1
|
Binienda A, Fichna J. Current understanding of free fatty acids and their receptors in colorectal cancer treatment. Nutr Res 2024; 127:133-143. [PMID: 38943731 DOI: 10.1016/j.nutres.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 07/01/2024]
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-related death. Currently, dietary factors are being emphasized in the pathogenesis of CRC. There is strong evidence that fatty acids (FAs) and free FA receptors (FFARs) are involved in CRC. This comprehensive review discusses the role of FAs and their receptors in CRC pathophysiology, development, and treatment. In particular, butyrate and n-3 polyunsaturated fatty acids have been found to exert anticancer properties by, among others, inhibiting proliferation and metastasis and inducing apoptosis in tumor cells. Consequently, they are used in conjunction with conventional therapies. Furthermore, FFAR gene expression is down-regulated in CRC, suggesting their suppressive character. Recent studies showed that the FFAR4 agonist, GW9508, can inhibit tumor growth. In conclusion, natural as well as synthetic FFAR ligands are considered promising candidates for CRC therapy.
Collapse
Affiliation(s)
- Agata Binienda
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
2
|
Elucidation of underlying molecular mechanism of 5-Fluorouracil chemoresistance and its restoration using fish oil in experimental colon carcinoma. Mol Cell Biochem 2021; 476:1517-1527. [PMID: 33392922 DOI: 10.1007/s11010-020-03999-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023]
Abstract
Latest strategies for cancer treatment primarily focus on the use of chemosensitizers to enhance therapeutic outcome. N-3 PUFAs have emerged as the strongest candidate for the prevention of colorectal cancer (CRC). Our previous studies have demonstrated that fish oil (FO) rich in n-3 PUFAs not only increased therapeutic potential of 5-Fluorouracil(5-FU) in colon cancer but also ameliorated its toxicity. Henceforth, the present study is designed to elucidate mechanistic insights of FO as a chemosensitizer to circumvent drug resistance in experimental colon carcinoma. The colon cancer was induced by 1,2-dimethylhydrazine(DMH)/dextran sulfate sodium(DSS) in male Balb/c mice and these animals were treated with 5-FU(12.5 mg/kg b.w.), FO(0.2 ml), or 5-FU + FO(12.5 mg/kg b.w + 0.2 ml) orally for 14 days. The molecular mechanism of overcoming 5-FU resistance using FO in colon cancer was delineated by estimating expression of cancer stem cell markers using flowcytometric method and drug transporters by immunohistochemistry and immunoblotting. Additionally, distribution profile of 5-FU and its cytotoxic metabolite, 5-FdUMP at target(colon), and non-target sites (serum, kidney, liver, spleen) was assessed using high-performance liquid chromatography(HPLC) method. The observations revealed that expression of CSCs markers was remarkably reduced after using fish oil along with 5-FU in carcinogen-treated animals. Interestingly, the use of FO alongwith 5-FU also significantly declined the expression of drug transporters (ABCB1,ABCC5) and consequently resulted in an increased cellular uptake of 5-FU and its metabolite, 5-FdUMP at target site (colon). It could be possibly associated with change in permeability of cell membrane owing to the alteration in membrane fluidity. The present study revealed the mechanistic insights of FO as a MDR revertant which successfully restored 5-FU-mediated chemoresistance in experimental colon carcinoma.
Collapse
|
3
|
Rodrigues LA, Pereira CV, Partidário AMC, Gouveia LF, Simões P, Paiva A, Matias AA. Supercritical CO2 extraction of bioactive lipids from canned sardine waste streams. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2020.101359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
4
|
Bian M, Fan R, Zhao S, Liu W. Targeting the Thioredoxin System as a Strategy for Cancer Therapy. J Med Chem 2019; 62:7309-7321. [PMID: 30963763 DOI: 10.1021/acs.jmedchem.8b01595] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Thioredoxin reductase (TrxR) participates in the regulation of redox reactions in organisms. It works mainly via its substrate molecule, thioredoxin, to maintain the redox balance and regulate signal transduction, which controls cell proliferation, differentiation, death, and other important physiological processes. In recent years, increasing evidence has shown that the overactivation of TrxR is related to the development of tumors. The exploration of TrxR-targeted antitumor drugs has attracted wide attention and is expected to provide new therapies for cancer treatment. In this perspective, we highlight the specific relationship between TrxR and apoptotic signaling pathways. The cytoplasm and mitochondria both contain TrxR, resulting in the activation of apoptosis. TrxR activity influences reactive oxygen species (ROS) and further regulates the inflammatory signaling pathway. In addition, we discuss representative TrxR inhibitors with anticancer activity and analyze the challenges in developing TrxR inhibitors as anticancer drugs.
Collapse
Affiliation(s)
- Mianli Bian
- Institute of Chinese Medicine, School of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , P. R. China
| | - Rong Fan
- Institute of Chinese Medicine, School of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , P. R. China
| | - Sai Zhao
- Institute of Chinese Medicine, School of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , P. R. China.,Institute of New Medicine Research , Nanjing Hicin Pharmaceutical Co. Ltd. , Nanjing 210046 , P. R. China
| | - Wukun Liu
- Institute of Chinese Medicine, School of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , P. R. China.,State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing 210009 , P. R. China
| |
Collapse
|
5
|
Renuka, Agnihotri N, Bhatnagar A. Differential ratios of fish/corn oil ameliorated the colon carcinoma in rat by altering intestinal intraepithelial CD8+ T lymphocytes, dendritic cells population and modulating the intracellular cytokines. Biomed Pharmacother 2018; 98:600-608. [DOI: 10.1016/j.biopha.2017.12.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 12/06/2017] [Accepted: 12/13/2017] [Indexed: 12/30/2022] Open
|
6
|
Rani I, Sharma B, Kumar S, Kaur S, Agnihotri N. Apoptosis mediated chemosensitization of tumor cells to 5-fluorouracil on supplementation of fish oil in experimental colon carcinoma. Tumour Biol 2017; 39:1010428317695019. [PMID: 28349837 DOI: 10.1177/1010428317695019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
5-Fluorouracil has been considered as a cornerstone therapy for colorectal cancer; however, it suffers from low therapeutic response rate and severe side effects. Therefore, there is an urgent need to increase the clinical efficacy of 5-fluorouracil. Recently, fish oil rich in n-3 polyunsaturated fatty acids has been reported to chemosensitize tumor cells to anti-cancer drugs. This study is designed to understand the underlying mechanisms of synergistic effect of fish oil and 5-fluorouracil by evaluation of tumor cell-associated markers such as apoptosis and DNA damage. The colon cancer was developed by administration of N,N-dimethylhydrazine dihydrochloride and dextran sulfate sodium salt. Further these animals were treated with 5-fluorouracil, fish oil, or a combination of both. In carcinogen-treated animals, a decrease in DNA damage and apoptotic index was observed. There was also a decrease in the expression of Fas, FasL, caspase 8, and Bax, and an increase in Bcl-2. In contrast, administration of 5-fluorouracil and fish oil as an adjuvant increased both DNA damage and apoptotic index by activation of both extrinsic and intrinsic apoptotic pathways as compared to the other groups. The increased pro-apoptotic effect by synergism of 5-fluorouracil and fish oil may be attributed to the incorporation of n-3 polyunsaturated fatty acids in membrane, which alters membrane fluidity in cancer cells. In conclusion, this study highlights that the induction of apoptotic pathway by fish oil may increase the susceptibility of tumors to chemotherapeutic regimens.
Collapse
Affiliation(s)
- Isha Rani
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Bhoomika Sharma
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Sandeep Kumar
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Satinder Kaur
- Department of Biochemistry, Panjab University, Chandigarh, India
| | | |
Collapse
|
7
|
R, Agnihotri N, Singh AP, Bhatnagar A. Involvement of Regulatory T Cells and Their Cytokines Repertoire in Chemopreventive Action of Fish Oil in Experimental Colon Cancer. Nutr Cancer 2016. [DOI: 10.1080/01635581.2016.1212245] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
8
|
Fish oil prevents colon cancer by modulation of structure and function of mitochondria. Biomed Pharmacother 2016; 82:90-7. [DOI: 10.1016/j.biopha.2016.04.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/22/2016] [Accepted: 04/22/2016] [Indexed: 11/21/2022] Open
|
9
|
Sharma G, Rani I, Bhatnagar A, Agnihotri N. Apoptosis-Mediated Chemoprevention by Different Ratios of Fish Oil in Experimental Colon Carcinogenesis. Cancer Invest 2016; 34:220-30. [PMID: 27191482 DOI: 10.1080/07357907.2016.1183023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Apoptosis plays an important role in prevention of colon cancer. In the present study, different ratios of fish oil and corn oil increased Fas expression in both phases and a decrease in FasL expression only in post initiation phase. Treatment with fish oil activated the intrinsic apoptotic pathway by increasing Bax expression and Cyt c release and decreasing Bcl-2 levels in both phases. This suggests that intrinsic pathway is upregulated by fish oil; however, Fas-FasL activity may be involved in inhibition of reversal of immune surveillance in tumor cells.
Collapse
Affiliation(s)
- Gayatri Sharma
- a Department of Biochemistry , Panjab University , Chandigarh , India
| | - Isha Rani
- a Department of Biochemistry , Panjab University , Chandigarh , India
| | - Archana Bhatnagar
- a Department of Biochemistry , Panjab University , Chandigarh , India
| | - Navneet Agnihotri
- a Department of Biochemistry , Panjab University , Chandigarh , India
| |
Collapse
|
10
|
Eltweri AM, Thomas AL, Metcalfe M, Calder PC, Dennison AR, Bowrey DJ. Potential applications of fish oils rich in omega-3 polyunsaturated fatty acids in the management of gastrointestinal cancer. Clin Nutr 2016; 36:65-78. [PMID: 26833289 DOI: 10.1016/j.clnu.2016.01.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 12/01/2015] [Accepted: 01/09/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Despite advances in chemotherapeutic agents and surgical approaches for its management, gastrointestinal cancer still accounts for 27% of new cancer cases and 35% of cancer related mortality worldwide. Omega-3 polyunsaturated fatty acids (PUFAs) specifically eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have anti-inflammatory and anticancer activities and are used as immuno-nutrients. METHODS A literature search was conducted to identify primary research reporting on applications of the omega-3 PUFAs in gastrointestinal cancer. RESULTS Reported laboratory studies indicate a clear role for omega-3 PUFAs in preventing cancer development at various stages including cancer cell proliferation, survival, angiogenesis, inflammation and metastasis. In clinical settings, omega-3 PUFAs have been reported to improve the immune response, maintain lean body mass, improve quality of life and improve overall survival in patients with colorectal and pancreatic cancer. In contrast to other GI cancers, there is a strong connection between inflammation and oesophageal cancer. CONCLUSIONS Little work has been done exploring the role for omega-3 PUFAs in oesophageal cancer prevention and management. The authors are conducting a clinical trial investigating the use of parenteral omega-3 PUFAs supplementary to the standard of care (epirubicin, oxaliplatin and capecitabine palliative chemotherapy) in patients with advanced oesophagogastric cancer as a promising new therapeutic approach.
Collapse
Affiliation(s)
- A M Eltweri
- Department of Surgery, University Hospitals of Leicester, Leicester, LE1 5WW, United Kingdom.
| | - A L Thomas
- Department of Cancer Studies, University of Leicester, LE2 7LX, United Kingdom
| | - M Metcalfe
- Department of Surgery, University Hospitals of Leicester, Leicester, LE1 5WW, United Kingdom
| | - P C Calder
- Human Development & Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, United Kingdom
| | - A R Dennison
- Department of Surgery, University Hospitals of Leicester, Leicester, LE1 5WW, United Kingdom
| | - D J Bowrey
- Department of Surgery, University Hospitals of Leicester, Leicester, LE1 5WW, United Kingdom
| |
Collapse
|
11
|
Differential Ratios of Omega Fatty Acids (AA/EPA+DHA) Modulate Growth, Lipid Peroxidation and Expression of Tumor Regulatory MARBPs in Breast Cancer Cell Lines MCF7 and MDA-MB-231. PLoS One 2015; 10:e0136542. [PMID: 26325577 PMCID: PMC4556657 DOI: 10.1371/journal.pone.0136542] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 08/05/2015] [Indexed: 12/22/2022] Open
Abstract
Omega 3 (n3) and Omega 6 (n6) polyunsaturated fatty acids (PUFAs) have been reported to exhibit opposing roles in cancer progression. Our objective was to determine whether different ratios of n6/n3 (AA/EPA+DHA) FAs could modulate the cell viability, lipid peroxidation, total cellular fatty acid composition and expression of tumor regulatory Matrix Attachment Region binding proteins (MARBPs) in breast cancer cell lines and in non-cancerous, MCF10A cells. Low ratios of n6/n3 (1:2.5, 1:4, 1:5, 1:10) FA decreased the viability and growth of MDA-MB-231 and MCF7 significantly compared to the non-cancerous cells (MCF10A). Contrarily, higher n6/n3 FA (2.5:1, 4:1, 5:1, 10:1) decreased the survival of both the cancerous and non-cancerous cell types. Lower ratios of n6/n3 selectively induced LPO in the breast cancer cells whereas the higher ratios induced in both cancerous and non-cancerous cell types. Interestingly, compared to higher n6/n3 FA ratios, lower ratios increased the expression of tumor suppressor MARBP, SMAR1 and decreased the expression of tumor activator Cux/CDP in both breast cancer and non-cancerous, MCF10A cells. Low n6/n3 FAs significantly increased SMAR1 expression which resulted into activation of p21WAF1/CIP1 in MDA-MB-231 and MCF7, the increase being ratio dependent in MDA-MB-231. These results suggest that increased intake of n3 fatty acids in our diet could help both in the prevention as well as management of breast cancer.
Collapse
|
12
|
Sharma G, Rani I, Bhatnagar A, Agnihotri N. Documentation of Ultrastructural Changes in Nucleus and Microvilli by Fish Oil in Experimental Colon Carcinogenesis. Ultrastruct Pathol 2015. [PMID: 26213844 DOI: 10.3109/01913123.2015.1048914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Fish oil (FO) exerts a chemopreventive effect by regulating apoptosis in colon carcinogenesis. The present study reports the ultrastructural changes in various organelles on supplementation of FO in experimental colon carcinogenesis. The carcinogen treatment led to abnormal nuclear shape and alteration in microvilli number indicating cancer establishment. On the other hand, different ratios of FO and corn oil increased chromatin condensation along with an extensive loss of microvilli in a dose- and time-dependent manner which depicts an increase in apoptosis. The associated ultrastuctural alterations support the facilitation of apoptosis by FO as a mechanism for its beneficial effect in colon carcinogenesis.
Collapse
Affiliation(s)
- Gayatri Sharma
- a Department of Biochemistry , Panjab University , Chandigarh , Punjab , India
| | - Isha Rani
- a Department of Biochemistry , Panjab University , Chandigarh , Punjab , India
| | - Archana Bhatnagar
- a Department of Biochemistry , Panjab University , Chandigarh , Punjab , India
| | - Navneet Agnihotri
- a Department of Biochemistry , Panjab University , Chandigarh , Punjab , India
| |
Collapse
|
13
|
Schneedorferová I, Tomčala A, Valterová I. Effect of heat treatment on the n-3/n-6 ratio and content of polyunsaturated fatty acids in fish tissues. Food Chem 2014; 176:205-11. [PMID: 25624225 DOI: 10.1016/j.foodchem.2014.12.058] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 11/21/2014] [Accepted: 12/15/2014] [Indexed: 12/30/2022]
Abstract
The aim of this study was to compare the effect of different heat treatments (pan-frying, oven-baking, and grilling) on the contents of polyunsaturated fatty acids (PUFAs) in fish tissue. Four fish species were examined: pike, carp, cod, and herring. High performance liquid chromatography, coupled with electrospray ionization and mass spectrometric detection (HPLC/ESI/MS), was employed for determination of intact lipid molecules containing n-3 and n-6 PUFAs. Although mostly non-polar lipids (triacylglycerols, TGs) were present in the fish tissue, the PUFAs were present preferentially in the phospholipid fraction. Omnivorous fish species (carp, herring) contained more TGs than did predatory ones (pike, cod). Higher amounts of PUFAs were detected in the marine species than in the freshwater ones. The impact of heat treatments on the lipid composition in the fish tissue seems to be species-specific, as indicated by multivariate data analysis. Herring tissue is most heat-stable, and the mildest heat treatment for PUFA preservation was oven-baking.
Collapse
Affiliation(s)
- Ivana Schneedorferová
- Biology Centre, Institute of Parasitology, Academy of Sciences of the Czech Republic, Branišovská 31, 370 05 České Budějovice, Czech Republic; University of South Bohemia, Faculty of Science, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Aleš Tomčala
- Biology Centre, Institute of Parasitology, Academy of Sciences of the Czech Republic, Branišovská 31, 370 05 České Budějovice, Czech Republic; Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic
| | - Irena Valterová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic.
| |
Collapse
|
14
|
Alterations in lipid mediated signaling and Wnt/ β -catenin signaling in DMH induced colon cancer on supplementation of fish oil. BIOMED RESEARCH INTERNATIONAL 2014; 2014:832025. [PMID: 24999478 PMCID: PMC4066946 DOI: 10.1155/2014/832025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/08/2014] [Accepted: 04/21/2014] [Indexed: 01/22/2023]
Abstract
Ceramide mediates inhibition of cyclooxygenase-2 (COX-2) which catalyzes formation of prostaglandin further activating peroxisome proliferator-activated receptorγ (PPARγ) and Wnt/β-catenin pathway; and hence plays a critical role in cancer. Therefore, in current study, ceramide, COX-2, 15-deoxy prostaglandin J2(15-deoxy PGJ2), PPARγ, and β-catenin were estimated to evaluate the effect of fish oil on lipid mediated and Wnt/β-catenin signaling in colon carcinoma. Male Wistar rats in Group I received purified diet while Groups II and III received modified diet supplemented with FO : CO(1 : 1) and FO : CO(2.5 : 1), respectively. These were further subdivided into controls receiving ethylenediaminetetraacetic acid and treated groups receiving dimethylhydrazine dihydrochloride (DMH)/week for 4 weeks. Animals sacrificed 48 hours after last injection constituted initiation phase and those sacrificed after 16 weeks constituted postinitiation phase. Decreased ceramide and increased PPARγ were observed in postinitiation phase only. On receiving FO+CO(1 : 1)+DMH and FO+CO(2.5 : 1)+DMH in both phases, ceramide was augmented whereas COX-2, 15-deoxy PGJ2, and nuclear translocation of β-catenin were reduced with respect to cancerous animals. Decrease was more significant in postinitiation phase with FO+CO(2.5 : 1)+DMH. Treatment with oils increased PPARγ in initiation phase but decreased it in postinitiation phase. Hence, fish oil altered lipid mediated signalling in a dose and time dependent manner so as to inhibit progression of colon cancer.
Collapse
|
15
|
Kansal S, Bhatnagar A, Agnihotri N. Fish oil suppresses cell growth and metastatic potential by regulating PTEN and NF-κB signaling in colorectal cancer. PLoS One 2014; 9:e84627. [PMID: 24416253 PMCID: PMC3885588 DOI: 10.1371/journal.pone.0084627] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 11/25/2013] [Indexed: 01/05/2023] Open
Abstract
Homeostasis in eukaryotic tissues is tightly regulated by an intricate balance of the prosurvival and antisurvival signals. The tumor suppressor PTEN (phosphatase and tensin homolog deleted on chromosome 10), a dual-specificity phosphatase, plays a functional role in cell cycle arrest and apoptosis. NF-κB and its downstream regulators (such as VEGF) play a central role in prevention of apoptosis, promotion of inflammation and tumor growth. Therefore, we thought to estimate the expression of PTEN, Poly-ADP-ribose polymerase (PARP), NF-κBp50, NF-κBp65 and VEGF to evaluate the effect of supplementation of fish oil on apoptotic and inflammatory signaling in colon carcinoma. Male wistar rats in Group I received purified diet while Group II and III received modified diet supplemented with FO∶CO(1∶1)&FO∶CO(2.5∶1) respectively. These were further subdivided into controls receiving ethylenediamine-tetra acetic-acid and treated groups received dimethylhydrazine-dihydrochloride (DMH)/week for 4 weeks. Animals sacrificed 48 hours after last injection constituted initiation phase and that sacrificed after 16 weeks constituted post-initiation phase. We have analysed expression of PTEN, NF-κBp50, NF-κBp65 by flowcytometer and nuclear localization of NF-κB by immunofluorescence. PARP and VEGF were assessed by immunohistochemistry. In the initiation phase, animals receiving DMH have shown increased % of apoptotic cells, PTEN, PARP, NF-κBp50, NF-κBp65 and VEGF however in post-initiation phase no significant alteration in apoptosis with decreased PTEN and increased PARP, NF-κBp50, NF-κBp65 and VEGF were observed as compared to control animals. On treatment with both ratios of fish oil in both the phases, augmentation in % of apoptotic cells, decreased PTEN, PARP, NF-κBp50, NF-κBp65 and VEGF were documented with respect to DMH treated animals with effect being more exerted with higher ration in post-initiation phase. Hence, fish oil activates apoptosis, diminishes DNA damage and inhibits inflammatory signalling in a dose and time dependent manner so as to inhibit progression of colon cancer.
Collapse
Affiliation(s)
- Shevali Kansal
- Department of Biochemistry, Panjab University, Chandigarh, India
| | | | - Navneet Agnihotri
- Department of Biochemistry, Panjab University, Chandigarh, India
- * E-mail:
| |
Collapse
|
16
|
Negi AK, Kansal S, Bhatnagar A, Agnihotri N. Alteration in apoptosis and cell cycle by celecoxib and/or fish oil in 7,12-dimethyl benzene (α) anthracene-induced mammary carcinogenesis. Tumour Biol 2013; 34:3753-64. [DOI: 10.1007/s13277-013-0959-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 06/19/2013] [Indexed: 12/19/2022] Open
|
17
|
Sharma G, Rani I, Kansal S, Bhatnagar A, Agnihotri N. Alterations in Mitochondrial Membrane in Chemopreventive Action of Fish Oil. Cancer Invest 2013; 31:231-40. [DOI: 10.3109/07357907.2013.780076] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Kansal S, Negi AK, Agnihotri N. n-3 PUFAs as Modulators of Stem Cells in Prevention of Colorectal Cancer. CURRENT COLORECTAL CANCER REPORTS 2012. [DOI: 10.1007/s11888-012-0145-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Pleiotrophic effects of natural products in ROS-induced carcinogenesis: The role of plant-derived natural products in oral cancer chemoprevention. Cancer Lett 2012; 327:16-25. [DOI: 10.1016/j.canlet.2012.02.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 02/18/2012] [Accepted: 02/20/2012] [Indexed: 12/14/2022]
|
20
|
Abstract
There has been increasing interest lately in understanding how natural dietary antioxidants affect chemoprevention, and recently, there has been a merging of information about antioxidants, endogenous and exogenous reactive oxygen and nitrogen species (RONS), and inflammation. RONS normally serve the cells as second messengers to regulate many of the intracellular signaling cascades that govern multiple cellular activities. However, when the amount of RONS exceeds the cell’s ability to metabolize/eliminate them, the cell becomes stressed and acquires genetic and epigenetic aberrations and dysregulated intracellular signaling cascades. In addition, there has been a better understanding of the role of tissue inflammation in the carcinogenesis process. Herein we integrate these fields to explain where RONS arise and how natural dietary antioxidants are principally working through refurbishing pathways that use RONS as second messengers.
Collapse
Affiliation(s)
- Li-Shu Wang
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, TBRC, Room C4930 8701 Watertown Plank Road, Milwaukee, WI 53226 USA
| | - Chieh-Ti Kuo
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, TBRC, Room C4930 8701 Watertown Plank Road, Milwaukee, WI 53226 USA
| | - Yi-Wen Huang
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, TBRC, Room C4930 8701 Watertown Plank Road, Milwaukee, WI 53226 USA
| | - Gary D. Stoner
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, TBRC, Room C4930 8701 Watertown Plank Road, Milwaukee, WI 53226 USA
| | - John F. Lechner
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, TBRC, Room C4930 8701 Watertown Plank Road, Milwaukee, WI 53226 USA
| |
Collapse
|
21
|
Kansal S, Negi AK, Bhatnagar A, Agnihotri N. Ras Signaling Pathway in the Chemopreventive Action of Different Ratios of Fish Oil and Corn Oil in Experimentally Induced Colon Carcinogenesis. Nutr Cancer 2012; 64:559-68. [DOI: 10.1080/01635581.2012.675619] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
22
|
Effect of dietary caraway essential oils on expression of β-catenin during 1,2-dimethylhydrazine-induced colonic carcinogenesis. J Nat Med 2012; 67:690-7. [PMID: 22418855 DOI: 10.1007/s11418-012-0650-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Accepted: 02/22/2012] [Indexed: 10/28/2022]
Abstract
We have recently reported that the inhibition of colonic premalignant lesions induced by 1,2-dimethylhydrazine (DMH) is mediated by the interference of caraway oil components in the activities of the main hepatic xenobiotic metabolizing enzymes. The present study was carried out to examine the effect of dietary caraway oils on the progression of cancer, with emphasis on β-catenin expression in the colon during DMH-induced colonic carcinogenesis. For this purpose, colon cancer was induced by DMH in rats (20 mg/kg body weight for 5 weeks) and groups of animals were given dietary caraway essential oils at two levels (0.01 and 0.1%) for 16 weeks. After 16 weeks and at the end of the experimental period the colon tissue biopsies were processed for histopathological examination and the expression of β-catenin at mRNA and protein levels was estimated by polymerase chain reaction and enzyme-linked immunosorbent assay. The formation of premalignant lesions based on aberrant crypt foci (ACF) in DMH-treated rats was greatly inhibited (72-87%) in rats given dietary essential oils when compared to respective controls. There was a correlation between the number of colonic ACF formation and the expression levels of β-catenin measured at protein and mRNA levels. These results indicate that the Wnt/β-catenin signaling pathway is activated during colon cancer promotion and that the expression of colonic β-catenin is altered in long-term caraway oil feeding, leading to suppression of DMH-induced premalignant lesions in rat colon.
Collapse
|
23
|
Minimizing the cancer-promotional activity of cox-2 as a central strategy in cancer prevention. Med Hypotheses 2012; 78:45-57. [DOI: 10.1016/j.mehy.2011.09.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 09/19/2011] [Indexed: 02/06/2023]
|
24
|
Neilson AP, Ren J, Hong YH, Sen A, Smith WL, Brenner DE, Djuric Z. Effect of fish oil on levels of R- and S-enantiomers of 5-, 12-, and 15-hydroxyeicosatetraenoic acids in mouse colonic mucosa. Nutr Cancer 2011; 64:163-72. [PMID: 22149144 DOI: 10.1080/01635581.2012.630168] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The balance of putative pro- and antiinflammatory lipoxygenase (LOX)-derived S-hydroxyeicosatetraenoic acids (S-HETEs) in colon mucosa is a potential target for modulating colon cancer risk and progression. The biological effects of S-HETEs and R-hydroxyeicosatetraenoic acids (produced by distinct pathways) may differ, but levels of these compounds in the colon are unknown. The objective of this study was to develop chiral methods to characterize hydroxyeicosatetraenoic (HETE) enantiomers in colonic mucosa and evaluate the effects of fish oil on HETE formation. C57BL/6 mice (COX-1 null, COX-2 null, wild-type) were fed a diet supplemented with either olive oil or menhaden oil for 11 wk, and R-/S-HETEs in colonic mucosa were quantified by chiral LC-MS/MS. The R-enantiomer comprised 60-72% of 5-HETE, 18-58% of 15-HETE, and 1-16% of 12-HETE in colonic mucosa, suggesting that non-LOX sources contribute to HETE profiles. Fish oil reduced levels of both R- and S-HETEs, and increased the preponderance of the R-enantiomers (particularly 12- and 15-HETEs). There was apparent shunting of arachidonic acid to 12-/15-LOX in the COX-1 null animals. This is the first report of the enantiomeric composition of HETEs in the colon in vivo and shows large effects of fish oil in the normal colon.
Collapse
Affiliation(s)
- Andrew P Neilson
- Department of Family Medicine, University of Michigan Medical School, University of Michigan, Ann Arbor, Michigan 48197, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Fan YY, Ran Q, Toyokuni S, Okazaki Y, Callaway ES, Lupton JR, Chapkin RS. Dietary fish oil promotes colonic apoptosis and mitochondrial proton leak in oxidatively stressed mice. Cancer Prev Res (Phila) 2011; 4:1267-74. [PMID: 21490130 DOI: 10.1158/1940-6207.capr-10-0368] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An alteration of mitochondrial function can result in disruption of redox homeostasis and is associated with abnormal cancer cell growth. Manganese superoxide dismutase (SOD2) and glutathione peroxidase 4 (Gpx4) are two of the most important antioxidant defense enzymes that protect cells against oxidative stress. We had previously shown that n-3 polyunsaturated fatty acids (PUFA) promote colonocyte apoptosis, a marker of colon cancer risk, in part by enhancing phospholipid oxidation. To elucidate the mechanisms regulating oxidative stress-induced apoptosis in vivo, we fed heterozygous SOD2(Het), Gpx4(Het), and transgenic Gpx4(Tg) mice diets containing either 15% corn oil by weight (CO, enriched in n-6 PUFA) or 3.5% CO + 11.5% fish oil (FO, enriched in n-3 PUFA) for 4 weeks. Our data showed that (i) genetic predeposition to oxidative stress facilitates apoptosis in the mouse colon (Gpx4(Het) > SOD2(Het) > Wt > Gpx4(Tg)), (ii) dietary n-3 PUFA have an additive effect on the induction of apoptosis in Gpx4(Het) and SOD2(Het) mice; and (iii) dietary n-3 PUFA reverse the phenotype in oxidatively protected Gpx4(Tg) mice by elevating apoptosis to a level observed in wild-type (Wt; control) animals. Complimentary experiments examining colonic mitochondrial bioenergetic profiles indicate that FO-fed mice exhibit a significantly (P < 0.05) increased respiration-induced proton leak relative to control CO treatment. This finding was consistent with a loss of membrane potential in response to chronic oxidative stress and supports the contention that n-3 PUFA alter mitochondrial metabolic activity, thereby enhancing apoptosis and reducing colon cancer risk.
Collapse
Affiliation(s)
- Yang-Yi Fan
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, College Station, TX, USA
| | | | | | | | | | | | | |
Collapse
|