1
|
Xiao D, Chang W. Phosphatidylserine in Diabetes Research. Mol Pharm 2023; 20:82-89. [PMID: 36480277 DOI: 10.1021/acs.molpharmaceut.2c00707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Phospholipids are lipids that constitute the basic structure of cell membranes. In-depth research has shown that in addition to supporting cell structures, phospholipids participate in multiple cellular processes, including promoting cell signal transduction, guiding protein translocation, activating enzymatic activity, and eliminating dysfunctional/redundant organelles/cells. Diabetes is a chronic metabolic disease with a complicated etiology and pathology. Studies have shown that the level of certain phospholipids, for example, the ratio of phosphatidylcholine (PC) to phosphatidylethanolamine (PE) in liver tissue, is negatively associated with insulin sensitivity. In addition, PS is a phospholipid exhibiting extensive cellular functions in diabetes. For this review, we analyzed many PS studies focusing on diabetes and insulin sensitivity in recent years and found that PS participates in controlling insulin secretion, regulating insulin signaling transduction, and participating in the progression of diabetic complications by mediating coagulation disorders in the microvasculature or targeting mitochondria. Moreover, PS supplements in food and PS-containing liposomes have been shown to protect against type 1 and type 2 diabetes (T1D and T2D, respectively) in animal studies. Therefore, by summarizing the regulatory roles played by PS in diabetes and the potential of successfully using PS or PS-containing liposomes for diabetic therapy, we hope to provide new ideas for further research into the mechanisms of diabetes and for drug development for treating diabetes and its complications.
Collapse
Affiliation(s)
- Dandan Xiao
- Institute for Translational Medicine, The Affiliated Hospital, College of Medicine, Qingdao University, Qingdao 266071, China.,School of Basic Medical Sciences, College of Medicine, Qingdao University, Qingdao 266071, China
| | - Wenguang Chang
- Institute for Translational Medicine, The Affiliated Hospital, College of Medicine, Qingdao University, Qingdao 266071, China
| |
Collapse
|
2
|
Kumar A, Sundaram K, Mu J, Dryden GW, Sriwastva MK, Lei C, Zhang L, Qiu X, Xu F, Yan J, Zhang X, Park JW, Merchant ML, Bohler HCL, Wang B, Zhang S, Qin C, Xu Z, Han X, McClain CJ, Teng Y, Zhang HG. High-fat diet-induced upregulation of exosomal phosphatidylcholine contributes to insulin resistance. Nat Commun 2021; 12:213. [PMID: 33431899 PMCID: PMC7801461 DOI: 10.1038/s41467-020-20500-w] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 11/30/2020] [Indexed: 12/15/2022] Open
Abstract
High-fat diet (HFD) decreases insulin sensitivity. How high-fat diet causes insulin resistance is largely unknown. Here, we show that lean mice become insulin resistant after being administered exosomes isolated from the feces of obese mice fed a HFD or from patients with type II diabetes. HFD altered the lipid composition of exosomes from predominantly phosphatidylethanolamine (PE) in exosomes from lean animals (L-Exo) to phosphatidylcholine (PC) in exosomes from obese animals (H-Exo). Mechanistically, we show that intestinal H-Exo is taken up by macrophages and hepatocytes, leading to inhibition of the insulin signaling pathway. Moreover, exosome-derived PC binds to and activates AhR, leading to inhibition of the expression of genes essential for activation of the insulin signaling pathway, including IRS-2, and its downstream genes PI3K and Akt. Together, our results reveal HFD-induced exosomes as potential contributors to the development of insulin resistance. Intestinal exosomes thus have potential as broad therapeutic targets.
Collapse
Affiliation(s)
- Anil Kumar
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Kumaran Sundaram
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Jingyao Mu
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Gerald W Dryden
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
- Department of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Mukesh K Sriwastva
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Chao Lei
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Lifeng Zhang
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Xiaolan Qiu
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Fangyi Xu
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Jun Yan
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Xiang Zhang
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - Juw Won Park
- Department of Computer Engineering and Computer Science, University of Louisville, Louisville, KY, 40202, USA
- KBRIN Bioinformatics Core, University of Louisville, Louisville, KY, 40202, USA
| | - Michael L Merchant
- Kidney Disease Program and Clinical Proteomics Center, University of Louisville, Louisville, KY, USA
| | - Henry C L Bohler
- Department of Reproductive Endocrinology and Infertility, University of Louisville, Louisville, KY40202, USA
| | - Baomei Wang
- Department of Dermatology, University of Pennsylvania, Philadelphia, 19104, USA
| | - Shuangqin Zhang
- Peeples Cancer Institute, 215 Memorial Drive, Dalton, GA, 30720, USA
| | - Chao Qin
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Ziying Xu
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Craig J McClain
- Department of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Yun Teng
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA.
| | - Huang-Ge Zhang
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA.
- Robley Rex Veterans Affairs Medical Center, Louisville, KY, 40206, USA.
| |
Collapse
|
4
|
Antioxidant and anti-inflammatory effects of exercise in diabetic patients. EXPERIMENTAL DIABETES RESEARCH 2011; 2012:941868. [PMID: 22007193 PMCID: PMC3191828 DOI: 10.1155/2012/941868] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 07/15/2011] [Accepted: 07/17/2011] [Indexed: 02/06/2023]
Abstract
Diabetes is a chronic metabolic disease which is characterized by absolute or relative deficiencies in insulin secretion and/or insulin action. The key roles of oxidative stress and inflammation in the progression of vascular complications of this disease are well recognized. Accumulating epidemiologic evidence confirms that physical inactivity is an independent risk factor for insulin resistance and type II diabetes. This paper briefly reviews the pathophysiological pathways associated with oxidative stress and inflammation in diabetes mellitus and then discusses the impact of exercise on these systems. In this regard, we discuss exercise induced activation of cellular antioxidant systems through “nuclear factor erythroid 2-related factor.” We also discuss anti-inflammatory myokines, which are produced and released by contracting muscle fibers. Antiapoptotic, anti-inflammatory and chaperon effects of exercise-induced heat shock proteins are also reviewed.
Collapse
|
5
|
Modi HR, Katyare SS. Effect of treatment with cadmium on structure-function relationships in rat liver mitochondria: studies on oxidative energy metabolism and lipid/phospholipids profiles. J Membr Biol 2009; 232:47-57. [PMID: 19921325 DOI: 10.1007/s00232-009-9217-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Accepted: 10/20/2009] [Indexed: 01/15/2023]
Abstract
Effects of treatment with a single intraperitoneal injection of cadmium (Cd) on oxidative energy metabolism and lipid/phospholipid profiles of rat liver mitochondria were examined at the end of 1 week and 1 month. Following Cd treatment the body weight increased only in the 1 month group, whereas the liver weight increased in both groups. State 3 and 4 respiration rates in general decreased significantly, with the maximum effect being seen with succinate. The 1 week Cd group showed decreased respiratory activity with glutamate, pyruvate + malate, and succinate as the substrates. In the 1 month Cd-treated group respiration rates recovered with glutamate and pyruvate + malate but not with succinate. All cytochrome contents decreased in the 1 week Cd-treated group but recovered in the 1 month group. ATPase activity registered an increase in both Cd-treated groups. Dehydrogenase activities increased in the 1 week group but decreased in the 1 month Cd-treated group. The mitochondrial cholesterol content increased in the 1 week Cd-treated group. In the 1 week Cd-treated group the lysophospholipid (Lyso), sphingomyelin (SPM), and diphosphatidylglycerol (DPG) components increased. By contrast, the phosphatidylethanolamine (PE) component decreased. In the 1 month Cd-treated group the phosphatidylinositol, phosphatidylserine, and DPG components increased, whereas the Lyso, SPM, and phosphatidylcholine components decreased. The results demonstrate that single-dose Cd treatment can have adverse effects on liver mitochondrial oxidative energy metabolism and lipid/phosphopholipid profiles, which in turn can affect membrane structure-function relationships.
Collapse
Affiliation(s)
- Hiren R Modi
- Department of Biochemistry, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390 002, India.
| | | |
Collapse
|
7
|
Katyare SS, Modi HR, Patel SP, Patel MA. Thyroid Hormone-Induced Alterations in Membrane Structure-Function Relationships: Studies on Kinetic Properties of Rat Kidney Microsomal Na+,K+-ATPase and Lipid/Phospholipid Profiles. J Membr Biol 2007; 219:71-81. [PMID: 17721830 DOI: 10.1007/s00232-007-9063-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Accepted: 06/26/2007] [Indexed: 10/22/2022]
Abstract
The effects of thyroidectomy (Tx) and subsequent treatment with 3,5,3'-triiodothyronine (T(3)) or combined replacement therapy (T(R)) with T(3 )and thyroxine (T(4)) on the substrate and temperature kinetics properties of Na+,K+-ATPase and lipid/phospholipid makeup of rat kidney microsomes were examined. Enzyme activity was somewhat high in the hypothyroid (Tx) animals and increased significantly following T(3) treatment, while T(R) treatment caused a decrease. In the Tx and T(3) groups enzyme activity resolved in two kinetic components, while in the T(R) group the enzyme showed allosteric behavior up to 0.5 mM: ATP concentration. The K(m) and V(max) values of both the components decreased in Tx animals without affecting the catalytic efficiency. T(3) treatment caused a significant increase in the V(max) of both the components, with a significant increase in the catalytic efficiency, while the K(m) values were not upregulated. The T(R) regimen lowered the K(m) and V(max) of component II but improved the catalytic efficiency. Thyroid status-dependent changes were also noted in the temperature kinetics of the enzyme. Regression analysis revealed that changes in the substrate and temperature kinetics parameters correlated with specific phospholipid components.
Collapse
Affiliation(s)
- Surendra S Katyare
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390 002, India
| | | | | | | |
Collapse
|