1
|
Wang L, Cheng C, Yu X, Guo L, Wan X, Xu J, Xiang X, Yang J, Kang J, Deng Q. Conversion of α-linolenic acid into n-3 long-chain polyunsaturated fatty acids: bioavailability and dietary regulation. Crit Rev Food Sci Nutr 2024:1-33. [PMID: 39686568 DOI: 10.1080/10408398.2024.2442064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
N-3 long-chain polyunsaturated fatty acids (n-3 LCPUFAs) are essential for physiological requirements and disease prevention throughout life but are not adequately consumed worldwide. Dietary supplementation with plant-derived α-linolenic acid (ALA) has the potential to rebalance the fatty acid profile and enhance health benefits but faces challenges such as high β-oxidation consumption, low hepatic conversion efficiency, and high oxidative susceptibility under stress. This review focuses on the metabolic fate and potential regulatory targets of ALA-containing lipids in vivo, specifically the pathway from the gastrointestinal tract to the lymph, blood circulation, and liver. We propose a hypothesis that positively regulates the conversion of ALA into n-3 LCPUFAs based on the model of "fast" or "slow" absorption, transport, and hepatic metabolic fate. Furthermore, the potential effects of dietary nutrients on the metabolic conversion of ALA into n-3 LCPUFAs are discussed. The conversion of ALA is differentially regulated by structured lipids, phospholipids, other lipids, carbohydrates, specific proteins, amino acids, polyphenols, vitamins, and minerals. Future research should focus on designing a steady-state and precise delivery system for ALA, coupled with specific nutrients or phytochemicals, to effectively improve its metabolic conversion and ultimately achieve synergistic regulation of nutrition and health effects.
Collapse
Affiliation(s)
- Lei Wang
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Chen Cheng
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Xiao Yu
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xia Wan
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Jiqu Xu
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Xia Xiang
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Jing Yang
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Jingxuan Kang
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Qianchun Deng
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
| |
Collapse
|
2
|
Couëdelo L, Lennon S, Abrous H, Chamekh I, Bouju C, Griffon H, Vaysse C, Larvol L, Breton G. In Vivo Absorption and Lymphatic Bioavailability of Docosahexaenoic Acid from Microalgal Oil According to Its Physical and Chemical Form of Vectorization. Nutrients 2024; 16:1014. [PMID: 38613047 PMCID: PMC11013230 DOI: 10.3390/nu16071014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Docosahexaenoic acid (DHA) is an essential fatty acid (FA) with proven pro-health effects, but improving its bioavailability is becoming a public health issue. The bioavailability of DHA from microalgal (A) oil has been comprehensively assessed, particularly in terms of the molecular structuring capabilities offered by A-oil. Here, we explored the impact of five DHA-rich formulas differing in terms of (i) molecular structure, i.e., ethyl ester (EE), monoglyceride (MG), or triglyceride (TG), and (ii) supramolecular form, i.e., emulsified TG or TG + phospholipids (PL blend) on the lymphatic kinetics of DHA absorption and the lipid characteristics of the resulting lipoproteins. We demonstrated in rats that the conventional A-DHA TG structure afforded more effective DHA absorption than the EE structure (+23%). Furthermore, the A-DHA MG and A-DHA emulsions were the better DHA vectors (AUC: 89% and +42%, respectively) due to improved lipolysis. The A-DHA MG and A-DHA emulsion presented the richest DHA content in TG (+40%) and PL (+50%) of lymphatic chylomicrons, which could affect the metabolic fate of DHA. We concluded that structuring A-DHA in TG or EE form would better serve for tissue and hepatic metabolism whereas A-DHA in MG and emulsion form could better target nerve tissues.
Collapse
Affiliation(s)
- Leslie Couëdelo
- ITERG, Nutrition Life Sciences, 33610 Bordeaux, France; (H.A.); (I.C.); (C.B.); (H.G.); (C.V.)
| | | | - Hélène Abrous
- ITERG, Nutrition Life Sciences, 33610 Bordeaux, France; (H.A.); (I.C.); (C.B.); (H.G.); (C.V.)
| | - Ikram Chamekh
- ITERG, Nutrition Life Sciences, 33610 Bordeaux, France; (H.A.); (I.C.); (C.B.); (H.G.); (C.V.)
| | - Corentin Bouju
- ITERG, Nutrition Life Sciences, 33610 Bordeaux, France; (H.A.); (I.C.); (C.B.); (H.G.); (C.V.)
| | - Hugues Griffon
- ITERG, Nutrition Life Sciences, 33610 Bordeaux, France; (H.A.); (I.C.); (C.B.); (H.G.); (C.V.)
| | - Carole Vaysse
- ITERG, Nutrition Life Sciences, 33610 Bordeaux, France; (H.A.); (I.C.); (C.B.); (H.G.); (C.V.)
| | | | | |
Collapse
|
3
|
Capuani S, Hernandez N, Paez-Mayorga J, Dogra P, Wang Z, Cristini V, Chua CYX, Nichols JE, Grattoni A. Localization of drug biodistribution in a 3D-bioengineered subcutaneous neovascularized microenvironment. Mater Today Bio 2022; 16:100390. [PMID: 36033374 PMCID: PMC9403502 DOI: 10.1016/j.mtbio.2022.100390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 01/13/2023] Open
Abstract
Local immunomodulation has shown the potential to control the immune response in a site-specific manner for wound healing, cancer, allergy, and cell transplantation, thus abrogating adverse effects associated with systemic administration of immunotherapeutics. Localized immunomodulation requires confining the biodistribution of immunotherapeutics on-site for maximal immune control and minimal systemic drug exposure. To this end, we developed a 3D-printed subcutaneous implant termed 'NICHE', consisting of a bioengineered vascularized microenvironment enabled by sustained drug delivery on-site. The NICHE was designed as a platform technology for investigating local immunomodulation in the context of cell therapeutics and cancer vaccines. Here we studied the ability of the NICHE to localize the PK and biodistribution of different model immunomodulatory agents in vivo. For this, we first performed a mechanistic evaluation of the microenvironment generated within and surrounding the NICHE, with emphasis on the parameters related to molecular transport. Second, we longitudinally studied the biodistribution of ovalbumin, cytotoxic T lymphocyte-associated antigen-4-Ig (CTLA4Ig), and IgG delivered locally via NICHE over 30 days. Third, we used our findings to develop a physiologically-based pharmacokinetic (PBPK) model. Despite dense and mature vascularization within and surrounding the NICHE, we showed sustained orders of magnitude higher molecular drug concentrations within its microenvironment as compared to systemic circulation and major organs. Further, the PBPK model was able to recapitulate the biodistribution of the 3 molecules with high accuracy (r > 0.98). Overall, the NICHE and the PBPK model represent an adaptable platform for the investigation of local immunomodulation strategies for a wide range of biomedical applications.
Collapse
Affiliation(s)
- Simone Capuani
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
- University of Chinese Academy of Science (UCAS), 19 Yuquan Road, Beijing 100049, China
| | - Nathanael Hernandez
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Jesus Paez-Mayorga
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
- School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, NL, Mexico
| | - Prashant Dogra
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, 10022, USA
| | - Zhihui Wang
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, 10022, USA
- Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Vittorio Cristini
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, 10022, USA
- Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX, 77230, USA
| | | | - Joan E. Nichols
- Center for Tissue Engineering, Houston Methodist Research Institute, Houston, TX, USA
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
| | - Alessandro Grattoni
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
- Department of Radiation Oncology, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
4
|
Effect of Gum Acacia on the Intestinal Bioavailability of n-3 Polyunsaturated Fatty Acids in Rats. Biomolecules 2022; 12:biom12070975. [PMID: 35883531 PMCID: PMC9313134 DOI: 10.3390/biom12070975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/29/2022] [Accepted: 07/07/2022] [Indexed: 11/23/2022] Open
Abstract
Lipid emulsification is a technique that is being explored for improving the bioavailability of omega 3 (n-3) long chain (LC) fatty acid (FA). The nature of the emulsifiers can differently impact the lipid bioavailability via a modification of the lipolysis step. Among natural emulsifiers, gum acacia (GA), an indigestible polysaccharide, provides protective encapsulation of n-3 by forming a specifically crown-like shape around lipid drops, which could also impact the digestion step. Despite the interest in lipolysis rate, the impact of GA on lipid bioavailability has never been explored in a complete physiological context. Thus, we followed in a kinetics study the n-3 bioavailability in rat lymph, orally administered DHA-rich oil, formulated based on GA compared to the bulk phase form of the oil. The AUC values were significantly improved by +121% for total TG and by 321% for n-3 PUFA, specifically for EPA (+244%) and for DHA (+345%). Benefits of GA have also been related to the transport of FA in lymph, which was 2 h earlier (Tmax = 4 h), compared to the Tmax (6 h) obtained with the bulk phase oil. All the data showed that GA is one of the most favorable candidates of natural emulsifiers to improve n-3 bioavailability and their rate of absorption for health targets.
Collapse
|
5
|
Yu X, Nie C, Zhao P, Zhang H, Qin X, Deng Q, Huang F, Zhu Y, Geng F. Influences of microwave exposure to flaxseed on the physicochemical stability of oil bodies: Implication of interface remodeling. Food Chem 2022; 368:130802. [PMID: 34411866 DOI: 10.1016/j.foodchem.2021.130802] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 01/04/2023]
Abstract
This study aimed to investigate the influences of microwave (MV) exposure to flaxseed on the physicochemical stability of oil bodies (OBs) focused on the interface remodeling. The results showed that the intracellular OBs subjected to absolute rupture and then partial dispersion by protein bodies visualized by TEM following MV exposure (1-5 min; 700 W). After aqueous extraction, native flax OBs manifested excellent spherical particles with completely intact surface and wide particle size distribution (0.5-3.0 μm) examined by cryo-SEM. Upon 1-5 min of MV exposure, the defective interface integrity and beaded morphology were successively observed for flax OBs, accompanied by the impaired physical stability and rheological behavior due to the newly assembled phospholipid/protein interface. Notably, the profitable migration of phenolic compounds effectively suppressed the lipid peroxidation and protein carbonylation in flax OBs. Thus, MV exposure (1-5 min; 700 W) was unfavorable for improving the physical stability of flax OBs.
Collapse
Affiliation(s)
- Xiao Yu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Collaborative Innovation Center for Food Production and Safety, Zhengzhou, Henan Province 450002, China
| | - Chengzhen Nie
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Collaborative Innovation Center for Food Production and Safety, Zhengzhou, Henan Province 450002, China
| | - Peng Zhao
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Collaborative Innovation Center for Food Production and Safety, Zhengzhou, Henan Province 450002, China
| | - Haicheng Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Collaborative Innovation Center for Food Production and Safety, Zhengzhou, Henan Province 450002, China
| | - Xiaopeng Qin
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Collaborative Innovation Center for Food Production and Safety, Zhengzhou, Henan Province 450002, China
| | - Qianchun Deng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China.
| | - Fenghong Huang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China
| | - Yingying Zhu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Collaborative Innovation Center for Food Production and Safety, Zhengzhou, Henan Province 450002, China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| |
Collapse
|
6
|
Yuan Q, Xie F, Huang W, Hu M, Yan Q, Chen Z, Zheng Y, Liu L. The review of alpha-linolenic acid: Sources, metabolism, and pharmacology. Phytother Res 2021; 36:164-188. [PMID: 34553434 DOI: 10.1002/ptr.7295] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/17/2021] [Accepted: 09/08/2021] [Indexed: 12/18/2022]
Abstract
α-linolenic acid (ALA, 18:3n-3) is a carboxylic acid composed of 18 carbon atoms and three cis double bonds, and is an essential fatty acid indispensable to the human body. This study aims to systematically review related studies on the dietary sources, metabolism, and pharmacological effects of ALA. Information on ALA was collected from the internet database PubMed, Elsevier, ResearchGate, Web of Science, Wiley Online Library, and Europe PMC using a combination of keywords including "pharmacology," "metabolism," "sources." The following findings are mainly contained. (a) ALA can only be ingested from food and then converted into eicosapentaenoic acid and docosahexaenoic acid in the body. (b) This conversion process is relatively limited and affected by many factors such as dose, gender, and disease. (c) Pharmacological research shows that ALA has the anti-metabolic syndrome, anticancer, antiinflammatory, anti-oxidant, anti-obesity, neuroprotection, and regulation of the intestinal flora properties. (d) There are the most studies that prove ALA has anti-metabolic syndrome effects, including experimental studies and clinical trials. (e) The therapeutic effect of ALA will be affected by the dosage. In short, ALA is expected to treat many diseases, but further high quality studies are needed to firmly establish the clinical efficacy of ALA.
Collapse
Affiliation(s)
- Qianghua Yuan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fan Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Huang
- Hanyuan Hospital of Traditional Chinese Medicine, Yaan, China
| | - Mei Hu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qilu Yan
- Hanyuan Hospital of Traditional Chinese Medicine, Yaan, China
| | - Zemou Chen
- Hanyuan Hospital of Traditional Chinese Medicine, Yaan, China
| | - Yan Zheng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Robert C, Buisson C, Laugerette F, Abrous H, Rainteau D, Humbert L, Vande Weghe J, Meugnier E, Loizon E, Caillet F, Van Dorsselaer B, Urdaci M, Vaysse C, Michalski MC. Impact of Rapeseed and Soy Lecithin on Postprandial Lipid Metabolism, Bile Acid Profile, and Gut Bacteria in Mice. Mol Nutr Food Res 2021; 65:e2001068. [PMID: 33742729 DOI: 10.1002/mnfr.202001068] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/16/2021] [Indexed: 01/01/2023]
Abstract
SCOPE Synthetic emulsifiers have recently been shown to promote metabolic syndrome and considerably alter gut microbiota. Yet, data are lacking regarding the effects of natural emulsifiers, such as plant lecithins rich in essential α-linolenic acid (ALA), on gut and metabolic health. METHODS AND RESULTS For 5 days, male Swiss mice are fed diets containing similar amounts of ALA and 0, 1, 3, or 10% rapeseed lecithin (RL) or 10% soy lecithin (SL). Following an overnight fast, they are force-fed the same oil mixture and euthanized after 90 minutes. The consumption of lecithin significantly increased fecal levels of the Clostridium leptum group (p = 0.0004), regardless of origin or dose, without altering hepatic or intestinal expression of genes of lipid metabolism. 10%-RL increased ALA abundance in plasma triacylglycerols at 90 minutes, reduced cecal bile acid hydrophobicity, and increased their sulfatation, as demonstrated by the increased hepatic RNA expression of Sult2a1 (p = 0.037) and cecal cholic acid-7 sulfate (CA-7S) concentration (p = 0.05) versus 0%-lecithin. CONCLUSION After only 5 days, nutritional doses of RL and SL modified gut bacteria in mice, by specifically increasing C. leptum group. RL also increased postprandial ALA abundance and induced beneficial modifications of the bile acid profile. ALA-rich lecithins, especially RL, may then appear as promising natural emulsifiers.
Collapse
Affiliation(s)
- Chloé Robert
- CarMeN laboratory, INRAE, UMR1397, INSERM, U1060, INSA-Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, FR-69310, France
- ITERG, Equipe Nutrition, Santé et Biochimie des Lipides, Canéjan, FR-33610, France
| | - Charline Buisson
- CarMeN laboratory, INRAE, UMR1397, INSERM, U1060, INSA-Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, FR-69310, France
| | - Fabienne Laugerette
- CarMeN laboratory, INRAE, UMR1397, INSERM, U1060, INSA-Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, FR-69310, France
| | - Hélène Abrous
- ITERG, Equipe Nutrition, Santé et Biochimie des Lipides, Canéjan, FR-33610, France
| | - Dominique Rainteau
- Sorbonne Universités, UPMC Univ. Paris 6, ENS, PSL Research University, CNRS, INSERM, APHP, Laboratory of BioMolecules (LBM), Paris, FR-75005, France
| | - Lydie Humbert
- Sorbonne Universités, UPMC Univ. Paris 6, ENS, PSL Research University, CNRS, INSERM, APHP, Laboratory of BioMolecules (LBM), Paris, FR-75005, France
| | - Justine Vande Weghe
- UMR5248, Laboratory of Microbiology and Applied Biochemistry, Bordeaux Sciences Agro, Gradignan, FR-33170, France
| | - Emmanuelle Meugnier
- CarMeN laboratory, INRAE, UMR1397, INSERM, U1060, INSA-Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, FR-69310, France
| | - Emmanuelle Loizon
- CarMeN laboratory, INRAE, UMR1397, INSERM, U1060, INSA-Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, FR-69310, France
| | - François Caillet
- CarMeN laboratory, INRAE, UMR1397, INSERM, U1060, INSA-Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, FR-69310, France
| | - Benjamin Van Dorsselaer
- CarMeN laboratory, INRAE, UMR1397, INSERM, U1060, INSA-Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, FR-69310, France
| | - Maria Urdaci
- UMR5248, Laboratory of Microbiology and Applied Biochemistry, Bordeaux Sciences Agro, Gradignan, FR-33170, France
| | - Carole Vaysse
- ITERG, Equipe Nutrition, Santé et Biochimie des Lipides, Canéjan, FR-33610, France
| | - Marie-Caroline Michalski
- CarMeN laboratory, INRAE, UMR1397, INSERM, U1060, INSA-Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, FR-69310, France
| |
Collapse
|
8
|
Cheng C, Yu X, Huang F, Peng D, Chen H, Chen Y, Huang Q, Deng Q. Effect of different structural flaxseed lignans on the stability of flaxseed oil-in-water emulsion: An interfacial perspective. Food Chem 2021; 357:129522. [PMID: 33872871 DOI: 10.1016/j.foodchem.2021.129522] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 11/22/2022]
Abstract
The influences of the different structural flaxseed lignans on flaxseed oil (FO) emulsions during storage and digestion were investigated, focusing on their interfacial behavior. From perspective of interface, more than 60% of secoisolariciresinol (SECO) and the acidic hydrolysates of flaxseed lignan macromolecule (FLEH) were located on the interface of FO emulsions. It improved the stability of FO emulsions both during storage and digestion by inhibiting of free radical penetration and improving their targeted antioxidative activity. By comparison, the secoisolariciresinol diglucoside (SDG) and the alkaline hydrolysates of flaxseed lignan macromolecule (FLE) largely located in the aqueous and exerted lower antioxidative efficiency in emulsions. Moreover, SDG, SECO, FLE and FLEH slowed down the digestive rate of FO in emulsions, which might be due to flaxseed lignans inhibited the activity of digestive enzymes. These findings suggested that the different structural flaxseed lignans had the potential as antioxidants in emulsions during storage and digestion.
Collapse
Affiliation(s)
- Chen Cheng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, China
| | - Xiao Yu
- College of Food and Biological Engineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Henan Collaborative Innovation Center for Food Production and Safety Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Fenghong Huang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, China
| | - Dengfeng Peng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, China
| | - Hongjian Chen
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, China
| | - Yashu Chen
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, China
| | - Qingde Huang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, China
| | - Qianchun Deng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, China.
| |
Collapse
|
9
|
Robert C, Couëdelo L, Knibbe C, Fonseca L, Buisson C, Errazuriz-Cerda E, Meugnier E, Loizon E, Vaysse C, Michalski MC. Rapeseed Lecithin Increases Lymphatic Lipid Output and α-Linolenic Acid Bioavailability in Rats. J Nutr 2020; 150:2900-2911. [PMID: 32937654 DOI: 10.1093/jn/nxaa244] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/07/2020] [Accepted: 07/21/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Soybean lecithin, a plant-based emulsifier widely used in food, is capable of modulating postprandial lipid metabolism. With arising concerns of sustainability, alternative sources of vegetal lecithin are urgently needed, and their metabolic effects must be characterized. OBJECTIVES We evaluated the impact of increasing doses of rapeseed lecithin (RL), rich in essential α-linolenic acid (ALA), on postprandial lipid metabolism and ALA bioavailability in lymph-cannulated rats. METHODS Male Wistar rats (8 weeks old) undergoing a mesenteric lymph duct cannulation were intragastrically administered 1 g of an oil mixture containing 4% ALA and 0, 1, 3, 10, or 30% RL (5 groups). Lymph fractions were collected for 6 h. Lymph lipids and chylomicrons (CMs) were characterized. The expression of genes implicated in intestinal lipid metabolism was determined in the duodenum at 6 h. Data was analyzed using either sigmoidal or linear mixed-effects models, or one-way ANOVA, where appropriate. RESULTS RL dose-dependently increased the lymphatic recovery (AUC) of total lipids (1100 μg/mL·h per additional RL%; P = 0.010) and ALA (50 μg/mL·h per additional RL%; P = 0.0076). RL induced a faster appearance of ALA in lymph, as evidenced by the exponential decrease of the rate of appearance of ALA with RL (R2 = 0.26; P = 0.0064). Although the number of CMs was unaffected by RL, CM diameter was increased in the 30%-RL group, compared to the control group (0% RL), by 86% at 3-4 h (P = 0.065) and by 81% at 4-6 h (P = 0.0002) following administration. This increase was positively correlated with the duodenal mRNA expression of microsomal triglyceride transfer protein (Mttp; ρ= 0.63; P = 0.0052). The expression of Mttp and secretion-associated, ras-related GTPase 1 gene homolog B (Sar1b, CM secretion), carnitine palmitoyltransferase IA (Cpt1a) and acyl-coenzyme A oxidase 1 (Acox1, beta-oxidation), and fatty acid desaturase 2 (Fads2, bioconversion of ALA into long-chain n-3 PUFAs) were, respectively, 49%, 29%, 74%, 48%, and 55% higher in the 30%-RL group vs. the control group (P < 0.05). CONCLUSIONS In rats, RL enhanced lymphatic lipid output, as well as the rate of appearance of ALA, which may promote its subsequent bioavailability and metabolic fate.
Collapse
Affiliation(s)
- Chloé Robert
- Univ-Lyon, CarMeN (Cardiovascular, Metabolism, Diabetes, Nutrition) Laboratory, National Institute for Agricultural and Environmental Research (INRAE) UMR1397, National Institute of Health and Medical Research (INSERM) U1060, National Institute of Applied Science of Lyon (INSA-Lyon), Université Claude Bernard Lyon 1, Pierre-Bénite, France.,ITERG, Equipe Nutrition, Santé et Biochimie des Lipides, Canéjan, France
| | - Leslie Couëdelo
- ITERG, Equipe Nutrition, Santé et Biochimie des Lipides, Canéjan, France
| | - Carole Knibbe
- Univ-Lyon, CarMeN (Cardiovascular, Metabolism, Diabetes, Nutrition) Laboratory, National Institute for Agricultural and Environmental Research (INRAE) UMR1397, National Institute of Health and Medical Research (INSERM) U1060, National Institute of Applied Science of Lyon (INSA-Lyon), Université Claude Bernard Lyon 1, Pierre-Bénite, France.,Inria "Beagle" team, Antenne Lyon la Doua, Villeurbanne, France
| | - Laurence Fonseca
- ITERG, Equipe Nutrition, Santé et Biochimie des Lipides, Canéjan, France
| | - Charline Buisson
- Univ-Lyon, CarMeN (Cardiovascular, Metabolism, Diabetes, Nutrition) Laboratory, National Institute for Agricultural and Environmental Research (INRAE) UMR1397, National Institute of Health and Medical Research (INSERM) U1060, National Institute of Applied Science of Lyon (INSA-Lyon), Université Claude Bernard Lyon 1, Pierre-Bénite, France
| | | | - Emmanuelle Meugnier
- Univ-Lyon, CarMeN (Cardiovascular, Metabolism, Diabetes, Nutrition) Laboratory, National Institute for Agricultural and Environmental Research (INRAE) UMR1397, National Institute of Health and Medical Research (INSERM) U1060, National Institute of Applied Science of Lyon (INSA-Lyon), Université Claude Bernard Lyon 1, Pierre-Bénite, France
| | - Emmanuelle Loizon
- Univ-Lyon, CarMeN (Cardiovascular, Metabolism, Diabetes, Nutrition) Laboratory, National Institute for Agricultural and Environmental Research (INRAE) UMR1397, National Institute of Health and Medical Research (INSERM) U1060, National Institute of Applied Science of Lyon (INSA-Lyon), Université Claude Bernard Lyon 1, Pierre-Bénite, France
| | - Carole Vaysse
- ITERG, Equipe Nutrition, Santé et Biochimie des Lipides, Canéjan, France
| | - Marie-Caroline Michalski
- Univ-Lyon, CarMeN (Cardiovascular, Metabolism, Diabetes, Nutrition) Laboratory, National Institute for Agricultural and Environmental Research (INRAE) UMR1397, National Institute of Health and Medical Research (INSERM) U1060, National Institute of Applied Science of Lyon (INSA-Lyon), Université Claude Bernard Lyon 1, Pierre-Bénite, France
| |
Collapse
|
10
|
Comparative study on the digestion and absorption characteristics of n-3 LCPUFA-enriched phospholipids in the form of liposomes and emulsions. Food Res Int 2020; 137:109428. [PMID: 33233110 DOI: 10.1016/j.foodres.2020.109428] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/18/2020] [Accepted: 06/07/2020] [Indexed: 11/21/2022]
Abstract
Previous studies have reported that phospholipids rich in n-3 long-chain polyunsaturated fatty acids (n-3 LCPUFA) in the form of liposome exhibited superior bioactivities than other formulation. However, the digestion and absorption characteristics of n-3 LCPUFA-enriched phospholipids were still unclear, restricting the molecular mechanism analysis related to their distinctive activities. The aim of the present study was to compare the digestion and absorption characteristics of DHA/EPA-PC in the forms of liposome and emulsion. The fatty acid composition and lipid species in serum, intestinal wall and content of healthy mice were determined after oral administration with DHA/EPA-PC. Results showed that the peak value of serum DHA/EPA level in the liposome group was significantly higher than that of the emulsion group (p < 0.05), although the peak in the liposome group appeared at 3 h and the peak time was 2 h in the emulsion group. Lipidomics analysis indicated that the high levels of total PL and PL-DHA could be retained in serum for a substantial period after administration of the DHA/EPA-PC liposome, which might be attributed to that the DHA/EPA-PC in the form of liposomes was hydrolyzed slower by pancreatic phospholipase A2 than the emulsion form in small intestinal content. The obtained results might provide theoretical basis for the development and utilization of marine-derived phospholipids.
Collapse
|
11
|
Lucchinetti E, Lou PH, Wawrzyniak P, Wawrzyniak M, Scharl M, Holtzhauer GA, Krämer SD, Hersberger M, Rogler G, Zaugg M. Novel Strategies to Prevent Total Parenteral Nutrition-Induced Gut and Liver Inflammation, and Adverse Metabolic Outcomes. Mol Nutr Food Res 2020; 65:e1901270. [PMID: 32359213 DOI: 10.1002/mnfr.201901270] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/09/2020] [Indexed: 12/15/2022]
Abstract
Total parenteral nutrition (TPN) is a life-saving therapy administered to millions of patients. However, it is associated with significant adverse effects, namely liver injury, risk of infections, and metabolic derangements. In this review, the underlying causes of TPN-associated adverse effects, specifically gut atrophy, dysbiosis of the intestinal microbiome, leakage of the epithelial barrier with bacterial invasion, and inflammation are first described. The role of the bile acid receptors farnesoid X receptor and Takeda G protein-coupled receptor, of pleiotropic hormones, and growth factors is highlighted, and the mechanisms of insulin resistance, namely the lack of insulinotropic and insulinomimetic signaling of gut-originating incretins as well as the potentially toxicity of phytosterols and pro-inflammatory fatty acids mainly released from soybean oil-based lipid emulsions, are discussed. Finally, novel approaches in the design of next generation lipid delivery systems are proposed. Propositions include modifying the physicochemical properties of lipid emulsions, the use of lipid emulsions generated from sustainable oils with favorable ratios of anti-inflammatory n-3 to pro-inflammatory n-6 fatty acids, beneficial adjuncts to TPN, and concomitant pharmacotherapies to mitigate TPN-associated adverse effects.
Collapse
Affiliation(s)
- Eliana Lucchinetti
- Department of Anesthesiology and Pain Medicine and Cardiovascular Research Centre, University of Alberta, Edmonton, T6G 2R3, Canada
| | - Phing-How Lou
- Department of Pharmacology, University of Alberta, Edmonton, T6G 2R3, Canada
| | - Paulina Wawrzyniak
- Division of Clinical Chemistry and Biochemistry, Children's Hospital Zurich, Zurich, 8032, Switzerland
| | - Marcin Wawrzyniak
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, 8091, Switzerland
| | - Michael Scharl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, 8091, Switzerland
| | - Gregory A Holtzhauer
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| | - Stefanie D Krämer
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| | - Martin Hersberger
- Division of Clinical Chemistry and Biochemistry, Children's Hospital Zurich, Zurich, 8032, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, 8091, Switzerland
| | - Michael Zaugg
- Department of Anesthesiology and Pain Medicine and Cardiovascular Research Centre, University of Alberta, Edmonton, T6G 2R3, Canada.,Department of Pharmacology, University of Alberta, Edmonton, T6G 2R3, Canada
| |
Collapse
|
12
|
Robert C, Couëdelo L, Vaysse C, Michalski MC. Vegetable lecithins: A review of their compositional diversity, impact on lipid metabolism and potential in cardiometabolic disease prevention. Biochimie 2019; 169:121-132. [PMID: 31786232 DOI: 10.1016/j.biochi.2019.11.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 11/25/2019] [Indexed: 12/18/2022]
Abstract
Vegetable lecithins, widely used in the food industry as emulsifiers, are a mixture of naturally occurring lipids containing more than 50% of phospholipids (PL). PL exert numerous important physiological effects. Their amphiphilic nature notably enables them to stabilise endogenous lipid droplets, conferring them an important role in lipoprotein transport, functionality and metabolism. In addition, beneficial effects of dietary lecithin on metabolic disorders have been reported since the 1990s. This review attempts to summarize the effects of various vegetable lecithins on lipid and lipoprotein metabolism, as well as their potential application in the treatment of dyslipidemia associated with metabolic disorders. Despite controversial data concerning the impact of vegetable lecithins on lipid digestion and intestinal absorption, the beneficial effect of lecithin supplementation on plasma and hepatic lipoprotein and cholesterol levels is unequivocal. This is especially true in hyperlipidemic patients. Furthermore, the immense compositional diversity of vegetable lecithins endows them with a vast range of biochemical and biological properties, which remain to be explored in detail. Data on the effects of vegetable lecithins alternative to soybean, both as supplements and as ingredients in different foods, is undoubtedly lacking. Given the exponential demand for vegetable products alternative to those of animal origin, it is of primordial importance that future research is undertaken in order to elucidate the mechanisms by which individual fatty acids and PL from various vegetable lecithins modulate lipid metabolism. The extent to which they may influence parameters associated with metabolic disorders, such as intestinal integrity, low-grade inflammation and gut microbiota must also be assessed.
Collapse
Affiliation(s)
- Chloé Robert
- Univ Lyon, CarMeN Laboratory, Inserm, INRAE, INSA Lyon, Université Claude Bernard Lyon 1, Lyon-Sud Medical School, Pierre-Bénite, FR-69310, France; ITERG, Equipe Nutrition, Santé et Biochimie des Lipides, Canéjan, FR-33610, Canéjan, France
| | - Leslie Couëdelo
- ITERG, Equipe Nutrition, Santé et Biochimie des Lipides, Canéjan, FR-33610, Canéjan, France
| | - Carole Vaysse
- ITERG, Equipe Nutrition, Santé et Biochimie des Lipides, Canéjan, FR-33610, Canéjan, France
| | - Marie-Caroline Michalski
- Univ Lyon, CarMeN Laboratory, Inserm, INRAE, INSA Lyon, Université Claude Bernard Lyon 1, Lyon-Sud Medical School, Pierre-Bénite, FR-69310, France.
| |
Collapse
|
13
|
Xu Q, Zhou A, Wu H, Bi Y. Development and in vivo evaluation of baicalin-loaded W/O nanoemulsion for lymphatic absorption. Pharm Dev Technol 2019; 24:1155-1163. [PMID: 31342830 DOI: 10.1080/10837450.2019.1646757] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background: Lymphatic formations that effectively eradicate the virus in the lymphatic system will be therapeutically advantagous in hepatitis B virus (HBV) infection. Lipid-based formulation is often used to deliver drug via the lymphatic system. Baicalin nanoemulsion may be a promising drug delivery system for improved treatment of HBV infection. Objective: This study aimed to prepare, characterize, and evaluate a lipid-based nanoemulsion containing baicalin for lymphatic system absorption. Method: The presence of a nanoemulsion region was studied by pseudoternary phase diagrams. The physicochemical properties of a baicalin-loaded nanoemulsion were investigated. The oral bioavailability of the baicalin-loaded nanoemulsion was compared to that of a baicalin suspension. A chylomicron flow blocking model was used to examine the extent of lymphatic uptake. The lymph node distribution of baicalin was measured to investigate the lymphatic transport ability of the nanoemulsion compared to the suspension. Results: Compared to the baicalin suspension, the AUC0-t and Cmax values of the baicalin nanoemulsion were increased by 10.5-fold and 3.12-fold, respectively. Compared with the saline-treated rats that were orally administered the baicalin nanoemulsion, the AUC0-t and Cmax values of the nanoemulsion for the rats pretreated with cycloheximide were reduced from 23.076 ± 1.244 mg/L h to 9.236 ± 0.940 mg/L h and from 3.010 ± 0.119 mg/L to 1.567 ± 0.220 mg/L, respectively. In comparing baicalin in W/O nanoemulsion with suspension, the Cmax value was found to be 11.5-fold higher in the lymph nodes of the rats treated with the nanoemulsion. Conclusion: The results indicated that a baicalin-loaded W/O nanoemulsion may be a promising drug delivery system for the treatment of chronic hepatitis B.
Collapse
Affiliation(s)
- Qian Xu
- Department of Pharmacy, Anhui University of Chinese Medicine , Hefei , China
| | - An Zhou
- Department of Pharmacy, Anhui University of Chinese Medicine , Hefei , China.,Ministry of Education, Key Laboratory of Xin'An Medicine , Hefei , China
| | - Hongfei Wu
- Department of Pharmacy, Anhui University of Chinese Medicine , Hefei , China.,Ministry of Education, Key Laboratory of Xin'An Medicine , Hefei , China
| | - Yujie Bi
- Department of Pharmacy, Anhui University of Chinese Medicine , Hefei , China
| |
Collapse
|
14
|
Nassra M, Bourgeois C, Subirade M, Sauvant P, Atgié C. Oral administration of lipid oil-in-water emulsions performed with synthetic or protein-type emulsifiers differentially affects post-prandial triacylglycerolemia in rats. J Physiol Biochem 2018; 74:603-612. [PMID: 29725909 DOI: 10.1007/s13105-018-0634-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/23/2018] [Indexed: 10/17/2022]
Abstract
In this study, we compared the impact of administration of size-calibrated lipid emulsions prepared with either synthetic or natural emulsifiers on the post-absorptive plasma triacylglycerol responses in rats. We did this using four types of size-calibrated (10 μm diameter) and metastable (3 days) emulsions with 20% of an oleic acid-rich sunflower oil and 1% of either synthetic emulsifiers (Tween 80 or sodium 2-stearoyl-lactylate) or two proteins (β-lactoglobulin or sodium caseinate). An oral fat tolerance test was performed in fasted rats by oral administration of each of these formulations in continuous or emulsified forms. Kinetic parameters (AUC0-inf., AUC0-6h, Cmax, Tmax, and T1/2) for the description of the plasma triacylglycerol responses were calculated. AUC0-6h and AUC0-inf. calculated for the protein groups were significantly lower than those of the control and the synthetic groups. These lower values were associated with significant decreases in the Cmax, exacerbated by the emulsion form and with marked decreases in the Tmax as compared to the control group. T1/2 values were differentially affected by the lipid administration forms and by the nature of the emulsifiers. As compared with the control group, T1/2 was largely increased in the sodium stearoyl-2-lactylate group, but on the contrary, largely lowered in the casein group. We concluded that the use of proteins as natural emulsifiers in lipid emulsions decreased the magnitude of post-prandial triacylglycerolemia for the same amount of ingested lipids, when the emulsion size is controlled for. Proteins could be a promising alternative to the widespread use of synthetic emulsifiers in the food industry.
Collapse
Affiliation(s)
- Merian Nassra
- Institut de Chimie des Membranes et des Nano-objects (CBMN), UMR 5248, CNRS, Université de Bordeaux, Bordeaux INP, Bât B14, 1 Allée Geoffroy Saint-Hilaire, 33600, Pessac, France
| | - Christine Bourgeois
- Institut de Chimie des Membranes et des Nano-objects (CBMN), UMR 5248, CNRS, Université de Bordeaux, Bordeaux INP, Bât B14, 1 Allée Geoffroy Saint-Hilaire, 33600, Pessac, France.,Institut de Nutrition et des Aliments Fonctionnels (INAF), Département des Sciences des Aliments, Université Laval, Québec, Canada
| | - Muriel Subirade
- Institut de Nutrition et des Aliments Fonctionnels (INAF), Département des Sciences des Aliments, Université Laval, Québec, Canada
| | - Patrick Sauvant
- Institut de Chimie des Membranes et des Nano-objects (CBMN), UMR 5248, CNRS, Université de Bordeaux, Bordeaux INP, Bât B14, 1 Allée Geoffroy Saint-Hilaire, 33600, Pessac, France
| | - Claude Atgié
- Institut de Chimie des Membranes et des Nano-objects (CBMN), UMR 5248, CNRS, Université de Bordeaux, Bordeaux INP, Bât B14, 1 Allée Geoffroy Saint-Hilaire, 33600, Pessac, France.
| |
Collapse
|
15
|
Sugasini D, Lokesh BR. Curcumin and linseed oil co-delivered in phospholipid nanoemulsions enhances the levels of docosahexaenoic acid in serum and tissue lipids of rats. Prostaglandins Leukot Essent Fatty Acids 2017; 119:45-52. [PMID: 28410669 DOI: 10.1016/j.plefa.2017.03.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/16/2017] [Accepted: 03/17/2017] [Indexed: 12/19/2022]
Abstract
Docosahexaenoic acid (DHA) is an important long chain omega-3 polyunsaturated fatty acid (PUFA) primarily found in marine fishes. The diets of vegetarian population do not contain preformed DHA, but they can derive it from shorter chain α-linolenic acid (ALA) found in plant oils. However, the conversion efficiency of ALA to DHA is minimal in human adults. This may cause insufficiency of DHA in the vegetarian population. Curcumin, diferuloyl methane found in the spice turmeric, has the potential to increase the formation of DHA from ALA by activating the enzymes FADS2 and elongase 2. The present study was designed to prepare curcumin nanoemulsion using phospholipid core material (Lipoid™) and exploring the possibility of enhancing its bioavailability and its impact on DHA levels in rats. Curcumin was dissolved in coconut oil (CNO, MCFA rich), Sunflower oil (SNO, n-6 PUFA rich) or Linseed oil (LSO, n-3 PUFA rich) and nanoemulsions were prepared after mixing with Lipoid™ using high pressure homogenizer. The nanoemulsions were fed to weaning rats for 60 days along with AIN-93 diets. Rats fed nanoemulsion containing curcumin in LSO showed high levels of curcumin in serum liver, heart and brain. Significant increase in DHA levels of serum and tissue lipids were observed in rats given LSO with curcumin in nanoemulsions. Therefore, supplementation of diets with ALA rich LSO and curcumin could increase DHA concentrations in serum, liver, heart and brain lipids which have implications for meeting the DHA requirements of vegetarian populations.
Collapse
Affiliation(s)
- D Sugasini
- Department of Lipid Science and Traditional Foods, CSIR-Central Food Technological Research Institute, Mysore 570020, India.
| | - B R Lokesh
- Department of Lipid Science and Traditional Foods, CSIR-Central Food Technological Research Institute, Mysore 570020, India.
| |
Collapse
|
16
|
Dietary Crude Lecithin Increases Systemic Availability of Dietary Docosahexaenoic Acid with Combined Intake in Rats. Lipids 2016; 51:833-46. [PMID: 27038174 PMCID: PMC4903106 DOI: 10.1007/s11745-016-4139-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 02/29/2016] [Indexed: 01/15/2023]
Abstract
Crude lecithin, a mixture of mainly phospholipids, potentially helps to increase the systemic availability of dietary omega-3 polyunsaturated fatty acids (n-3 PUFA), such as docosahexaenoic acid (DHA). Nevertheless, no clear data exist on the effects of prolonged combined dietary supplementation of DHA and lecithin on RBC and plasma PUFA levels. In the current experiments, levels of DHA and choline, two dietary ingredients that enhance neuronal membrane formation and function, were determined in plasma and red blood cells (RBC) from rats after dietary supplementation of DHA-containing oils with and without concomitant dietary supplementation of crude lecithin for 2–3 weeks. The aim was to provide experimental evidence for the hypothesized additive effects of dietary lecithin (not containing any DHA) on top of dietary DHA on PUFA levels in plasma and RBC. Dietary supplementation of DHA-containing oils, either as vegetable algae oil or as fish oil, increased DHA, eicosapentaenoic acid (EPA), and total n-3 PUFA, and decreased total omega-6 PUFA levels in plasma and RBC, while dietary lecithin supplementation alone did not affect these levels. However, combined dietary supplementation of DHA and lecithin increased the changes induced by DHA supplementation alone. Animals receiving a lecithin-containing diet also had a higher plasma free choline concentration as compared to controls. In conclusion, dietary DHA-containing oils and crude lecithin have synergistic effects on increasing plasma and RBC n-3 PUFA levels, including DHA and EPA. By increasing the systemic availability of dietary DHA, dietary lecithin may increase the efficacy of DHA supplementation when their intake is combined.
Collapse
|
17
|
Couëdelo L, Amara S, Lecomte M, Meugnier E, Monteil J, Fonseca L, Pineau G, Cansell M, Carrière F, Michalski MC, Vaysse C. Impact of various emulsifiers on ALA bioavailability and chylomicron synthesis through changes in gastrointestinal lipolysis. Food Funct 2015; 6:1726-35. [PMID: 25923344 DOI: 10.1039/c5fo00070j] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Formulating healthy food rich in omega 3 fatty acids requires prior knowledge of the parameters influencing their bioavailability and their metabolic fate. In this context, we studied the effects of various emulsifiers widely used in the food industry, on the gastrointestinal lipolysis of flaxseed oil emulsions in an in vitro model and on the intestinal absorption and lymphatic secretion of alpha-linolenic acid (ALA) in rats. In vitro data showed that the emulsification of flaxseed oil with soya lecithin improved the gastric lipolysis of the oil (+30%), while the presence of Tween 80 or of sodium caseinate decreased it (-80% and -40%, respectively). The in vivo data demonstrated that the intestinal absorption and the lymphatic secretion of ALA were improved with soya lecithin (Cmax = 24 mg mL(-1)) and reduced in the presence of sodium caseinate (Cmax = 7 mg mL(-1)) compared to unemulsified flaxseed oil (Cmax = 16 mg mL(-1)); Tween 80 had no effect. In addition, the synthesized chylomicrons were notably larger and more numerous with soya lecithin whereas they were smaller in the presence of sodium caseinate (p < 0.05). This study shows that the intestinal bioavailability of ALA was increased by the emulsification of flaxseed oil with soya lecithin via an improved lipolysis, favouring the intestinal absorption of ALA and the secretion of many large chylomicrons in lymph.
Collapse
Affiliation(s)
- L Couëdelo
- ITERG-ENMS, Université de Bordeaux, rue Léo Saignat, 33076 Bordeaux cedex, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|