1
|
Stonik VA, Makarieva TN, Shubina LK, Guzii AG, Ivanchina NV. Structure Diversity and Properties of Some Bola-like Natural Products. Mar Drugs 2024; 23:3. [PMID: 39852505 PMCID: PMC11767167 DOI: 10.3390/md23010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/26/2025] Open
Abstract
In their shapes, molecules of some bipolar metabolites resemble the so-called bola, a hunting weapon of the South American inhabitants, consisting of two heavy balls connected to each other by a long flexible cord. Herein, we discuss the structures and properties of these natural products (bola-like compounds or bolaamphiphiles), containing two polar terminal fragments and a non-polar chain (or chains) between them, from archaea, bacteria, and marine invertebrates. Additional modifications of core compounds of this class, for example, interchain and intrachain cyclization, hydroxylation, methylation, etc., expand the number of known metabolites of this type, providing their great structural variety. Isolation of such complex compounds individually is problematic, since they usually exist as mixtures of regioisomers and stereoisomers, that are very difficult to be separated. The main approaches to the study of their structures combine various methods of HPLC/MS or GC/MS, 2D-NMR experiments and organic synthesis. The recent identification of new enzymes, taking part in their biosynthesis and metabolism, made it possible to understand molecular aspects of their origination and some features of evolution during geological times. The promising properties of these metabolites, such as their ability to self-assemble and stabilize biological or artificial membranes, and biological activities, attract additional attention to them.
Collapse
Affiliation(s)
- Valentin A. Stonik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (T.N.M.); (L.K.S.); (A.G.G.); (N.V.I.)
| | | | | | | | | |
Collapse
|
2
|
Secondary Metabolites from Marine Sponges of the Genus Oceanapia: Chemistry and Biological Activities. Mar Drugs 2022; 20:md20020144. [PMID: 35200673 PMCID: PMC8879606 DOI: 10.3390/md20020144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/03/2022] [Accepted: 02/11/2022] [Indexed: 12/04/2022] Open
Abstract
In this review, we summarized the distribution of the chemically investigated Oceanapia sponges, including the isolation and biological activities of their secondary metabolites, covering the literature from the first report in 1989 to July 2019. There have been 110 compounds reported during this period, including 59 alkaloids, 33 lipids, 14 sterols and 4 miscellaneous compounds. Besides their unique structures, they exhibited promising bioactivities ranging from insecticidal to antibacterial. Their complex structural characteristics and diverse biological properties have attracted a great deal of attention from chemists and pharmaceuticals seeking to perform their applications in the treatment of disease.
Collapse
|
3
|
Makarieva TN, Ivanchina NV, Stonik VA. Application of Oxidative and Reductive Transformations in the Structure Determination of Marine Natural Products. JOURNAL OF NATURAL PRODUCTS 2020; 83:1314-1333. [PMID: 32091208 DOI: 10.1021/acs.jnatprod.9b01020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This review highlights the application of oxidative and reductive chemical transformations in the structure determination of complex marine natural products, including their absolute configurations. Workability of the Baeyer-Villiger reaction, ozonolysis, periodate oxidation, hydrogenolysis, and reductive amination, as well as other related chemical transformations, are discussed.
Collapse
Affiliation(s)
- Tatyana N Makarieva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Pr. 100 let, Vladivostoku, 159, Russia
| | - Natalia V Ivanchina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Pr. 100 let, Vladivostoku, 159, Russia
| | - Valentin A Stonik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Pr. 100 let, Vladivostoku, 159, Russia
| |
Collapse
|
4
|
Molinski TF, Broaddus CD, Morinaka BI. Liposomal Circular Dichroism (L-CD) of Arenoyl Derivatives of Sphingolipids. Amplification of Cotton Effects in Ordered Lipid Bilayers. Mar Drugs 2017; 15:E352. [PMID: 29261105 PMCID: PMC5742824 DOI: 10.3390/md15120352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/04/2017] [Accepted: 12/06/2017] [Indexed: 11/17/2022] Open
Abstract
Liposomal circular dichroism (L-CD) of acyclic amino alcohols exhibit amplification of Cotton effects when measured in highly uniform, unilamellar liposomes. The effect is likely due to intermolecular associations-H-aggregates-that self-assemble spontaneously within the lipid bilayer, and persists over long time scales. L-CD spectra of N,O,O'-tri-(6'methoxy-2'-naphthoyl)-d-erythro-sphingosine, or the corresponding dihydro-derivative (sphinganine), shows ~10-fold amplification of magnitudes of Cotton effects over conventional CD spectra recorded in isotropic solution.
Collapse
Affiliation(s)
- Tadeusz F Molinski
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive MC0358, La Jolla, CA 92093, USA.
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive MC0358, La Jolla, CA 92093, USA.
| | - Caroline D Broaddus
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive MC0358, La Jolla, CA 92093, USA.
| | - Brandon I Morinaka
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive MC0358, La Jolla, CA 92093, USA.
| |
Collapse
|
5
|
Govindarajan M. Amphiphilic glycoconjugates as potential anti-cancer chemotherapeutics. Eur J Med Chem 2017; 143:1208-1253. [PMID: 29126728 DOI: 10.1016/j.ejmech.2017.10.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/14/2017] [Accepted: 10/08/2017] [Indexed: 12/13/2022]
Abstract
Amphiphilicity is one of the desirable features in the process of drug development which improves the biological as well as the pharmacokinetics profile of bioactive molecule. Carbohydrate moieties present in anti-cancer natural products and synthetic molecules influence the amphiphilicity and hence their bioactivity. This review focuses on natural and synthetic amphiphilic anti-cancer glycoconjugates. Different classes of molecules with varying degree of amphiphilicity are covered with discussions on their structure-activity relationship and mechanism of action.
Collapse
Affiliation(s)
- Mugunthan Govindarajan
- Emory Institute for Drug Development, Emory University, 954 Gatewood Road, Atlanta, GA 30329, United States.
| |
Collapse
|
6
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2009-2010. MASS SPECTROMETRY REVIEWS 2015; 34:268-422. [PMID: 24863367 PMCID: PMC7168572 DOI: 10.1002/mas.21411] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/16/2013] [Accepted: 07/16/2013] [Indexed: 05/07/2023]
Abstract
This review is the sixth update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2010. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, arrays and fragmentation are covered in the first part of the review and applications to various structural typed constitutes the remainder. The main groups of compound that are discussed in this section are oligo and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Many of these applications are presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis.
Collapse
Affiliation(s)
- David J. Harvey
- Department of BiochemistryOxford Glycobiology InstituteUniversity of OxfordOxfordOX1 3QUUK
| |
Collapse
|
7
|
Molinski TF, Biegelmeyer R, Stout EP, Wang X, Frota MLC, Henriques AT. Halisphingosines A and B, modified sphingoid bases from Haliclona tubifera. Assignment of configuration by circular dichroism and van't Hoff's principle of optical superposition. JOURNAL OF NATURAL PRODUCTS 2013; 76:374-381. [PMID: 23268569 PMCID: PMC3969749 DOI: 10.1021/np300744y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Halisphingosines A (1) and B (2), modified long-chain sphingoid bases, from the marine sponge Haliclona tubifera collected in Brazil, were characterized after conversion to their N-Boc derivatives. The 2R,3R,6R configuration of halisphingosine A, a compound first reported from Haliclona sp. from South Korea, was confirmed using a novel CD approach: deconvolution of exciton coupling from mono- and trinaphthoyl derivatives obtained by derivatization of the natural product. The sensitive CD deconvolution method, applicable to submilligram samples, simultaneously predicted the relative and absolute configuration of three stereocenters in halisphingosine A with precision and accuracy. Halisphingosine B was assigned by correlation to halisphingosine A.
Collapse
Affiliation(s)
- Tadeusz F Molinski
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Ko J, Molinski TF. D-Glucosamine-derived synthons for assembly of L-threo-sphingoid bases. Total synthesis of rhizochalinin C. J Org Chem 2013; 78:498-505. [PMID: 23227909 PMCID: PMC3548972 DOI: 10.1021/jo302355t] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A five-step transformation of D-glucosamine, commencing with indium-mediated Barbier reaction without isolation of intermediates, into (R,R)-2-aminohex-5-ene-1,3-diol in 45-51% is described. The latter is a useful synthon for assembly of L-threo-sphingoid bases: long-chain aminoalkanols and aminoalkanediols with configurations antipodal to that found in mammalian D-erythro-sphingosine but prevalent among invertebrate-derived sphingolipids. The utility of the method is demonstrated by the first total synthesis of rhizochalinin C, the long-chain, "two-headed" sphingoid base aglycon of the natural product rhizochalin C from the marine sponge Rhizochalina incrustata.
Collapse
Affiliation(s)
- Jaeyoung Ko
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0358, USA
- Material Science Medical Beauty Research Institute Amorepacific Corporation R&D Center, Yongin 446-729, Republic of Korea
| | - Tadeusz F. Molinski
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0358, USA
- Material Science Medical Beauty Research Institute Amorepacific Corporation R&D Center, Yongin 446-729, Republic of Korea
| |
Collapse
|
9
|
Glycosides from marine sponges (Porifera, Demospongiae): structures, taxonomical distribution, biological activities and biological roles. Mar Drugs 2012; 10:1671-1710. [PMID: 23015769 PMCID: PMC3447334 DOI: 10.3390/md10081671] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 07/25/2012] [Accepted: 07/25/2012] [Indexed: 11/17/2022] Open
Abstract
Literature data about glycosides from sponges (Porifera, Demospongiae) are reviewed. Structural diversity, biological activities, taxonomic distribution and biological functions of these natural products are discussed.
Collapse
|
10
|
Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR. Marine natural products. Nat Prod Rep 2010; 28:196-268. [PMID: 21152619 DOI: 10.1039/c005001f] [Citation(s) in RCA: 343] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
11
|
Skepper CK, Dalisay DS, Molinski TF. Synthesis and chain-dependent antifungal activity of long-chain 2H-azirine-carboxylate esters related to dysidazirine. Bioorg Med Chem Lett 2010; 20:2029-32. [PMID: 20171099 DOI: 10.1016/j.bmcl.2010.01.068] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 01/07/2010] [Accepted: 01/11/2010] [Indexed: 11/27/2022]
Abstract
Analogues of the antifungal marine natural product (E)-dysidazirine were prepared and evaluated in broth ro-dilution assays against a panel of fungal pathogens. A simple structure-activity relationship was developed which provides insight into the mechanism of action of long-chain 2H-azirine carboxylates.
Collapse
Affiliation(s)
- Colin K Skepper
- Department of Chemistry and Biochemistry, San Diego, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
12
|
Lievens SC, Morinaka BI, Molinski TF. Stereochemical Elucidation of New Sagittamides C - F from a Didemnid Ascidian. Aust J Chem 2010. [DOI: 10.1071/ch10059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Four new minor congeners, sagittamides C–F, were isolated from an unidentified Didemnid tunicate that previously afforded sagittamides A and B. The structures were determined by interpretation of spectroscopic data, degradation to amino acids, and comparisons with sagittamide A. An unexpected change in relative configuration of the hexacetoxy C5–C10 stereoelement is present in sagittamides D and F. A tentative assignment of configuration was possible through a systematic deduction based on analysis of 13C NMR data and symmetry considerations.
Collapse
|