1
|
Lavrentaki V, Kousaxidis A, Theodosis-Nobelos P, Papagiouvannis G, Koutsopoulos K, Nicolaou I. Design, synthesis, and pharmacological evaluation of indazole carboxamides of N-substituted pyrrole derivatives as soybean lipoxygenase inhibitors. Mol Divers 2024; 28:3757-3782. [PMID: 38145424 DOI: 10.1007/s11030-023-10775-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/17/2023] [Indexed: 12/26/2023]
Abstract
In this paper, we attempted to develop a novel class of compounds against lipoxygenase, a key enzyme in the biosynthesis of leukotrienes implicated in a series of inflammatory diseases. Given the absence of appropriate human 5-lipoxygenase crystallographic data, solved soybean lipoxygenase-1 and -3 structures were used as a template to generate an accurate pharmacophore model which was further used for virtual screening purposes. Eight compounds (1-8) have been derived from the in-house library consisting of N-substituted pyrroles conjugated with 5- or 6-indazole moieties through a carboxamide linker. This study led to the discovery of hit molecule 8 bearing a naphthyl group with the IC50 value of 22 μM according to soybean lipoxygenase in vitro assay. Isosteric replacement of naphthyl ring with quinoline moieties and reduction of carbonyl carboxamide group resulted in compounds 9-12 and 13, respectively. Compound 12 demonstrated the most promising enzyme inhibition. In addition, compounds 8 and 12 were found to reduce the carrageenan-induced paw edema in vivo by 52.6 and 49.8%, respectively. In view of the encouraging outcomes concerning their notable in vitro and in vivo anti-inflammatory activities, compounds 8 and 12 could be further optimized for the discovery of novel 5-lipoxygenase inhibitors in future.
Collapse
Affiliation(s)
- Vasiliki Lavrentaki
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Antonios Kousaxidis
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | | | - Georgios Papagiouvannis
- Department of Pharmacy, School of Health Sciences, Frederick University, 1036, Nicosia, Cyprus
| | | | - Ioannis Nicolaou
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| |
Collapse
|
2
|
Ben Ayed R, Chirmade T, Hanana M, Khamassi K, Ercisli S, Choudhary R, Kadoo N, Karunakaran R. Comparative Analysis and Structural Modeling of Elaeis oleifera FAD2, a Fatty Acid Desaturase Involved in Unsaturated Fatty Acid Composition of American Oil Palm. BIOLOGY 2022; 11:529. [PMID: 35453727 PMCID: PMC9032008 DOI: 10.3390/biology11040529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/13/2022] [Accepted: 03/23/2022] [Indexed: 11/17/2022]
Abstract
American oil palm (Elaeis oleifera) is an important source of dietary oil that could fulfill the increasing worldwide demand for cooking oil. Therefore, improving its production is crucial and could be realized through breeding and genetic engineering approaches aiming to obtain high-yielding varieties with improved oil content and quality. The fatty acid composition and particularly the oleic/linoleic acid ratio are major factors influencing oil quality. Our work focused on a fatty acid desaturase (FAD) enzyme involved in the desaturation and conversion of oleic acid to linoleic acid. Following the in silico identification and annotation of Elaeis oleifera FAD2, its molecular and structural features characterization was performed to better understand the mechanistic bases of its enzymatic activity. EoFAD2 is 1173 nucleotides long and encodes a protein of 390 amino acids that shares similarities with other FADs. Interestingly, the phylogenetic study showed three distinguished groups where EoFAD2 clustered among monocotyledonous taxa. EoFAD2 is a membrane-bound protein with five transmembrane domains presumably located in the endoplasmic reticulum. The homodimer organization model of EoFAD2 enzyme and substrates and respective substrate-binding residues were predicted and described. Moreover, the comparison between 24 FAD2 sequences from different species generated two interesting single-nucleotide polymorphisms (SNPs) associated with the oleic/linoleic acid contents.
Collapse
Affiliation(s)
- Rayda Ben Ayed
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Sidi Mansour Road, P.O. Box 1177, Sfax 3018, Tunisia
| | - Tejas Chirmade
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India; (T.C.); (N.K.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohsen Hanana
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj-Cédria, B.P. 901, Hammam Lif 2050, Tunisia;
| | - Khalil Khamassi
- Field Crop Laboratory (LR16INRAT02), Institut National de la Recherche Agronomique de Tunisie (INRAT), University of Carthage, Tunis 1004, Tunisia;
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, Erzurum 25240, Turkey;
| | - Ravish Choudhary
- Division of Seed Science and Technology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India;
| | - Narendra Kadoo
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India; (T.C.); (N.K.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rohini Karunakaran
- Unit of Biochemistry, Centre of Excellence for Biomaterials Engineering, Faculty of Medicine, AIMST University, Semeling, Bedong 08100, Malaysia
| |
Collapse
|
3
|
Metabonomic Study on the Plasma of High-Fat Diet-Induced Dyslipidemia Rats Treated with Ge Gen Qin Lian Decoction by Ultrahigh-Performance Liquid Chromatography-Mass Spectrometry. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6692456. [PMID: 34194524 PMCID: PMC8203394 DOI: 10.1155/2021/6692456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/07/2021] [Accepted: 05/21/2021] [Indexed: 01/03/2023]
Abstract
Gegen Qinlian decoction (GGQLD) has a definite effect on T2DM in clinic, and it has the effect of lowering blood sugar, improving insulin resistance, and improving the blood lipid level of rats with dyslipidemia, but the intervention mechanism of GGQLD on dyslipidemia has not been clarified. The changes in endogenous metabolites in the plasma of high-fat diet-induced dyslipidemia rats treated with Ge Gen Qin Lian Decoction (GGQLD) were studied to elucidate the therapeutic effects and mechanism of action of GGQLD in dyslipidemia. Based on ultrahigh-performance liquid chromatography coupled with quadrupole-time-of-flight tandem mass spectrometry (UHPLC-Q-TOF-MS), the metabolic profiles of rat serum samples were collected. The rat model of dyslipidemia was induced by a 60% fat-fed high-fat diet. After feeding the rats with a high-fat diet for 4 weeks, dyslipidemia appeared. After 5 weeks of GGQLD (14.85 g kg−1) administration, the metabonomics of rats' plasma samples in the normal group, model group, and administration group were analyzed. Mass profiler professional (MPP), SIMCA-P 14.1, and Graphpad prism 6.0 software were used combined with METLIN biological database and human metabolite database HMDB to screen and identify endogenous biomarkers. Metaboanalyst 4.0 software was used by combining with HMDB and KEGG databases; the enrichment and metabolic pathway of biomarkers were analyzed to explore the metabolic mechanism of dyslipidemia rats induced by high-fat diet and the intervention mechanism of Gegen Qinlian decoction. After 5 weeks of administration of GGQLD, the levels of serum TC and TG were significantly decreased (P < 0.05, P < 0.01), while HDL-C and LDL-C were not significantly affected. After administration, the food intake of rats in the administration group decreased gradually, and the change trend of body weight gradually slowed down. The metabonomics of rat plasma samples results showed that 23 potential biomarkers including α-linolenic acid, arachidonic acid, and lysophosphatidylcholine were significantly changed in positive ion mode. Studies have shown that GGQLD has a significant lipid-lowering effect on dyslipidemia rats induced by a high-fat diet, and its preventive mechanism is related to tryptophan metabolism, fatty acid biosynthesis, α-linolenic acid metabolism, arachidonic acid, and glycerophosphatidyl metabolism pathway.
Collapse
|
4
|
Acetyl-11-keto-β-boswellic acid derivatives effects on 5-lipoxygenase: In silico viewpoint. J Mol Graph Model 2020; 94:107464. [DOI: 10.1016/j.jmgm.2019.107464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 01/12/2023]
|
5
|
Schmidt WF, Chen F, Broadhurst CL, Nguyen JK, Qin J, Chao K, Kim MS. GTRS and 2D-NMR studies of alpha and gamma linolenic acids each containing the same H2C14-(H–C C–H)–C11H2–(H–C C–H)–C8H2 moiety. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.06.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
6
|
Broadhurst CL, Schmidt WF, Nguyen JK, Qin J, Chao K, Kim MS. Continuous gradient temperature Raman spectroscopy from -100 to 40°C yields new molecular models of arachidonic acid and 2-Arachidonoyl-1-stearoyl-sn-glycero-3-phosphocholine. Prostaglandins Leukot Essent Fatty Acids 2017; 127:6-15. [PMID: 29156157 DOI: 10.1016/j.plefa.2017.09.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/29/2017] [Accepted: 09/27/2017] [Indexed: 01/31/2023]
Abstract
Despite its biochemical importance, a complete Raman analysis of arachidonic acid (AA, 20:4n-6) has never been reported. Gradient temperature Raman spectroscopy (GTRS) applies the temperature gradients utilized in differential scanning calorimetry (DSC) to Raman spectroscopy, providing a straightforward technique to identify molecular rearrangements that occur near and at phase transitions. Herein we utilize the GTRS technique for AA and 1-18:0, 2-20:4n-6 phosphatidyl choline (AAPC) from cryogenic to mammalian body temperatures. 20Mb three-dimensional data arrays with 0.2°C increments and first/second derivatives allowed complete assignment of solid, liquid and transition state vibrational modes. The AA DSC shows a large exothermic peak at -60°C indicating crystallization or a similar major structural change. No exothermic peak of this magnitude was observed in six other unsaturated lipids (DHA, n-3DPA, n-6DPA, LA, ALA, OA). Melting in AA occurs over a large range: (-60 to -35°C): very large frequency offsets and intensity changes correlate with premelting initiating circa -60°C, followed by melting (-37°C). Novel, unique 3D structures for both molecules reveal that AA is not symmetric as a free fatty acid, and it changes significantly when in the sn-2 phospholipid position. Further, different CH and CH2 sites are unequally elastic and nonequivalent.
Collapse
Affiliation(s)
- C Leigh Broadhurst
- Environmental Microbiology and Food Safety Laboratory, US Department of Agriculture Agricultural Research Service, 10300 Baltimore Avenue, Beltsville, MD 20705, United States; Department of Mechanical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, United States.
| | - Walter F Schmidt
- Environmental Microbiology and Food Safety Laboratory, US Department of Agriculture Agricultural Research Service, 10300 Baltimore Avenue, Beltsville, MD 20705, United States
| | - Julie K Nguyen
- Environmental Microbiology and Food Safety Laboratory, US Department of Agriculture Agricultural Research Service, 10300 Baltimore Avenue, Beltsville, MD 20705, United States
| | - Jianwei Qin
- Environmental Microbiology and Food Safety Laboratory, US Department of Agriculture Agricultural Research Service, 10300 Baltimore Avenue, Beltsville, MD 20705, United States
| | - Kuanglin Chao
- Environmental Microbiology and Food Safety Laboratory, US Department of Agriculture Agricultural Research Service, 10300 Baltimore Avenue, Beltsville, MD 20705, United States
| | - Moon S Kim
- Environmental Microbiology and Food Safety Laboratory, US Department of Agriculture Agricultural Research Service, 10300 Baltimore Avenue, Beltsville, MD 20705, United States
| |
Collapse
|
7
|
Discovery two potent and new inhibitors of 15-lipoxygenase: (E)-3-((3,4-dihydroxybenzylidene) amino)-7-hydroxy-2H-chromen-2-one and (E)-O-(4-(((7-hydroxy-2-oxo-2H-chromen-3-yl) imino)methine) phenyl)dimethylcarbamothioate. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1968-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Astarita G, Kendall AC, Dennis EA, Nicolaou A. Targeted lipidomic strategies for oxygenated metabolites of polyunsaturated fatty acids. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1851:456-68. [PMID: 25486530 PMCID: PMC4323855 DOI: 10.1016/j.bbalip.2014.11.012] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/19/2014] [Accepted: 11/26/2014] [Indexed: 12/13/2022]
Abstract
Oxidation of polyunsaturated fatty acids (PUFA) through enzymatic or non-enzymatic free radical-mediated reactions can yield an array of lipid metabolites including eicosanoids, octadecanoids, docosanoids and related species. In mammals, these oxygenated PUFA mediators play prominent roles in the physiological and pathological regulation of many key biological processes in the cardiovascular, renal, reproductive and other systems including their pivotal contribution to inflammation. Mass spectrometry-based technology platforms have revolutionized our ability to analyze the complex mixture of lipid mediators found in biological samples, with increased numbers of metabolites that can be simultaneously quantified from a single sample in few analytical steps. The recent development of high-sensitivity and high-throughput analytical tools for lipid mediators affords a broader view of these oxygenated PUFA species, and facilitates research into their role in health and disease. In this review, we illustrate current analytical approaches for a high-throughput lipidomic analysis of eicosanoids and related mediators in biological samples. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance."
Collapse
Affiliation(s)
- Giuseppe Astarita
- Waters Corporation, Milford, MA, USA; Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, USA.
| | - Alexandra C Kendall
- Manchester Pharmacy School, Faculty of Medical and Human Sciences, The University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | - Edward A Dennis
- Department of Chemistry/Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0601, USA; Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0601, USA
| | - Anna Nicolaou
- Manchester Pharmacy School, Faculty of Medical and Human Sciences, The University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
9
|
Newcomer ME, Brash AR. The structural basis for specificity in lipoxygenase catalysis. Protein Sci 2015; 24:298-309. [PMID: 25524168 DOI: 10.1002/pro.2626] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 12/12/2014] [Indexed: 01/02/2023]
Abstract
Many intriguing facets of lipoxygenase (LOX) catalysis are open to a detailed structural analysis. Polyunsaturated fatty acids with two to six double bonds are oxygenated precisely on a particular carbon, typically forming a single chiral fatty acid hydroperoxide product. Molecular oxygen is not bound or liganded during catalysis, yet it is directed precisely to one position and one stereo configuration on the reacting fatty acid. The transformations proceed upon exposure of substrate to enzyme in the presence of O2 (RH + O2 → ROOH), so it has proved challenging to capture the precise mode of substrate binding in the LOX active site. Beginning with crystal structures with bound inhibitors or surrogate substrates, and most recently arachidonic acid bound under anaerobic conditions, a picture is consolidating of catalysis in a U-shaped fatty acid binding channel in which individual LOX enzymes use distinct amino acids to control the head-to-tail orientation of the fatty acid and register of the selected pentadiene opposite the non-heme iron, suitably positioned for the initial stereoselective hydrogen abstraction and subsequent reaction with O2 . Drawing on the crystal structures available currently, this review features the roles of the N-terminal β-barrel (C2-like, or PLAT domain) in substrate acquisition and sensitivity to cellular calcium, and the α-helical catalytic domain in fatty acid binding and reactions with O2 that produce hydroperoxide products with regio and stereospecificity. LOX structures combine to explain how similar enzymes with conserved catalytic machinery differ in product, but not substrate, specificities.
Collapse
Affiliation(s)
- Marcia E Newcomer
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803
| | | |
Collapse
|
10
|
Neau DB, Bender G, Boeglin WE, Bartlett SG, Brash AR, Newcomer ME. Crystal structure of a lipoxygenase in complex with substrate: the arachidonic acid-binding site of 8R-lipoxygenase. J Biol Chem 2014; 289:31905-31913. [PMID: 25231982 DOI: 10.1074/jbc.m114.599662] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Lipoxygenases (LOX) play critical roles in mammalian biology in the generation of potent lipid mediators of the inflammatory response; consequently, they are targets for the development of isoform-specific inhibitors. The regio- and stereo-specificity of the oxygenation of polyunsaturated fatty acids by the enzymes is understood in terms of the chemistry, but structural observation of the enzyme-substrate interactions is lacking. Although several LOX crystal structures are available, heretofore the rapid oxygenation of bound substrate has precluded capture of the enzyme-substrate complex, leaving a gap between chemical and structural insights. In this report, we describe the 2.0 Å resolution structure of 8R-LOX in complex with arachidonic acid obtained under anaerobic conditions. Subtle rearrangements, primarily in the side chains of three amino acids, allow binding of arachidonic acid in a catalytically competent conformation. Accompanying experimental work supports a model in which both substrate tethering and cavity depth contribute to positioning the appropriate carbon at the catalytic machinery.
Collapse
Affiliation(s)
- David B Neau
- Department of Chemistry and Chemical Biology, Cornell University, Northeastern Collaborative Access Team, Argonne National Laboratory, Argonne, Illinois 60439, and
| | - Gunes Bender
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - William E Boeglin
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Sue G Bartlett
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Alan R Brash
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Marcia E Newcomer
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803,.
| |
Collapse
|
11
|
Hoffmann I, Hamberg M, Lindh R, Oliw EH. Novel insights into cyclooxygenases, linoleate diol synthases, and lipoxygenases from deuterium kinetic isotope effects and oxidation of substrate analogs. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:1508-17. [PMID: 22982814 DOI: 10.1016/j.bbalip.2012.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 08/20/2012] [Accepted: 09/04/2012] [Indexed: 12/29/2022]
Abstract
Cyclooxygenases (COX) and 8R-dioxygenase (8R-DOX) activities of linoleate diol synthases (LDS) are homologous heme-dependent enzymes that oxygenate fatty acids by a tyrosyl radical-mediated hydrogen abstraction and antarafacial insertion of O(2). Soybean lipoxygenase-1 (sLOX-1) contains non-heme iron and oxidizes 18:2n-6 with a large deuterium kinetic isotope effect (D-KIE). The aim of the present work was to obtain further mechanistic insight into the action of these enzymes by using a series of n-6 and n-9 fatty acids and by analysis of D-KIE. COX-1 oxidized C(20) and C(18) fatty acids in the following order of rates: 20:2n-6>20:1n-6>20:3n-9>20:1n-9 and 18:3n-3≥18:2n-6>18:1n-6. 18:2n-6 and its geometrical isomer (9E,12Z)18:2 were both mainly oxygenated at C-9 by COX-1, but the 9Z,12E isomer was mostly oxygenated at C-13. A cis-configured double bond in the n-6 position therefore seems important for substrate positioning. 8R-DOX oxidized (9Z,12E)18:2 at C-8 in analogy with 18:2n-6, but the 9E,12Z isomer was mainly subject to hydrogen abstraction at C-11 and oxygen insertion at C-9 by 8R-DOX of 5,8-LDS. sLOX-1 and 13R-MnLOX oxidized [11S-(2)H]18:2n-6 with similar D-KIE (~53), which implies that the catalytic metals did not alter the D-KIE. Oxygenation of 18:2n-6 by COX-1 and COX-2 took place with a D-KIE of 3-5 as probed by incubations of [11,11-(2)H(2)]- and [11S-(2)H]18:2n-6. In contrast, the more energetically demanding hydrogen abstractions of the allylic carbons of 20:1n-6 by COX-1 and 18:1n-9 by 8R-DOX were both accompanied by large D-KIE (>20).
Collapse
Affiliation(s)
- Inga Hoffmann
- Division of Biochemical Pharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Center, SE-751 24 Uppsala, Sweden
| | | | | | | |
Collapse
|