, Russia; (E.V.E.); (A.B.I.); (T.V.S.)
| | - Tatyana A. Gloriozova
- Institute of Biomedical Chemistry, bldg. 8, 10 Pogodinskaya Str., 119121 Moscow, Russia; (T.A.G.); (V.V.P.)
| | - Vladimir V. Poroikov
- Institute of Biomedical Chemistry, bldg. 8, 10 Pogodinskaya Str., 119121 Moscow, Russia; (T.A.G.); (V.V.P.)
| | - Tatyana V. Sikorskaya
- A.V. Zhirmunsky National Scientific Center of Marine Biology, 17 Palchevsky Str., 690041 Vladivostok, Russia; (E.V.E.); (A.B.I.); (T.V.S.)
| | - Valery M. Dembitsky
- A.V. Zhirmunsky National Scientific Center of Marine Biology, 17 Palchevsky Str., 690041 Vladivostok, Russia; (E.V.E.); (A.B.I.); (T.V.S.)
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada
| |
Collapse
|
10
|
Casciaro B, Mangiardi L, Cappiello F, Romeo I, Loffredo MR, Iazzetti A, Calcaterra A, Goggiamani A, Ghirga F, Mangoni ML, Botta B, Quaglio D. Naturally-Occurring Alkaloids of Plant Origin as Potential Antimicrobials against Antibiotic-Resistant Infections. Molecules 2020; 25:molecules25163619. [PMID: 32784887 PMCID: PMC7466045 DOI: 10.3390/molecules25163619] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/29/2020] [Accepted: 08/08/2020] [Indexed: 02/06/2023] Open
Abstract
Antibiotic resistance is now considered a worldwide problem that puts public health at risk. The onset of bacterial strains resistant to conventional antibiotics and the scarcity of new drugs have prompted scientific research to re-evaluate natural products as molecules with high biological and chemical potential. A class of natural compounds of significant importance is represented by alkaloids derived from higher plants. In this review, we have collected data obtained from various research groups on the antimicrobial activities of these alkaloids against conventional antibiotic-resistant strains. In addition, the structure–function relationship was described and commented on, highlighting the high potential of alkaloids as antimicrobials.
Collapse
Affiliation(s)
- Bruno Casciaro
- Center For Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy; (B.C.); (L.M.); (I.R.)
| | - Laura Mangiardi
- Center For Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy; (B.C.); (L.M.); (I.R.)
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (A.I.); (A.C.); (A.G.); (D.Q.)
| | - Floriana Cappiello
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (F.C.); (M.R.L.)
| | - Isabella Romeo
- Center For Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy; (B.C.); (L.M.); (I.R.)
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (A.I.); (A.C.); (A.G.); (D.Q.)
| | - Maria Rosa Loffredo
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (F.C.); (M.R.L.)
| | - Antonia Iazzetti
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (A.I.); (A.C.); (A.G.); (D.Q.)
| | - Andrea Calcaterra
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (A.I.); (A.C.); (A.G.); (D.Q.)
| | - Antonella Goggiamani
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (A.I.); (A.C.); (A.G.); (D.Q.)
| | - Francesca Ghirga
- Center For Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy; (B.C.); (L.M.); (I.R.)
- Correspondence: (F.G.); (M.L.M.); (B.B.)
| | - Maria Luisa Mangoni
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (F.C.); (M.R.L.)
- Correspondence: (F.G.); (M.L.M.); (B.B.)
| | - Bruno Botta
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (A.I.); (A.C.); (A.G.); (D.Q.)
- Correspondence: (F.G.); (M.L.M.); (B.B.)
| | - Deborah Quaglio
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (A.I.); (A.C.); (A.G.); (D.Q.)
| |
Collapse
|
11
|
Othman L, Sleiman A, Abdel-Massih RM. Antimicrobial Activity of Polyphenols and Alkaloids in Middle Eastern Plants. Front Microbiol 2019; 10:911. [PMID: 31156565 PMCID: PMC6529554 DOI: 10.3389/fmicb.2019.00911] [Citation(s) in RCA: 261] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 04/10/2019] [Indexed: 11/13/2022] Open
Abstract
Antibiotic-resistant microorganisms have been an ever-growing concern over the past years. This has led researchers to direct their attention onto plants to be able to discover new possible antimicrobial compounds. The Middle East encompasses a wide spectrum of plant diversity with over 20,000 different species in habitats ranging from deserts to snow-capped mountains. Several plant secondary metabolites and their derivatives have been identified as possible antimicrobial agents. Among the secondary metabolites studied, alkaloids and polyphenols have shown strong antimicrobial activity. Polyphenols are one of the most numerous and diverse group of secondary metabolites; their antioxidant properties provide the basis for antimicrobial effects. Alkaloids provided the underlying structure for the development of several antibiotics with a diverse range of action. The ability of some plant secondary metabolites to act as resistance-modifying agents is a promising field in mitigating the spread of bacterial resistance.
Collapse
Affiliation(s)
- Leen Othman
- Faculty of Medicine, University of Balamand, El-Koura, Lebanon
| | - Ahmad Sleiman
- Department of Biology, University of Balamand, El-Koura, Lebanon
| | | |
Collapse
|
12
|
Majrashi TA, Zulfiqar F, Chittiboyina AG, Ali Z, Khan IA. Isoquinoline alkaloids from Asimina triloba. Nat Prod Res 2018; 33:2823-2829. [DOI: 10.1080/14786419.2018.1504045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Taghreed A. Majrashi
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi University, MS, USA
- Department of BioMolecular Sciences, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi University, MS, USA
- College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Fazila Zulfiqar
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi University, MS, USA
| | - Amar G. Chittiboyina
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi University, MS, USA
| | - Zulfiqar Ali
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi University, MS, USA
| | - Ikhlas A. Khan
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi University, MS, USA
- Department of BioMolecular Sciences, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi University, MS, USA
| |
Collapse
|
13
|
Islam W, Adnan M, Tayyab M, Hussain M, Islam SU. Phyto-metabolites; An Impregnable Shield against Plant Viruses. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801300131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Worldwide, economically important crops are under continuous threat from plant viruses as they reproduce within the host and spread via various biological and non biological means. The problem can be minimized via application of integrated management approaches involving utilization of resistant genotypes and reducing the insect vector population. But such strategies are rarely applied in developing countries and farmers prefer to use chemicals against all type of diseases. But increasing use of pesticides is a leading cause of disaster to our ecosystem so alternative means such as phyto-metabolites should be explored for eco friendly management of plant viruses. So here we have reviewed about different phyto-metabolites that can be effectively and potentially used against various plant virus diseases. We further explained about the various primary and secondary metabolites such as alkaloids, essential oils, flavonoids, polysaccharides and proteins. The review highlights the recent advances in the field of phyto-metabolites utilization against plant viruses and sums up via hoping through prospects that future drugs will be safer for human beings and our ecosystem.
Collapse
Affiliation(s)
- Waqar Islam
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Fujian Province Key Laboratory for Plant Viruses, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Muhammad Adnan
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Muhammad Tayyab
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Mubasher Hussain
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Saif Ul Islam
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Fujian Province Key Laboratory for Plant Viruses, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
14
|
Zhao L, Feng C, Wu K, Chen W, Chen Y, Hao X, Wu Y. Advances and prospects in biogenic substances against plant virus: A review. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 135:15-26. [PMID: 28043326 DOI: 10.1016/j.pestbp.2016.07.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 07/13/2016] [Accepted: 07/18/2016] [Indexed: 05/26/2023]
Abstract
Plant virus diseases, known as 'plant cancer', are the second largest plant diseases after plant fungal diseases, which have caused great damage to agricultural industry. Since now, the most direct and effective method for controlling viruses is chemotherapeutics, except for screening of anti-disease species. As the occurrence and harm of plant diseases intensify, production and consumption of pesticides have increased year by year, and greatly contributed to the fertility of agriculture, but also brought a series of problems, such as the increase of drug resistance of plant pathogens and the excessive pesticide residues. In recent years, biopesticide, as characterized by environmentally safe due to low residual, safe to non-target organism due to better specificity and not as susceptible to produce drug resistance due to diverse work ways, has gained more attention than ever before and exhibited great development potential. Now much progress has been made about researches on new biogenic anti-plant-virus substances. The types of active components include proteins, polysaccharides and small molecules (alkaloids, flavonoids, phenols, essential oils) from plants, proteins and polysaccharides from microorganisms, polysaccharides from algae and oligochitosan from animals. This study summarized the research advance of biogenic anti-plant-virus substances in recent years and put forward their further development in the future.
Collapse
Affiliation(s)
- Lei Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Crop Pest Integrated Pest Management on Crop in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chaohong Feng
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, No. 116 Huayuan Road, Jinshui District, Zhengzhou, Henan Province 450002, China
| | - Kuan Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Crop Pest Integrated Pest Management on Crop in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wenbao Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Crop Pest Integrated Pest Management on Crop in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yujia Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Crop Pest Integrated Pest Management on Crop in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xingan Hao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Crop Pest Integrated Pest Management on Crop in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yunfeng Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Crop Pest Integrated Pest Management on Crop in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
15
|
Baell JB. Feeling Nature's PAINS: Natural Products, Natural Product Drugs, and Pan Assay Interference Compounds (PAINS). JOURNAL OF NATURAL PRODUCTS 2016; 79:616-28. [PMID: 26900761 DOI: 10.1021/acs.jnatprod.5b00947] [Citation(s) in RCA: 378] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We have previously reported on classes of compounds that can interfere with bioassays via a number of different mechanisms and termed such compounds Pan Assay INterference compoundS, or PAINS. These compounds were defined on the basis of high-throughput data derived from vendor-supplied synthetics. The question therefore arises whether the concept of PAINS is relevant to compounds of natural origin. Here, it is shown that this is indeed the case, but that the context of the biological readout is an important factor that must be brought into consideration.
Collapse
Affiliation(s)
- Jonathan B Baell
- Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus) , 381 Royal Parade, Parkville, Victoria 3084, Australia
| |
Collapse
|
16
|
Dembitsky VM, Gloriozova TA, Poroikov VV. Naturally occurring plant isoquinoline N-oxide alkaloids: their pharmacological and SAR activities. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:183-202. [PMID: 25636889 DOI: 10.1016/j.phymed.2014.11.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 09/21/2014] [Accepted: 11/12/2014] [Indexed: 05/28/2023]
Abstract
The present review describes research on novel natural isoquinoline alkaloids and their N-oxides isolated from different plant species. More than 200 biological active compounds have shown confirmed antimicrobial, antibacterial, antitumor, and other activities. The structures, origins, and reported biological activities of a selection of isoquinoline N-oxides alkaloids are reviewed. With the computer program PASS some additional SAR (structure-activity relationship) activities are also predicted, which point toward new possible applications of these compounds. This review emphasizes the role of isoquinoline N-oxides alkaloids as an important source of leads for drug discovery.
Collapse
Affiliation(s)
| | - Tatyana A Gloriozova
- Institute of Biomedical Chemistry, Russian Academy of the Medical Sciences, Moscow 119121, Russia
| | - Vladimir V Poroikov
- Institute of Biomedical Chemistry, Russian Academy of the Medical Sciences, Moscow 119121, Russia
| |
Collapse
|
17
|
Alkaloids: an overview of their antibacterial, antibiotic-enhancing and antivirulence activities. Int J Antimicrob Agents 2014; 44:377-86. [PMID: 25130096 DOI: 10.1016/j.ijantimicag.2014.06.001] [Citation(s) in RCA: 355] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 06/20/2014] [Indexed: 11/22/2022]
Abstract
With reports of pandrug-resistant bacteria causing untreatable infections, the need for new antibacterial therapies is more pressing than ever. Alkaloids are a large and structurally diverse group of compounds that have served as scaffolds for important antibacterial drugs such as metronidazole and the quinolones. In this review, we highlight other alkaloids with development potential. Natural, semisynthetic and synthetic alkaloids of all classes are considered, looking first at those with direct antibacterial activity and those with antibiotic-enhancing activity. Potent examples include CJ-13,136, a novel actinomycete-derived quinolone alkaloid with a minimum inhibitory concentration of 0.1 ng/mL against Helicobacter pylori, and squalamine, a polyamine alkaloid from the dogfish shark that renders Gram-negative pathogens 16- to >32-fold more susceptible to ciprofloxacin. Where available, information on toxicity, structure-activity relationships, mechanisms of action and in vivo activity is presented. The effects of alkaloids on virulence gene regulatory systems such as quorum sensing and virulence factors such as sortases, adhesins and secretion systems are also described. The synthetic isoquinoline alkaloid virstatin, for example, inhibits the transcriptional regulator ToxT in Vibrio cholerae, preventing expression of cholera toxin and fimbriae and conferring in vivo protection against intestinal colonisation. The review concludes with implications and limitations of the described research and directions for future research.
Collapse
|
18
|
Evolution of the Total Syntheses of Batzellasides the First Marine Piperidine Iminosugar. Nat Prod Commun 2013. [DOI: 10.1177/1934578x1300800729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Batzellasides A-C are C-alkylated piperidine iminosugars isolated from a sponge Batzella sp. The first total synthesis of (+)-batzellaside B was achieved by employing a chiral pool approach starting from L-arabinose for the construction of a piperidine ring system. Subsequently a practical second-generation synthesis was developed by utilizing a Sharpless asymmetric dihydroxylation for the preparation of the common piperidine intermediate elaborated in the first-generation synthesis. The overall yield of batzellaside B was improved to 3.3% by introducing the exocyclic C8 stereocenter via facial selective hydride addition to a linear ketone. These syntheses allowed for the determination of the absolute stereochemistry of this natural product as well as for providing precious samples which would pave the way for further biological studies.
Collapse
|
19
|
Kimmel R, Kafka S, Kosmrlj J. Selective formation of glycosidic linkages of N-unsubstituted 4-hydroxyquinolin-2-(1H)-ones. Carbohydr Res 2010; 345:768-79. [PMID: 20206337 DOI: 10.1016/j.carres.2010.01.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 01/25/2010] [Accepted: 01/29/2010] [Indexed: 11/16/2022]
Abstract
A comparative study for selective glucosylation of N-unsubstituted 4-hydroxyquinolin-2(1H)-ones into 4-(tetra-O-acetyl-beta-D-glucopyranosyloxy)quinolin-2(1H)-ones is reported. Four glycosyl donors including tetra-O-acetyl-alpha-D-glucopyranosyl bromide, beta-D-glucose pentaacetate, glucose tetraacetate and tetra-O-acetyl-alpha-D-glucopyranosyl trichloroacetimidate were tested, along with different promoters and reaction conditions. The best results were obtained with tetra-O-acetyl-alpha-D-glucopyranosyl bromide with Cs(2)CO(3) in CH(3)CN. In some cases the 4-O-glucosylation of the quinolinone ring was accompanied by 2-O-glucosylation yielding the corresponding 2,4-bis(tetra-O-acetyl-beta-D-glucopyranosyloxy)quinoline. Next, 4-(tetra-O-acetyl-beta-D-glucopyranosyloxy)quinolin-2(1H)-ones were deacetylated into 4-(beta-D-glucopyranosyloxy)quinolin-2(1H)-ones with Et(3)N in MeOH. In some instances the deacetylation was accompanied by the sugar-aglycone bond cleavage. Structure elucidation, complete assignment of proton and carbon resonances as well as assignment of anomeric configuration for all the products under investigation were performed by 1D and 2D NMR spectroscopy.
Collapse
Affiliation(s)
- Roman Kimmel
- Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Zlin, Czech Republic
| | | | | |
Collapse
|
20
|
Convergent, stereoselective syntheses of the glycosidase inhibitors broussonetines C, O and P. Tetrahedron 2009. [DOI: 10.1016/j.tet.2009.10.066] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Ribes C, Falomir E, Murga J, Carda M, Alberto Marco J. Convergent, stereoselective syntheses of the glycosidase inhibitors broussonetines D and M. Org Biomol Chem 2009; 7:1355-60. [DOI: 10.1039/b821431j] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
22
|
Yin H, Zhang S, Luo X, Liu Y. Preparative isolation and purification of two benzoxazinoid glucosides from Acanthus ilicifolius L. by high-speed counter-current chromatography. J Chromatogr A 2008; 1205:177-81. [PMID: 18723179 DOI: 10.1016/j.chroma.2008.08.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 07/29/2008] [Accepted: 08/04/2008] [Indexed: 10/21/2022]
Abstract
The first preparative separation of two benzoxazinoids, (2R)-2-O-beta-d-glucopyranosyl-2H-1,4-benzoxazin-3(4H)-one (HBOA-Glc) and (2R)-2-O-beta-d-glucopyranosyl-4-hydroxy-2H-1,4-benzoxazin-3(4H)-one (DIBOA-Glc), by means of high-speed counter-current chromatography (HSCCC) from the n-butanol extract of Acanthus ilicifolius L. is presented. The two-phase solvent system containing ethyl acetate-n-butanol-0.5%NH(4)OH (2:3:5, v/v/v, system B) was selected for the one-step HSCCC separation of HBOA-Glc and DIBOA-Glc according to the partition coefficient values (K) for target compounds and the separation factor (alpha) between the two target compounds. In the one-step HSCCC separation using solvent B, from 100mg n-butanol extract of A. ilicifolius, 6.3 mg HBOA-Glc and 6.8 mg DIBOA-Glc were isolated with purities of 90.3% and 80.2%, respectively. In order to obtain the two target compounds with higher purity, a second separation process was developed comprising two steps. In the two-step separation, the sample was first pre-purified by HSCCC using ethyl acetate-n-butanol-water (2:3:5, v/v/v, system A) solvent system and then purified using solvent system B. A 100-mg amount of the n-butanol extracts of A. ilicifolius was separated to yield 5.8 mg of HBOA-Glc and 4.8 mg of DIBOA-Glc with purities of 97.1% and 94.8%, respectively, which were directly used for NMR analyses.
Collapse
Affiliation(s)
- Hao Yin
- Guangdong Key Laboratory of Marine Material Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, Guangdong, China
| | | | | | | |
Collapse
|
23
|
Abstract
The present review describes research on novel natural cyclobutane-containing alkaloids and synthetic compounds isolated from terrestrial and marine species. More than 210 compounds have been confirmed to show antimicrobial, antibacterial, anticancer, and other activities. Structures, origins, biosynthesis, photodimerization, and biological activities of a selection of cyclobutane-containing alkaloids and selected synthetic analogs of natural alkaloids are reviewed.
Collapse
|
24
|
Dembitsky VM. Astonishing diversity of natural surfactants: 7. Biologically active hemi- and monoterpenoid glycosides. Lipids 2006; 41:1-27. [PMID: 16555467 DOI: 10.1007/s11745-006-5065-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This review article presents 90 hemi- and 188 monoterpenoid glycosides, isolated and identified from plants and microorganisms, that demonstrate different biological activities. These natural bioactive glycosides are good prospects for future chemical preparations from these compounds as antioxidants and as anticancer, antimicrobial, and antibacterial agents. These glycosidic compounds have been subdivided into several groups, including hemiterpenoids; acyclic, monocyclic, and bicyclic monoterpenoids; and iridoid monoterpenoids.
Collapse
Affiliation(s)
- Valery M Dembitsky
- Department of Organic Chemistry and School of Pharmacy, Hebrew University, Jerusalem, Israel.
| |
Collapse
|