1
|
Nguyen VH, Wemheuer B, Song W, Bennett H, Palladino G, Burgsdorf I, Sizikov S, Steindler L, Webster NS, Thomas T. Functional characterization and taxonomic classification of novel gammaproteobacterial diversity in sponges. Syst Appl Microbiol 2023; 46:126401. [PMID: 36774720 DOI: 10.1016/j.syapm.2023.126401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023]
Abstract
Sponges harbour exceptionally diverse microbial communities, whose members are largely uncultured. The class Gammaproteobacteria often dominates the microbial communities of various sponge species, but most of its diversity remains functional and taxonomically uncharacterised. Here we reconstructed and characterised 32 metagenome-assembled genomes (MAGs) derived from three sponge species. These MAGs represent ten novel species and belong to seven orders, of which one is new. We propose nomenclature for all these taxa. These new species comprise sponge-specific bacteria with varying levels of host specificity. Functional gene profiling highlights significant differences in metabolic capabilities across the ten species, though each also often exhibited a large degree of metabolic diversity involving various nitrogen- and sulfur-based compounds. The genomic features of the ten species suggest they have evolved to form symbiotic interaction with their hosts or are well-adapted to survive within the sponge environment. These Gammaproteobacteria are proposed to scavenge substrates from the host environment, including metabolites or cellular components of the sponge. Their diverse metabolic capabilities may allow for efficient cycling of organic matter in the sponge environment, potentially to the benefit of the host and other symbionts.
Collapse
Affiliation(s)
- Viet Hung Nguyen
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Bernd Wemheuer
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Weizhi Song
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Holly Bennett
- Australian Institute of Marine Science, Townsville, Queensland, Australia; Cawthron Institute, Nelson, New Zealand
| | - Giorgia Palladino
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia; Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, via Belmeloro 6, 40126 Bologna, Italy
| | | | | | | | - Nicole S Webster
- Australian Institute of Marine Science, Townsville, Queensland, Australia; Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia; Australian Antarctic Division, Kingston, Tasmania, Australia
| | - Torsten Thomas
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
2
|
Marine Natural Products from the Beibu Gulf: Sources, Chemistry, and Bioactivities. Mar Drugs 2023; 21:md21020063. [PMID: 36827104 PMCID: PMC9965070 DOI: 10.3390/md21020063] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Marine natural products (MNPs) play an important role in the discovery and development of new drugs. The Beibu Gulf of South China Sea harbors four representative marine ecosystems, including coral reefs, mangroves, seaweed beds, and coastal wetlands, which are rich in underexplored marine biological resources that produce a plethora of diversified MNPs. In our ongoing efforts to discover novel and biologically active MNPs from the Beibu Gulf, we provide a systematic overview of the sources, chemical structures, and bioactive properties of a total of 477 new MNPs derived from the Beibu Gulf, citing 133 references and covering the literature from the first report in November 2003 up to September 2022. These reviewed MNPs were structurally classified into polyketides (43%), terpenoids (40%), nitrogen-containing compounds (12%), and glucosides (5%), which mainly originated from microorganisms (52%) and macroorganisms (48%). Notably, they were predominantly found with cytotoxic, antibacterial, and anti-inflammatory activities. This review will shed light on these untapped Beibu Gulf-derived MNPs as promising lead compounds for the development of new drugs.
Collapse
|
3
|
Integrated analytical workflow for chromatographic profiling and metabolite annotation of a cytotoxic Phorbas amaranthus extract. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1174:122720. [PMID: 33957353 DOI: 10.1016/j.jchromb.2021.122720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 11/22/2022]
Abstract
Phorbas is a widely studied genus of marine sponge and produce structurally rich cytotoxic metabolites. Still, only few studies have assessed metabolites present in Brazilian species. To circumvent redundancy, in this work, we applied and herein report the use of a scouting liquid chromatographic system associate to the design of experiment produced by the DryLab® software to obtain a fast and efficient chromatographic separation of the active hexane fraction, further enabling untargeted high-resolution mass spectrometry (HRMS) data. To this end, a crude hydroalcoholic extract of the sponge Phorbas amaranthus collected in Brazilian coast was prepared and partitioned. The cytotoxicity of the crude extract and the fractions was evaluated using tumor cell culture models. Fragmentation pathways assembled from HRMS data allowed the annotation of 18 known Phorbas metabolites, while 17 metabolites were inferred based on Global Natural Product Social Molecular Networking (GNPS), matching with a further 29 metabolites annotated through molecular subnetwork. The workflow employed demonstrates that chromatographic method development can be accelerated by the use of automated scouting systems and DryLab®, which is useful for profiling natural product libraries, as well as data curation by molecular clusters and should be incorporated to the tools of natural product chemists.
Collapse
|
4
|
Antimicrobial Lipids from Plants and Marine Organisms: An Overview of the Current State-of-the-Art and Future Prospects. Antibiotics (Basel) 2020; 9:antibiotics9080441. [PMID: 32722192 PMCID: PMC7459900 DOI: 10.3390/antibiotics9080441] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023] Open
Abstract
In the actual post-antibiotic era, novel ways of rethinking antimicrobial research approaches are more urgent than ever. Natural compounds with antimicrobial activity such as fatty acids and monoacylglycerols have been investigated for decades. Additionally, the interest in other lipid classes as antimicrobial agents is rising. This review provides an overview on the research about plant and marine lipids with potential antimicrobial activity, the methods for obtaining and analyzing these compounds, with emphasis on lipidomics, and future perspectives for bioprospection and applications for antimicrobial lipids. Lipid extracts or lipids isolated from higher plants, algae or marine invertebrates are promising molecules to inactivate a wide spectrum of microorganisms. These lipids include a variety of chemical structures. Present and future challenges in the research of antimicrobial lipids from natural origin are related to the investment and optimization of the analytical workflow based on lipidomics tools, complementary to the bioassay-guided fractionation, to identify the active compound(s). Also, further work is needed regarding the study of their mechanism of action, the structure-activity relationship, the synergistic effect with conventional antibiotics, and the eventual development of resistance to lipids, which, as far as is known, is unlikely.
Collapse
|
5
|
Marine Pharmacology in 2014-2015: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis, Antiviral, and Anthelmintic Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action. Mar Drugs 2019; 18:md18010005. [PMID: 31861527 PMCID: PMC7024264 DOI: 10.3390/md18010005] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 12/31/2022] Open
Abstract
The systematic review of the marine pharmacology literature from 2014 to 2015 was completed in a manner consistent with the 1998-2013 reviews of this series. Research in marine pharmacology during 2014-2015, which was reported by investigators in 43 countries, described novel findings on the preclinical pharmacology of 301 marine compounds. These observations included antibacterial, antifungal, antiprotozoal, antituberculosis, antiviral, and anthelmintic pharmacological activities for 133 marine natural products, 85 marine compounds with antidiabetic, and anti-inflammatory activities, as well as those that affected the immune and nervous system, and 83 marine compounds that displayed miscellaneous mechanisms of action, and may probably contribute to novel pharmacological classes upon further research. Thus, in 2014-2015, the preclinical marine natural product pharmacology pipeline provided novel pharmacology as well as new lead compounds for the clinical marine pharmaceutical pipeline, and thus continued to contribute to ongoing global research for alternative therapeutic approaches to many disease categories.
Collapse
|
6
|
Reverter M, Tribalat MA, Pérez T, Thomas OP. Metabolome variability for two Mediterranean sponge species of the genus Haliclona: specificity, time, and space. Metabolomics 2018; 14:114. [PMID: 30830434 DOI: 10.1007/s11306-018-1401-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/25/2018] [Indexed: 01/01/2023]
Abstract
INTRODUCTION The study of natural variation of metabolites brings valuable information on the physiological state of the organisms as well as their phenotypic traits. In marine organisms, metabolome variability has mostly been addressed through targeted studies on metabolites of ecological or pharmaceutical interest. However, comparative metabolomics has demonstrated its potential to address the overall and complex metabolic variability of organisms. OBJECTIVES In this study, the intraspecific (temporal and spatial) variability of two Mediterranean Haliclona sponges (H. fulva and H. mucosa) was investigated through an untargeted and then targeted metabolomics approach and further compared to their interspecific variability. METHODS Samples of both species were collected monthly during 1 year in the coralligenous habitat of the Northwestern Mediterranean sae at Marseille and Nice. Their metabolomic profiles were obtained by UHPLC-QqToF analyses. RESULTS Marked variations were noticed in April and May for both species including a decrease in Shannon's diversity and concentration in specialized metabolites together with an increase in fatty acids and lyso-PAF like molecules. Spatial variations across different sampling sites could also be observed for both species, however in a lesser extent. CONCLUSIONS Synchronous metabolic changes possibly triggered by physiological factors like reproduction and/or environmental factors like an increase in the water temperature were highlighted for both Mediterranean Haliclona species inhabiting close habitats but displaying different biosynthetic pathways. Despite significative intraspecific variations, metabolomic variability remains minor when compared to interspecific variations for these congenerous species, therefore suggesting the predominance of genetic information of the holobiont in the observed metabolome.
Collapse
Affiliation(s)
- Miriam Reverter
- Marine Biodiscovery, School of Chemistry and Ryan Institute, National University of Ireland Galway (NUI Galway), University Road, Galway, H91 TK33, Ireland
| | - Marie-Aude Tribalat
- Geoazur, UMR Université Nice Sophia Antipolis-CNRS-IRD-OCA, 06560, Valbonne, France
| | - Thierry Pérez
- Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE), CNRS, IRD, Aix Marseille Université, Université Avignon, Station Marine d'Endoume, Rue de la Batterie des Lions, Marseille, France
| | - Olivier P Thomas
- Marine Biodiscovery, School of Chemistry and Ryan Institute, National University of Ireland Galway (NUI Galway), University Road, Galway, H91 TK33, Ireland.
- Geoazur, UMR Université Nice Sophia Antipolis-CNRS-IRD-OCA, 06560, Valbonne, France.
| |
Collapse
|
7
|
Abstract
Covering: 2015. Previous review: Nat. Prod. Rep., 2016, 33, 382-431This review covers the literature published in 2015 for marine natural products (MNPs), with 1220 citations (792 for the period January to December 2015) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1340 in 429 papers for 2015), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Murray H G Munro
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | - Michèle R Prinsep
- Chemistry, School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
8
|
Yu XQ, Jiang CS, Zhang Y, Sun P, Kurtán T, Mándi A, Li XL, Yao LG, Liu AH, Wang B, Guo YW, Mao SC. Compositacins A-K: Bioactive chamigrane-type halosesquiterpenoids from the red alga Laurencia composita Yamada. PHYTOCHEMISTRY 2017; 136:81-93. [PMID: 28110957 DOI: 10.1016/j.phytochem.2017.01.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 12/26/2016] [Accepted: 01/13/2017] [Indexed: 06/06/2023]
Abstract
Eleven highly halogenated chamigrane sesquiterpenoids, compositacins A-K, including one unusual rearranged chamigrane sesquiterpenoid, compositacin A, were isolated from the red alga Laurencia composita Yamada, along with seven known structural analogues. Compositacins B and D are the first examples of chamigranes bearing an ether bridge involving C-5/C-9 and C-3/C-5, respectively, while compositacins B and C represent the first chamigranes with a C-10 carbonyl group. Their structures were elucidated on the basis of extensive spectroscopic analysis. The absolute configuration of compositacin B was determined by ECD calculation, whereas the absolute configurations of compositacins A and C-L were proposed on biosynthetic grounds by comparison to compositacin B and the related known sesquiterpenoids johnstonol and yicterpene A. We also suggest that the structure of the previously reported sesquiterpenoid laurokamin A should be revised. Cytotoxicity and antifungal activity of these isolates were also investigated. The results showed that compositacin G exhibited good antifungal activity against Microsporum gypseum (Cmccfmza) with a MIC80 value of 4 μg/mL relative to positive controls. Four of the chamigrane halosesquiterpenoids showed marginal cytotoxicity against the A-549 human lung adenocarcinoma cell line with IC50 values ranging from 48.6 to 85.2 μM.
Collapse
Affiliation(s)
- Xiao-Qing Yu
- School of Pharmacy, Nanchang University, 461 Bayi Road, Nanchang 330006, People's Repulic of China
| | - Chang-Sheng Jiang
- School of Pharmacy, Nanchang University, 461 Bayi Road, Nanchang 330006, People's Repulic of China
| | - Yi Zhang
- School of Pharmacy, Nanchang University, 461 Bayi Road, Nanchang 330006, People's Repulic of China
| | - Pan Sun
- School of Pharmacy, Nanchang University, 461 Bayi Road, Nanchang 330006, People's Repulic of China
| | - Tibor Kurtán
- Department of Organic Chemistry, University of Debrecen, PO Box 400, H-4002 Debrecen, Hungary
| | - Attila Mándi
- Department of Organic Chemistry, University of Debrecen, PO Box 400, H-4002 Debrecen, Hungary
| | - Xiao-Lu Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Repulic of China
| | - Li-Gong Yao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Repulic of China
| | - Ai-Hong Liu
- Center of Analysis and Testing, Nanchang University, Nanchang 330047, People's Repulic of China
| | - Bin Wang
- School of Pharmacy, Nanchang University, 461 Bayi Road, Nanchang 330006, People's Repulic of China
| | - Yue-Wei Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Repulic of China
| | - Shui-Chun Mao
- School of Pharmacy, Nanchang University, 461 Bayi Road, Nanchang 330006, People's Repulic of China.
| |
Collapse
|
9
|
Sun P, Jiang CS, Zhang Y, Liu AH, Liang TJ, Li J, Guo YW, Jiang JM, Mao SC, Wang B. Aglaiabbrevins A–D, New Prenylated Bibenzyls from the Leaves of Aglaia abbreviata with Potent PTP1B Inhibitory Activity. Chem Pharm Bull (Tokyo) 2017; 65:295-299. [DOI: 10.1248/cpb.c16-00868] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Pan Sun
- School of Pharmacy, Nanchang University
| | | | - Yi Zhang
- School of Pharmacy, Nanchang University
| | - Ai-Hong Liu
- Center of Analysis and Testing, Nanchang University
| | - Tong-Jun Liang
- Lushan Botanical Garden, Jiangxi Province & The Chinese Academy of Sciences
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences
| | - Yue-Wei Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences
| | | | | | - Bin Wang
- School of Pharmacy, Nanchang University
| |
Collapse
|