1
|
Chen Z, Ding H, Zhu H, Huang S, Yan C, Chen ZY. Additional mechanism for selective absorption of cholesterol and phytosterols. Food Chem 2024; 458:140300. [PMID: 38964108 DOI: 10.1016/j.foodchem.2024.140300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/16/2024] [Accepted: 06/29/2024] [Indexed: 07/06/2024]
Abstract
Phytosterols are structurally similar to cholesterol but they are much less absorbed (<2%) than cholesterol (>50%) in the intestine. We hypothesize that phytosterols are poor substrates of intestinal acyl-CoA: cholesterol acyltransferase 2 (ACAT2), and thus minimal phytosterol esters are formed and packed into chylomicrons, leading to their low absorption. Two isotope tracing models, including a radioactive hamster microsomal ACAT2 reaction model and a differentiated Caco-2 cell model, were established to examine the specificity of ACAT2 to various sterols, including cholesterol, sitosterol, stigmasterol, and campesterol. Both models consistently demonstrated that only cholesterol but not phytosterols could be efficiently esterified by ACAT2 in a time- and dose-dependent manner. Molecular docking further suggested that unfavorable interactions existed between ACAT2 and phytosterols. In conclusion, phytosterols are poor substrates of ACAT2 and thus minimally absorbed. This work provides a theoretical basis for the use of phytosterol-based supplements in treating dyslipidemia and preventing heart diseases.
Collapse
Affiliation(s)
- Zixing Chen
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China..
| | - Huafang Ding
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China..
| | - Hanyue Zhu
- School of Food Science and Engineering / Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, Guangdong, China
| | - Shouhe Huang
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China..
| | - Chi Yan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China..
| | - Zhen-Yu Chen
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China..
| |
Collapse
|
2
|
Lifsey HC, Kaur R, Thompson BH, Bennett L, Temel RE, Graf GA. Stigmasterol stimulates transintestinal cholesterol excretion independent of liver X receptor activation in the small intestine. J Nutr Biochem 2019; 76:108263. [PMID: 31759199 DOI: 10.1016/j.jnutbio.2019.108263] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 10/14/2019] [Accepted: 10/29/2019] [Indexed: 02/09/2023]
Abstract
Despite advances in healthcare, cardiovascular disease (CVD) remains the leading cause of death in the United States. Elevated levels of plasma cholesterol are highly predictive of CVD and stroke and are the principal driver of atherosclerosis. Unfortunately, current cholesterol lowering agents, such as statins, are not known to reverse atherosclerotic disease once it has been established. In preclinical models, agonists of nuclear receptor, LXR, have been shown to reduce and reverse atherosclerosis. Phytosterols are bioactive non-cholesterol sterols that act as LXR agonists and regulate cholesterol metabolism and transport. We hypothesized that stigmasterol would act as an LXR agonist and alter intestinal cholesterol secretion to promote cholesterol elimination. Mice were fed a control diet, or a diet supplemented with stigmasterol (0.3% w/w) or T0901317 (0.015% w/w), a known LXR agonist. In this experiment we analyzed the sterol content of bile, intestinal perfusate, plasma, and feces. Additionally, the liver and small intestine were analyzed for relative levels of transcripts known to be regulated by LXR. We observed that T0901317 robustly promoted cholesterol elimination and acted as a strong LXR agonist. Stigmasterol promoted transintestinal cholesterol secretion through an LXR-independent pathway.
Collapse
Affiliation(s)
| | - Rupinder Kaur
- Department of Pharmaceutical Sciences, College of Pharmacy
| | | | - Lisa Bennett
- Department of Pharmaceutical Sciences, College of Pharmacy
| | - Ryan E Temel
- Department of Physiology, College of Medicine, University of Kentucky; Saha Cardiovascular Research Center
| | - Gregory A Graf
- Department of Pharmaceutical Sciences, College of Pharmacy; Saha Cardiovascular Research Center; Barnstable Brown Diabetes and Obesity Center.
| |
Collapse
|
3
|
Missense Mutation inAbcg5in SHRSP Rats Does Not Accelerate Intestinal Absorption of Plant Sterols: Comparison with Wistar Rats. Biosci Biotechnol Biochem 2014; 73:361-5. [DOI: 10.1271/bbb.80594] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
4
|
SHRSP/Izm and WKY/NCrlCrlj rats having a missense mutation in Abcg5 deposited plant sterols in the body, but did not change their biliary secretion and lymphatic absorption-comparison with Jcl:Wistar and WKY/Izm rats. Biosci Biotechnol Biochem 2012; 76:660-4. [PMID: 22484926 DOI: 10.1271/bbb.110667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We had previously found plant sterols deposited in the bodies of stroke-prone spontaneously hypertensive rats (SHRSP)/Sea and Wistar Kyoto (WKY)/NCrlCrlj rats that had a missense mutation in the Abcg5 cDNA sequence that coded for ATP-binding cassette transporter (ABC) G5. We used SHRSP/Izm, WKY/NCrlCrlj, and WKY/Izm rats in the present study to determine the mechanisms for plant sterol deposition in the body. Jcl:Wistar rats were used as a control strain. A diet containing 0.5% plant sterols fed to the rats resulted in plant sterol deposition in the body of SHRSP/Izm, but not in WKY/Izm or Jcl:Wistar rats. Only a single non-synonymous nucleotide change, G1747T, resulting in a conservative cysteine substitution for glycine at amino acid 583 (Gly583Cys) in Abcg5 cDNA was identified in the SHRSP/Izm and WKY/NCrlCrlj rats. However, this mutation was not found in the WKY/Izm or Jcl:Wistar rats. No significant difference in the biliary secretion or lymphatic absorption of plant sterols was apparent between the rat strains with or without the missense mutation in Abcg5 cDNA. Our observations suggest that plant sterol deposition in rat strains with the missense mutation in Abcg5 cDNA can occur, despite there being no significant change in the biliary secretion or lymphatic absorption of plant sterols.
Collapse
|
5
|
Abstract
Dysregulation of cholesterol balance contributes significantly to atherosclerotic cardiovascular disease (ASCVD), the leading cause of death in the United States. The intestine has the unique capability to act as a gatekeeper for entry of cholesterol into the body, and inhibition of intestinal cholesterol absorption is now widely regarded as an attractive non-statin therapeutic strategy for ASCVD prevention. In this chapter we discuss the current state of knowledge regarding sterol transport across the intestinal brush border membrane. The purpose of this work is to summarize substantial progress made in the last decade in regards to protein-mediated sterol trafficking, and to discuss this in the context of human disease.
Collapse
Affiliation(s)
- J. Mark Brown
- Department of Pathology Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Liqing Yu
- Department of Pathology Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
6
|
Carr TP, Krogstrand KLS, Schlegel VL, Fernandez ML. Stearate-enriched plant sterol esters lower serum LDL cholesterol concentration in normo- and hypercholesterolemic adults. J Nutr 2009; 139:1445-50. [PMID: 19535421 DOI: 10.3945/jn.109.106328] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Studies in our laboratory have previously demonstrated in hamsters a superior cholesterol-lowering ability of plant sterol (PS) esters enriched in stearate compared with linoleate. We therefore conducted a randomized, double-blind, 2-group parallel, placebo-controlled study to test the cholesterol-lowering properties of stearate-enriched PS esters in normo- and hypercholesterolemic adults. Thirty-two adults, 16 per group with equal number of males and females in each group, participated in the 4-wk study. Participants consumed 3 g/d (1 g three times per day with meals) of either PS esters or placebo delivered in capsules. Serum LDL cholesterol concentration significantly decreased 0.42 mmol/L (11%) and the LDL:HDL cholesterol ratio decreased 10% with PS ester supplementation, whereas LDL particle size and lipoprotein subclass particle concentrations (as measured by NMR) were not affected. The percent change in LDL cholesterol was positively correlated with baseline lathosterol concentration (r = 0.729; P = 0.0014), indicating an association between the magnitude of LDL change and the rate of whole-body cholesterol synthesis. Serum campesterol (but not sitosterol) concentration significantly increased in the PS ester group. Serum tocopherol, retinol, and beta-carotene concentrations were not affected by PS ester supplementation. Thus, our findings demonstrate the usefulness of a novel stearate-enriched PS ester compound in decreasing LDL cholesterol in both normo- and hypercholesterolemic adults. The extent to which PS ester fatty acid composition affects intestinal micelle formation and cholesterol absorption in humans requires further study.
Collapse
Affiliation(s)
- Timothy P Carr
- Departments of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE 68583, USA.
| | | | | | | |
Collapse
|
7
|
Abstract
Phytosterol and stanol (or phytosterols) consumption reduces intestinal cholesterol absorption, leading to decreased blood LDL-cholesterol levels and lowered cardiovascular disease risk. However, other biological roles for plant sterols and stanols have also been proposed. The objective of this review is to critically examine results from recent research regarding the potential effects and mechanisms of action of phytosterols on forms of cancer. Considerable emerging evidence supports the inhibitory actions of phytosterols on lung, stomach, as well as ovarian and breast cancer. Phytosterols seem to act through multiple mechanisms of action, including inhibition of carcinogen production, cancer-cell growth, angiogenesis, invasion and metastasis, and through the promotion of apoptosis of cancerous cells. Phytosterol consumption may also increase the activity of antioxidant enzymes and thereby reduce oxidative stress. In addition to altering cell-membrane structure and function, phytosterols probably promote apoptosis by lowering blood cholesterol levels. Moreover, consumption of phytosterols by healthy humans at the recommended level of 2 g per day does not cause any major health risks. In summary, mounting evidence supports a role for phytosterols in protecting against cancer development. Hence, phytosterols could be incorporated in diet not only to lower the cardiovascular disease risk, but also to potentially prevent cancer development.
Collapse
|
8
|
Sabeva NS, Liu J, Graf GA. The ABCG5 ABCG8 sterol transporter and phytosterols: implications for cardiometabolic disease. Curr Opin Endocrinol Diabetes Obes 2009; 16:172-7. [PMID: 19306529 PMCID: PMC4097028 DOI: 10.1097/med.0b013e3283292312] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW This review summarizes recent developments in the activity, regulation, and physiology of the ABCG5 ABCG8 (G5G8) transporter and the use of its xenobiotic substrates, phytosterols, as cholesterol lowering agents in the treatment of cardiovascular disease. Recent progress has significant implications for the role of G5G8 and its substrates in complications associated with features of the metabolic syndrome. RECENT FINDINGS Recent reports expand the clinical presentation of sitosterolemia to include platelet and adrenal dysfunction. The G5G8 sterol transporter is critical to hepatobiliary excretion of cholesterol under nonpathological conditions and has been linked to the cholesterol gallstone susceptibility. Finally, the cardiovascular benefits of cholesterol lowering through the use of phytosterol supplements were offset by vascular dysfunction, suggesting that alternative strategies to reduced cholesterol absorption offer greater benefit. SUMMARY Insulin resistance elevates G5G8 and increases susceptibility to cholesterol gallstones. However, this transporter is critical for the exclusion of phytosterols from the absorptive pathways in the intestine. Challenging the limits of this protective mechanism through phytosterol supplementation diminishes the cardioprotective benefits of cholesterol lowering in mouse models of cardiovascular disease.
Collapse
Affiliation(s)
- Nadezhda S Sabeva
- University of Kentucky, College of Pharmacy, Pharmaceutical Sciences, Lexington, KY 40536-0082, USA
| | | | | |
Collapse
|
9
|
Brown JM, Yu L. Opposing Gatekeepers of Apical Sterol Transport: Niemann-Pick C1-Like 1 (NPC1L1) and ATP-Binding Cassette Transporters G5 and G8 (ABCG5/ABCG8). IMMUNOLOGY, ENDOCRINE & METABOLIC AGENTS IN MEDICINAL CHEMISTRY 2009; 9:18-29. [PMID: 20174593 PMCID: PMC2824437 DOI: 10.2174/187152209788009797] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cholesterol is essential for the growth and function of all mammalian cells, but abnormally elevated levels of circulating low-density lipoprotein cholesterol (LDL-C) are a major risk factor for the development of atherosclerotic cardiovascular disease (ASCVD). For many years, statin drugs have been used to effectively lower LDL-C, but ASCVD still persists in most of the world. Hence, additional LDL-C lowering is now recommended, and the search for therapeutic strategies that work in synergy with statins has now begun. Intestinal absorption and biliary excretion of cholesterol represent two major pathways and continue to show promise as druggable processes. Importantly, both of these complex physiological pathways are tightly regulated by key proteins located at the apical surface of the small intestine and the liver. One of these proteins, the target of ezetimibe Niemann-Pick C1-Like 1 (NPC1L1), was recently identified to be essential for intestinal cholesterol absorption and protect against excessive biliary sterol loss. In direct opposition of NPC1L1, the heterodimer of ATP-binding cassette transporters G5 and G8 (ABCG5/ABCG8) has been shown to be critical for promoting biliary cholesterol secretion in the liver, and has also been proposed to play a direct role in intestinal disposal of sterols. The purpose of this review is to summarize the current state of knowledge regarding the function of these opposing apical cholesterol transporters, and provide a framework for future studies examining these proteins.
Collapse
Affiliation(s)
- J. Mark Brown
- Department of Pathology-Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Liqing Yu
- Department of Pathology-Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
10
|
|