1
|
Tokarska-Schlattner M, Zeaiter N, Cunin V, Attia S, Meunier C, Kay L, Achouri A, Hiriart-Bryant E, Couturier K, Tellier C, El Harras A, Elena-Herrmann B, Khochbin S, Le Gouellec A, Schlattner U. Multi-Method Quantification of Acetyl-Coenzyme A and Further Acyl-Coenzyme A Species in Normal and Ischemic Rat Liver. Int J Mol Sci 2023; 24:14957. [PMID: 37834405 PMCID: PMC10573920 DOI: 10.3390/ijms241914957] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/29/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023] Open
Abstract
Thioesters of coenzyme A (CoA) carrying different acyl chains (acyl-CoAs) are central intermediates of many metabolic pathways and donor molecules for protein lysine acylation. Acyl-CoA species largely differ in terms of cellular concentrations and physico-chemical properties, rendering their analysis challenging. Here, we compare several approaches to quantify cellular acyl-CoA concentrations in normal and ischemic rat liver, using HPLC and LC-MS/MS for multi-acyl-CoA analysis, as well as NMR, fluorimetric and spectrophotometric techniques for the quantification of acetyl-CoAs. In particular, we describe a simple LC-MS/MS protocol that is suitable for the relative quantification of short and medium-chain acyl-CoA species. We show that ischemia induces specific changes in the short-chain acyl-CoA relative concentrations, while mild ischemia (1-2 min), although reducing succinyl-CoA, has little effects on acetyl-CoA, and even increases some acyl-CoA species upstream of the tricarboxylic acid cycle. In contrast, advanced ischemia (5-6 min) also reduces acetyl-CoA levels. Our approach provides the keys to accessing the acyl-CoA metabolome for a more in-depth analysis of metabolism, protein acylation and epigenetics.
Collapse
Affiliation(s)
- Malgorzata Tokarska-Schlattner
- University Grenoble Alpes, Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), 38058 Grenoble, France; (N.Z.); (S.A.); (L.K.); (A.A.); (E.H.-B.); (K.C.); (C.T.)
| | - Nour Zeaiter
- University Grenoble Alpes, Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), 38058 Grenoble, France; (N.Z.); (S.A.); (L.K.); (A.A.); (E.H.-B.); (K.C.); (C.T.)
| | - Valérie Cunin
- University Grenoble Alpes, CNRS UMR 5525, Laboratory TIMC—Translational Microbiology, Evolution, Engineering (TREE), Service de Biochimie, Biologie Moléculaire et Toxicologie Environnementale, CHU Grenoble-Alpes, 38058 Grenoble, France; (V.C.); (C.M.); (A.L.G.)
| | - Stéphane Attia
- University Grenoble Alpes, Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), 38058 Grenoble, France; (N.Z.); (S.A.); (L.K.); (A.A.); (E.H.-B.); (K.C.); (C.T.)
| | - Cécile Meunier
- University Grenoble Alpes, CNRS UMR 5525, Laboratory TIMC—Translational Microbiology, Evolution, Engineering (TREE), Service de Biochimie, Biologie Moléculaire et Toxicologie Environnementale, CHU Grenoble-Alpes, 38058 Grenoble, France; (V.C.); (C.M.); (A.L.G.)
| | - Laurence Kay
- University Grenoble Alpes, Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), 38058 Grenoble, France; (N.Z.); (S.A.); (L.K.); (A.A.); (E.H.-B.); (K.C.); (C.T.)
| | - Amel Achouri
- University Grenoble Alpes, Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), 38058 Grenoble, France; (N.Z.); (S.A.); (L.K.); (A.A.); (E.H.-B.); (K.C.); (C.T.)
| | - Edwige Hiriart-Bryant
- University Grenoble Alpes, Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), 38058 Grenoble, France; (N.Z.); (S.A.); (L.K.); (A.A.); (E.H.-B.); (K.C.); (C.T.)
| | - Karine Couturier
- University Grenoble Alpes, Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), 38058 Grenoble, France; (N.Z.); (S.A.); (L.K.); (A.A.); (E.H.-B.); (K.C.); (C.T.)
| | - Cindy Tellier
- University Grenoble Alpes, Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), 38058 Grenoble, France; (N.Z.); (S.A.); (L.K.); (A.A.); (E.H.-B.); (K.C.); (C.T.)
| | - Abderrafek El Harras
- University Grenoble Alpes, Inserm U1209 and CNRS UMR5309, Institute for Advanced Biosciences (IAB), 38058 Grenoble, France; (A.E.H.); (B.E.-H.); (S.K.)
| | - Bénédicte Elena-Herrmann
- University Grenoble Alpes, Inserm U1209 and CNRS UMR5309, Institute for Advanced Biosciences (IAB), 38058 Grenoble, France; (A.E.H.); (B.E.-H.); (S.K.)
| | - Saadi Khochbin
- University Grenoble Alpes, Inserm U1209 and CNRS UMR5309, Institute for Advanced Biosciences (IAB), 38058 Grenoble, France; (A.E.H.); (B.E.-H.); (S.K.)
| | - Audrey Le Gouellec
- University Grenoble Alpes, CNRS UMR 5525, Laboratory TIMC—Translational Microbiology, Evolution, Engineering (TREE), Service de Biochimie, Biologie Moléculaire et Toxicologie Environnementale, CHU Grenoble-Alpes, 38058 Grenoble, France; (V.C.); (C.M.); (A.L.G.)
| | - Uwe Schlattner
- University Grenoble Alpes, Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), 38058 Grenoble, France; (N.Z.); (S.A.); (L.K.); (A.A.); (E.H.-B.); (K.C.); (C.T.)
- Institut Universitaire de France (IUF), 75231 Paris, France
| |
Collapse
|
2
|
Berndt N, Eckstein J, Wallach I, Nordmeyer S, Kelm M, Kirchner M, Goubergrits L, Schafstedde M, Hennemuth A, Kraus M, Grune T, Mertins P, Kuehne T, Holzhütter HG. CARDIOKIN1: Computational Assessment of Myocardial Metabolic Capability in Healthy Controls and Patients With Valve Diseases. Circulation 2021; 144:1926-1939. [PMID: 34762513 PMCID: PMC8663543 DOI: 10.1161/circulationaha.121.055646] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Supplemental Digital Content is available in the text. Background: Many heart diseases can result in reduced pumping capacity of the heart muscle. A mismatch between ATP demand and ATP production of cardiomyocytes is one of the possible causes. Assessment of the relation between myocardial ATP production (MVATP) and cardiac workload is important for better understanding disease development and choice of nutritional or pharmacologic treatment strategies. Because there is no method for measuring MVATP in vivo, the use of physiology-based metabolic models in conjunction with protein abundance data is an attractive approach. METHOD: We developed a comprehensive kinetic model of cardiac energy metabolism (CARDIOKIN1) that recapitulates numerous experimental findings on cardiac metabolism obtained with isolated cardiomyocytes, perfused animal hearts, and in vivo studies with humans. We used the model to assess the energy status of the left ventricle of healthy participants and patients with aortic stenosis and mitral valve insufficiency. Maximal enzyme activities were individually scaled by means of protein abundances in left ventricle tissue samples. The energy status of the left ventricle was quantified by the ATP consumption at rest (MVATP[rest]), at maximal workload (MVATP[max]), and by the myocardial ATP production reserve, representing the span between MVATP(rest) and MVATP(max). Results: Compared with controls, in both groups of patients, MVATP(rest) was increased and MVATP(max) was decreased, resulting in a decreased myocardial ATP production reserve, although all patients had preserved ejection fraction. The variance of the energetic status was high, ranging from decreased to normal values. In both patient groups, the energetic status was tightly associated with mechanic energy demand. A decrease of MVATP(max) was associated with a decrease of the cardiac output, indicating that cardiac functionality and energetic performance of the ventricle are closely coupled. Conclusions: Our analysis suggests that the ATP-producing capacity of the left ventricle of patients with valvular dysfunction is generally diminished and correlates positively with mechanical energy demand and cardiac output. However, large differences exist in the energetic state of the myocardium even in patients with similar clinical or image-based markers of hypertrophy and pump function. Registration: URL: https://www.clinicaltrials.gov; Unique identifiers: NCT03172338 and NCT04068740.
Collapse
Affiliation(s)
- Nikolaus Berndt
- Institute of Computer-assisted Cardiovascular Medicine, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Johannes Eckstein
- Institute of Computer-assisted Cardiovascular Medicine, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Institute of Biochemistry, Charitá - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Iwona Wallach
- Institute of Computer-assisted Cardiovascular Medicine, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Institute of Biochemistry, Charitá - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sarah Nordmeyer
- Institute of Computer-assisted Cardiovascular Medicine, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of Congenital Heart Disease - Pediatric Cardiology, Deutsches Herzzentrum Berlin (DHZB), Berlin, Germany
| | - Marcus Kelm
- Institute of Computer-assisted Cardiovascular Medicine, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of Congenital Heart Disease - Pediatric Cardiology, Deutsches Herzzentrum Berlin (DHZB), Berlin, Germany; Deutsches Zentrum für Herz-Kreislauf-Forschung e. V. (DZHK), Berlin, Germany; Berlin Institute of Health (BIH), Berlin, Germany
| | - Marieluise Kirchner
- Berlin Institute of Health (BIH), Berlin, Germany; Proteomics Platform, Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Leonid Goubergrits
- Institute of Computer-assisted Cardiovascular Medicine, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Einstein Center Digital Future, Berlin, Germany
| | - Marie Schafstedde
- Institute of Computer-assisted Cardiovascular Medicine, Charité; Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of Congenital Heart Disease - Pediatric Cardiology, Deutsches Herzzentrum Berlin (DHZB), Berlin, Germany; Berlin Institute of Health (BIH), Berlin, Germany
| | - Anja Hennemuth
- Institute of Computer-assisted Cardiovascular Medicine, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Milena Kraus
- Digital Health Center, Hasso Plattner Institute, University of Potsdam, Germany
| | - Tilman Grune
- Deutsches Zentrum für Herz-Kreislauf-Forschung e. V. (DZHK), Berlin, Germany; Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
| | - Philipp Mertins
- Berlin Institute of Health (BIH), Berlin, Germany; Proteomics Platform, Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Titus Kuehne
- Institute of Computer-assisted Cardiovascular Medicine, Charité; Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of Congenital Heart Disease - Pediatric Cardiology, Deutsches Herzzentrum Berlin (DHZB), Berlin, Germany; Deutsches Zentrum für Herz-Kreislauf-Forschung e. V. (DZHK), Berlin, Germany
| | - Hermann-Georg Holzhütter
- Institute of Biochemistry, Charitá - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
3
|
Brose SA, Golovko MY. Eicosanoid post-mortem induction in kidney tissue is prevented by microwave irradiation. Prostaglandins Leukot Essent Fatty Acids 2013; 89:313-8. [PMID: 24113545 PMCID: PMC3825172 DOI: 10.1016/j.plefa.2013.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/07/2013] [Accepted: 09/07/2013] [Indexed: 10/26/2022]
Abstract
Previously, we, and others, have demonstrated a rapid and significant post-mortem increase in brain prostanoid (PG) levels analyzed without microwave fixation, and this is not the result of PG trapping or destruction in microwave-irradiated brain tissue. In the present study, we demonstrate a dramatic increase in kidney eicosanoid levels when analyzed without microwave fixation which was mainly accounted for by the 142-, 81-, and 62-fold increase in medullary 6-ketoPGF1α, PGE2, and PGF2α, levels, respectively, while PGD2 and TXB2 levels were increased ~7-fold. Whole kidney and cortex PG were also significantly increased in non-microwaved tissue, but at lesser extent. Arachidonic acid and the lipoxygenase products hydroxyeicosatetraenoic acids (HETE) were also induced in whole kidney, cortex, and medulla 1.5- to 5.5-fold depending upon tissue and metabolite. Cyclooxygenase inhibition with indomethacin decreased PG mass in non-microwaved tissue to basal levels, however HETE and arachidonic acid were not decreased. These data demonstrate the critical importance of kidney tissue fixation to limiting artifacts during kidney eicosanoid analysis.
Collapse
Affiliation(s)
| | - Mikhail Y. Golovko
- Corresponding author: Department of Pharmacology, Physiology, and Therapeutics School of Medicine and Health Sciences University of North Dakota 501 N. Columbia Rd. Grand Forks, ND 58202-9037 701-777-2305 phone 701-777-4490 fax
| |
Collapse
|
4
|
Murphy EJ. Brain fixation for analysis of brain lipid-mediators of signal transduction and brain eicosanoids requires head-focused microwave irradiation: an historical perspective. Prostaglandins Other Lipid Mediat 2009; 91:63-7. [PMID: 19660569 DOI: 10.1016/j.prostaglandins.2009.07.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 06/30/2009] [Accepted: 07/03/2009] [Indexed: 11/26/2022]
Abstract
To microwave or not to microwave, that is the question that has confounded the neurochemist as the quest for reducing changes in neurochemicals associated with post-mortem delay has evolved over the years. Rapid changes in brain constituents during the post-mortem delay have been recognized for years as a problem. What is real and what is artifact? What are true basal levels of molecules found in the brain? In the 1920s, neurochemists recognized this issue and determined freezing of the brain was most advantageous for halting rapid breakdown of some molecules and rapid formation of others. By the early 1970s, a number of laboratories noted that freezing the brain in situ or upon removing it from the cranial vault was not sufficient to reduce alterations in brain chemistry. Groups began experimenting with two different techniques to attack this problem, freeze-blowing and head-focused microwave irradiation. My laboratory and others have found that the utilization of head-focused microwave irradiation to halt enzymic alterations in lipids is an essential tool to limit alterations post-mortem. Recently, we and others have demonstrated that this technique is essential in reliably assessing brain eicosanoid levels, without such fixation true basal levels of eicosanoids are impossible to determine and the high concentrations seen in some paradigms may be merely an artifact produced during handling of the brain. Thus, for eicosanoid analysis and other applications in measuring brain lipid levels, head-focused microwave irradiation is an essential tool for the lipid neurochemist.
Collapse
Affiliation(s)
- Eric J Murphy
- Department of Pharmacology, Physiology, and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, 501 N. Columbia Rd., Room 3700, Grand Forks, ND 58202-9037, USA.
| |
Collapse
|
5
|
Igarashi M, Ma K, Chang L, Bell JM, Rapoport SI. Rat heart cannot synthesize docosahexaenoic acid from circulating alpha-linolenic acid because it lacks elongase-2. J Lipid Res 2008; 49:1735-45. [PMID: 18456640 PMCID: PMC6075821 DOI: 10.1194/jlr.m800093-jlr200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The extent to which the heart can convert alpha-linolenic acid (alpha-LNA, 18:3n-3) to longer chain n-3 PUFAs is not known. Conversion rates can be measured in vivo using radiolabeled alpha-LNA and a kinetic fatty acid model. [1-(14)C]alpha-LNA was infused intravenously for 5 min in unanesthetized rats that had been fed an n-3 PUFA-adequate [4.6% alpha-LNA, no docosahexaenoic acid (DHA, 22:6n-3)] or n-3 PUFA-deficient diet (0.2% alpha-LNA, nor DHA) for 15 weeks after weaning. Arterial plasma was sampled, as was the heart after high-energy microwaving. Rates of conversion of alpha-LNA to longer chain n-3 PUFAs were low, and DHA was not synthesized at all in the heart. Most alpha-LNA within the heart had been beta-oxidized. In deprived compared with adequate rats, DHA concentrations in plasma and heart were both reduced by >90%, whereas heart and plasma levels of docosapentaenoic acid (DPAn-6, 22:5n-6) were elevated. Dietary deprivation did not affect cardiac mRNA levels of elongase-5 or desaturases Delta6 and Delta5, but elongase-2 mRNA could not be detected. In summary, the rat heart does not synthesize DHA from alpha-LNA, owing to the absence of elongase-2, but must obtain its DHA entirely from plasma. Dietary n-3 PUFA deprivation markedly reduces heart DHA and increases heart DPAn-6, which may make the heart vulnerable to different insults.
Collapse
Affiliation(s)
- Miki Igarashi
- Brain Physiology and Metabolism Section, National Institute on Aging, NIH, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
6
|
Sun X, Yao H, Zhou D, Gu X, Haddad GG. Modulation of hSlo BK current inactivation by fatty acid esters of CoA. J Neurochem 2007; 104:1394-403. [PMID: 18005338 DOI: 10.1111/j.1471-4159.2007.05083.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lipid metabolism influences membrane proteins, including ion channels, in health and disease. Fatty acid esters of CoA are important intermediates in fatty acid metabolism and lipid biosynthesis. In the present study, we examined the effect of acyl-CoAs on hSlo BK currents. Arachidonoyl-CoA (C(20)-CoA) induced beta2-dependent inhibition of hSlo-alpha current when applied intracellularly but not extracellularly. This action was also mimicked by other long-chain acyl-CoAs such as oleoyl-CoA (C(18)-CoA) and palmitoyl-CoA (C(16)-CoA), but not acetyl-CoA (C(2)-CoA, shorter chain), suggesting that the length of acyl chains, rather than CoA headgroups, is critical. When hSlo-alpha inactivation was induced by a free synthetic cationic beta2 NH2-terminus inactivation ball peptide, long-chain acyl-CoAs inhibited hSlo-alpha current and facilitated inactivation. The precursor fatty acids also facilitated the ball peptide-induced inactivation in a chain length-dependent manner, whereas sphingosine (positively charged) slowed this inactivation. When the beta2-induced inactivation was compared with that of the ball peptide, there was a negative shift in the steady state inactivation, slower recovery, and a reduced voltage-dependence of inactivation onset. These data suggest that electrostatic interactions with the cytosolic inactivation domain of beta2 mediate acyl-CoA modulation of BK currents. BK channel inactivation may be a specific target for lipid modulation in physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Xiaolu Sun
- Department of Pediatrics (Section of Respiratory Medicine), University of California San Diego, La Jolla, California 92037-0735, USA
| | | | | | | | | |
Collapse
|
7
|
Lee HJ, Mayette J, Rapoport SI, Bazinet RP. Selective remodeling of cardiolipin fatty acids in the aged rat heart. Lipids Health Dis 2006; 5:2. [PMID: 16430781 PMCID: PMC1402292 DOI: 10.1186/1476-511x-5-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Accepted: 01/23/2006] [Indexed: 11/15/2022] Open
Abstract
Background The heart is rich in cardiolipin, a phospholipid acylated in four sites, predominately with linoleic acid. Whether or not aging alters the composition of cardiolipin acyl chains is controversial. We therefore measured the fatty acid concentration of cardiolipin in hearts of 4, 12 and 24 month old rats that consumed one diet, adequate in fatty acids for the duration of their life. Results The concentration (nmol/g) of linoleic acid was decreased in 24 month old rats (3965 ± 617, mean ± SD) vs 4 month old rats (5525 ± 656), while the concentrations of arachidonic and docosahexaenoic acid were increased in 24 month old rats (79 ± 9 vs 178 ± 27 and 104 ± 16 vs 307 ± 68 for arachidonic and docosahexaenoic acids, 4 months vs 24 months, respectively). Similar changes were not observed in ethanolamine glycerophospholipids or plasma unesterified fatty acids, suggesting specificity of these effects to cardiolipin. Conclusion These results demonstrate that cardiolipin remodeling occurs with aging, specifically an increase in highly unsaturated fatty acids.
Collapse
Affiliation(s)
- Ho-Joo Lee
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, USA
| | - Jana Mayette
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, USA
| | - Stanley I Rapoport
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, USA
| | - Richard P Bazinet
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, USA
| |
Collapse
|