1
|
Sun B, Hayashi M, Kudo M, Wu L, Qin L, Gao M, Liu T. Madecassoside Inhibits Body Weight Gain via Modulating SIRT1-AMPK Signaling Pathway and Activating Genes Related to Thermogenesis. Front Endocrinol (Lausanne) 2021; 12:627950. [PMID: 33767670 PMCID: PMC7985537 DOI: 10.3389/fendo.2021.627950] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/03/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Pre-clinical research studies have shown that Madecassoside (MA) has favorable therapeutic effects on arthritis, acne, vitiligo and other diseases. However, the effects of MA on obesity have not yet been studied. This study mainly aimed to investigate the effects of MA in protecting against obesity and its underlying mechanism in reducing obesity. METHODS Obese diabetic KKay/TaJcl mice model was adopted to the study. The body weight of all animals was recorded daily, and the blood glucose, blood lipid, and serum aminotransferase levels were examined, respectively. The expression of P-AMPK, SIRT1, P-LKB1, P-ACC, and P-HSL in abdominal fat, mesenteric fat, and epididymal fat was measured by western blotting, and the levels of PPARα, CPT1a, PGC-1α, UCP-1, Cidea, Cox7a1, and Cox8b were examined by real-time quantitative PCR (RT-qPCR). RESULTS The results revealed that the body weight of the mice in MA group was significantly reduced, and the body mass index (BMI) showed significant difference between the two groups after 8 weeks of MA treatment. Further research revealed that it affected the mesenteric fat and epididymis fat by activating SIRT1/AMPK signaling pathway, and then promoted fatty acid oxidation of epididymal fat (PPARα ↑, CPT1a↑, and PGC-1α↑). Last but not the least, it also promoted the expression of UCP-1 and stimulated thermoregulatory genes (Cidea, Cox7a1, and Cox8b) in brown fat and mesenteric fat. CONCLUSIONS Taken together, these findings suggest that MA can inhibit the weight gain in obese diabetic mice, and reduce triglyceride levels, inhibit lipogenesis of mesenteric fat, promote epididymal fat lipolysis and fatty acid oxidation. Furthermore, MA treatment might promote mesenteric fat browning and activate mitochondrial function in brown fat as well as mesenteric fat.
Collapse
Affiliation(s)
- Boju Sun
- Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Misa Hayashi
- School of Pharmaceutical Sciences, Mukogawa Women’s University, Hyogo, Japan
| | - Maya Kudo
- School of Pharmaceutical Sciences, Mukogawa Women’s University, Hyogo, Japan
| | - Lili Wu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China
| | - Lingling Qin
- Technology Department, Beijing University of Chinese Medicine, Beijing, China
| | - Ming Gao
- School of Pharmaceutical Sciences, Mukogawa Women’s University, Hyogo, Japan
- Institute for Biosciences, Mukogawa Women’s University, Hyogo, Japan
- *Correspondence: Ming Gao, ; Tonghua Liu,
| | - Tonghua Liu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Ming Gao, ; Tonghua Liu,
| |
Collapse
|
2
|
Bakhtiyari S, Zaherara M, Haghani K, Khatami M, Rashidinejad A. The Phosphorylation of IRS1 S307 and Akt S473 Molecules in Insulin-Resistant C2C12 Cells Induced with Palmitate Is Influenced by Epigallocatechin Gallate from Green Tea. Lipids 2019; 54:141-148. [PMID: 30891789 DOI: 10.1002/lipd.12133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 01/03/2019] [Accepted: 01/22/2019] [Indexed: 12/25/2022]
Abstract
In the current investigation, the effect of epigallocatechin gallate (EGCG) on the phosphorylation of IRS1S307 and AktS473 molecules in insulin-resistant C2C12 muscle cells induced with palmitate was studied and compared with the effect of the antidiabetic drug, rosiglitazone. C2C12 myoblasts were cultured in Dulbecco's modified Eagle's medium and differentiated into myotubes using horse serum and the creatine kinase test was used to confirm their differentiation. The treatment of C2C12 myotubes was carried out with palmitate, where albumin was used as the conjugator. The Western blot technique was used to check the useful phosphorylation of IRS1S307 and AktS473 in C2C12 myotubes, in the presence or absence of palmitate. There was a significant (p < 0.00) and linear increase in the activity of creatine kinase over time (0 to 96 h after differentiation) with everyday myoblast formation. While neither EGCG nor rosiglitazone showed a significant (p > 0.05) effect on palmitate content during 96 h of incubation of IRS1S307 , EGCG alone or combined with rosiglitazone increased the phosphorylation of AktS473 , leading to the increase of glucose uptake into C2C12 cells. Thus, it can be concluded that EGCG alone or in combination with rosiglitazone may show some therapeutic effects for the prevention or treatment of Type 2 diabetes owing to its substantial effect on increasing the phosphorylation of AktS473 and the subsequent glucose uptake into the cells.
Collapse
Affiliation(s)
- Salar Bakhtiyari
- Department of Clinical Biochemistry, Ilam University of Medical Sciences, Pajouhesh Blv., Ilam 6939177143, Iran
| | - Motahareh Zaherara
- School of Medicine, Bam University of Medical Sciences, Khalije Fars, Bam 76617136699, Iran
| | - Karimeh Haghani
- Department of Clinical Biochemistry, Ilam University of Medical Sciences, Pajouhesh Blv., Ilam 6939177143, Iran
| | - Mehrdad Khatami
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Khalije Fars, Bam 76617136699, Iran.,NanoBioElectrochemistry Research Centre, Bam University of Medical Sciences, Bam, Iran
| | - Ali Rashidinejad
- Riddet Institute Centre of Research Excellence, Massey University, Tennent Drive, Palmerston North 4442, New Zealand
| |
Collapse
|
3
|
Casanova E, Salvadó J, Crescenti A, Gibert-Ramos A. Epigallocatechin Gallate Modulates Muscle Homeostasis in Type 2 Diabetes and Obesity by Targeting Energetic and Redox Pathways: A Narrative Review. Int J Mol Sci 2019; 20:ijms20030532. [PMID: 30691224 PMCID: PMC6387143 DOI: 10.3390/ijms20030532] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 01/22/2019] [Indexed: 12/20/2022] Open
Abstract
Obesity is associated with the hypertrophy and hyperplasia of adipose tissue, affecting the healthy secretion profile of pro- and anti-inflammatory adipokines. Increased influx of fatty acids and inflammatory adipokines from adipose tissue can induce muscle oxidative stress and inflammation and negatively regulate myocyte metabolism. Muscle has emerged as an important mediator of homeostatic control through the consumption of energy substrates, as well as governing systemic signaling networks. In muscle, obesity is related to decreased glucose uptake, deregulation of lipid metabolism, and mitochondrial dysfunction. This review focuses on the effect of epigallocatechin-gallate (EGCG) on oxidative stress and inflammation, linked to the metabolic dysfunction of skeletal muscle in obesity and their underlying mechanisms. EGCG works by increasing the expression of antioxidant enzymes, by reversing the increase of reactive oxygen species (ROS) production in skeletal muscle and regulating mitochondria-involved autophagy. Moreover, EGCG increases muscle lipid oxidation and stimulates glucose uptake in insulin-resistant skeletal muscle. EGCG acts by modulating cell signaling including the NF-κB, AMP-activated protein kinase (AMPK), and mitogen-activated protein kinase (MAPK) signaling pathways, and through epigenetic mechanisms such as DNA methylation and histone acetylation.
Collapse
Affiliation(s)
- Ester Casanova
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili (URV), Campus Sescelades, 43007 Tarragona, Spain.
| | - Josepa Salvadó
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili (URV), Campus Sescelades, 43007 Tarragona, Spain.
| | - Anna Crescenti
- Technological Unit of Nutrition and Health, EURECAT-Technology Centre of Catalonia, Avinguda Universitat 1, 43204 Reus, Spain.
| | - Albert Gibert-Ramos
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili (URV), Campus Sescelades, 43007 Tarragona, Spain.
| |
Collapse
|
4
|
Fakan B, Szalardy L, Vecsei L. Exploiting the Therapeutic Potential of Endogenous Immunomodulatory Systems in Multiple Sclerosis-Special Focus on the Peroxisome Proliferator-Activated Receptors (PPARs) and the Kynurenines. Int J Mol Sci 2019; 20:ijms20020426. [PMID: 30669473 PMCID: PMC6358998 DOI: 10.3390/ijms20020426] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/13/2019] [Accepted: 01/15/2019] [Indexed: 01/20/2023] Open
Abstract
Multiple sclerosis (MS) is a progressive neurodegenerative disease, characterized by autoimmune central nervous system (CNS) demyelination attributable to a disturbed balance between encephalitic T helper 1 (Th1) and T helper 17 (Th17) and immunomodulatory regulatory T cell (Treg) and T helper 2 (Th2) cells, and an alternatively activated macrophage (M2) excess. Endogenous molecular systems regulating these inflammatory processes have recently been investigated to identify molecules that can potentially influence the course of the disease. These include the peroxisome proliferator-activated receptors (PPARs), PPARγ coactivator-1alpha (PGC-1α), and kynurenine pathway metabolites. Although all PPARs ameliorate experimental autoimmune encephalomyelitis (EAE), recent evidence suggests that PPARα, PPARβ/δ agonists have less pronounced immunomodulatory effects and, along with PGC-1α, are not biomarkers of neuroinflammation in contrast to PPARγ. Small clinical trials with PPARγ agonists have been published with positive results. Proposed as immunomodulatory and neuroprotective, the therapeutic use of PGC-1α activation needs to be assessed in EAE/MS. The activation of indolamine 2,3-dioxygenase (IDO), the rate-limiting step of the kynurenine pathway of tryptophan (Trp) metabolism, plays crucial immunomodulatory roles. Indeed, Trp metabolites have therapeutic relevance in EAE and drugs with structural analogy to kynurenines, such as teriflunomide, are already approved for MS. Further studies are required to gain deeper knowledge of such endogenous immunomodulatory pathways with potential therapeutic implications in MS.
Collapse
Affiliation(s)
- Bernadett Fakan
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, H-6725 Szeged, Semmelweis u. 6, Hungary.
| | - Levente Szalardy
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, H-6725 Szeged, Semmelweis u. 6, Hungary.
| | - Laszlo Vecsei
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, H-6725 Szeged, Semmelweis u. 6, Hungary.
- MTA-SZTE Neuroscience Research Group, H-6725 Szeged, Semmelweis u. 6, Hungary.
| |
Collapse
|
5
|
Govindarajulu M, Pinky PD, Bloemer J, Ghanei N, Suppiramaniam V, Amin R. Signaling Mechanisms of Selective PPAR γ Modulators in Alzheimer's Disease. PPAR Res 2018; 2018:2010675. [PMID: 30420872 PMCID: PMC6215547 DOI: 10.1155/2018/2010675] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/31/2018] [Accepted: 09/13/2018] [Indexed: 01/22/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease characterized by abnormal protein accumulation, synaptic dysfunction, and cognitive impairment. The continuous increase in the incidence of AD with the aged population and mortality rate indicates the urgent need for establishing novel molecular targets for therapeutic potential. Peroxisome proliferator-activated receptor gamma (PPARγ) agonists such as rosiglitazone and pioglitazone reduce amyloid and tau pathologies, inhibit neuroinflammation, and improve memory impairments in several rodent models and in humans with mild-to-moderate AD. However, these agonists display poor blood brain barrier permeability resulting in inadequate bioavailability in the brain and thus requiring high dosing with chronic time frames. Furthermore, these dosing levels are associated with several adverse effects including increased incidence of weight gain, liver abnormalities, and heart failure. Therefore, there is a need for identifying novel compounds which target PPARγ more selectively in the brain and could provide therapeutic benefits without a high incidence of adverse effects. This review focuses on how PPARγ agonists influence various pathologies in AD with emphasis on development of novel selective PPARγ modulators.
Collapse
Affiliation(s)
- Manoj Govindarajulu
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Priyanka D. Pinky
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Jenna Bloemer
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Nila Ghanei
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Vishnu Suppiramaniam
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
- Center for Neuroscience, Auburn University, Auburn, AL, USA
| | - Rajesh Amin
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
- Center for Neuroscience, Auburn University, Auburn, AL, USA
| |
Collapse
|
6
|
Antidiabetic Effects of Tea. Molecules 2017; 22:molecules22050849. [PMID: 28531120 PMCID: PMC6154530 DOI: 10.3390/molecules22050849] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/13/2017] [Accepted: 05/18/2017] [Indexed: 12/30/2022] Open
Abstract
Diabetes mellitus (DM) is a chronic endocrine disease resulted from insulin secretory defect or insulin resistance and it is a leading cause of death around the world. The care of DM patients consumes a huge budget due to the high frequency of consultations and long hospitalizations, making DM a serious threat to both human health and global economies. Tea contains abundant polyphenols and caffeine which showed antidiabetic activity, so the development of antidiabetic medications from tea and its extracts is increasingly receiving attention. However, the results claiming an association between tea consumption and reduced DM risk are inconsistent. The advances in the epidemiologic evidence and the underlying antidiabetic mechanisms of tea are reviewed in this paper. The inconsistent results and the possible causes behind them are also discussed.
Collapse
|
7
|
Wang L, Wang Z, Yang K, Shu G, Wang S, Gao P, Zhu X, Xi Q, Zhang Y, Jiang Q. Epigallocatechin Gallate Reduces Slow-Twitch Muscle Fiber Formation and Mitochondrial Biosynthesis in C2C12 Cells by Repressing AMPK Activity and PGC-1α Expression. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:6517-6523. [PMID: 27420899 DOI: 10.1021/acs.jafc.6b02193] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Epigallocatechin gallate (EGCG) is a major active compound in green tea polyphenols. EGCG acts as an antioxidant to prevent the cell damage caused by free radicals and their derivatives. In skeletal muscle, exercise causes the accumulation of intracellular reactive oxygen species (ROS) and promotes the formation of slow-type muscle fiber. To determine whether EGCG, as a ROS scavenger, has any effect on skeletal muscle fiber type, we applied different concentrations (0, 5, 25, and 50 μM) of EGCG in the culture medium of differentiated C2C12 cells for 2 days. The fiber-type composition, mitochondrial biogenesis-related gene expression, antioxidant and glucose metabolism enzyme activity, and ROS levels in C2C12 cells were then detected. According to our results, 5 μM EGCG significantly decreased the cellular activity of SDH, 25 μM EGCG significantly downregulated the MyHC I, PGC-1α, NRF-1, and p-AMPK levels and SDH activity while enhancing the CAT and GSH-Px activity and decreasing the intracellular ROS levels, and 50 μM EGCG significantly downregulated MyHC I, PGC-1α, and NRF-1 expression and HK and SDH activity while increasing LDH activity. Furthermore, 300 μM H2O2 and 0.5 mM AMPK agonist (AICAR) improved the expression of MyHC I, PGC-1α, and p-AMPK, which were all reversed by 25 μM EGCG. In conclusion, the effect of EGCG on C2C12 cells may occur through the reduction of the ROS level, thereby decreasing both AMPK activity and PGC-1α expression and eventually reducing slow-twitch muscle fiber formation and mitochondrial biosynthesis.
Collapse
Affiliation(s)
- Lina Wang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou, Guangdong 510640, People's Republic of China
| | - Zhen Wang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou, Guangdong 510640, People's Republic of China
| | - Kelin Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou, Guangdong 510640, People's Republic of China
| | - Gang Shu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou, Guangdong 510640, People's Republic of China
| | - Songbo Wang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou, Guangdong 510640, People's Republic of China
| | - Ping Gao
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou, Guangdong 510640, People's Republic of China
| | - Xiaotong Zhu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou, Guangdong 510640, People's Republic of China
| | - Qianyun Xi
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou, Guangdong 510640, People's Republic of China
| | - Yongliang Zhang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou, Guangdong 510640, People's Republic of China
| | - Qingyan Jiang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou, Guangdong 510640, People's Republic of China
| |
Collapse
|