1
|
Zhang P, Zhang H, Shahzad M, Kolachi HA, Li Y, Sheng H, Zhang X, Wan P, Zhao X. Supplementation of Forskolin and Linoleic Acid During IVC Improved the Developmental and Vitrification Efficiency of Bovine Embryos. Int J Mol Sci 2025; 26:4151. [PMID: 40362390 PMCID: PMC12071939 DOI: 10.3390/ijms26094151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 04/21/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
The success of assisted reproductive technology is contingent upon the growth potential of embryos post-vitrification process. When compared to in vivo embryos, it has been found that the high intracellular lipid accumulation inside the in vitro-derived embryos results in poor survival during vitrification. Based on this finding, the present study assessed the impact of incorporating forskolin and linoleic acid (FL) entering in vitro culture (IVC) on the embryos' cryo-survival, lipid content, and viability throughout vitrification. Lipid metabolomics and single-cell RNA sequencing (scRNA-seq) techniques were used to determine the underlying mechanism that the therapies were mimicking. It was observed that out of 726 identified lipids, 26 were expressed differentially between the control and FL groups, with 12 lipids upregulated and 14 lipids downregulated. These lipids were classified as Triacylglycerol (TG), Diacylglycerol (DG), Phosphatidylcholine (PC), and so on. A total of 1079 DEGs were detected between the FL and control groups, consisting of 644 upregulated genes and 435 downregulated genes. These DEGs were significantly enhanced in the arachidonic acid metabolism, lipolysis, fatty acid metabolism, cAMP signaling pathway, and other critical developmental pathways. Based on the observation, it was concluded that forskolin and linoleic acid decreased the droplet content of embryos by modulating lipid metabolism, thus enhancing the vitrified bovine embryos' cryo-survival.
Collapse
Affiliation(s)
- Peipei Zhang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832061, China;
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; (Y.L.); (H.S.)
| | - Hang Zhang
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China; (H.Z.); (M.S.); (H.A.K.)
| | - Muhammad Shahzad
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China; (H.Z.); (M.S.); (H.A.K.)
| | - Hubdar Ali Kolachi
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China; (H.Z.); (M.S.); (H.A.K.)
| | - Yupeng Li
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; (Y.L.); (H.S.)
| | - Hui Sheng
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; (Y.L.); (H.S.)
| | - Xiaosheng Zhang
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; (Y.L.); (H.S.)
| | - Pengcheng Wan
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832061, China;
| | - Xueming Zhao
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China; (H.Z.); (M.S.); (H.A.K.)
| |
Collapse
|
2
|
Liu X, Qin K, Wang C, Sun X, Li Y, Liu Y, Yang X. Butyric acid reduced lipid deposition in immortalized chicken preadipocyte by inhibiting cell proliferation and differentiation. Poult Sci 2024; 103:104171. [PMID: 39151213 PMCID: PMC11375136 DOI: 10.1016/j.psj.2024.104171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/18/2024] Open
Abstract
The hyperplasia and hypertrophy of preadipocytes were closely related to lipid deposition in animals. Butyric acid was reported to be involved in lipid metabolism. The aim of the current study was to investigate the effect of butyric acid on the proliferation and differentiation of the immortalized chicken preadipocyte 2 (ICP2). ICP2 were treated respectively with 12mM butyric acid for 48h in proliferation trial and 4mM butyric acid plus 200 μM oleic acid for 3 d in differentiation trial. For the proliferation trial, RNA-seq analysis revealed that 2039 genes were significantly up-regulated and 780 genes were significantly down-regulated with 12 mM butyric acid after 48 h treatment. Concurrently, Cell cycle, DNA replication and p53 signaling pathways were down-regulated in Butyric acid group. More importantly, 12 mM butyric acid restrained the expression of cell proliferation genes such as PCNA, CDK1 and CDK2 in Butyric acid group (P < 0.05), and the protein expression levels of PCNA and CDK1 were also significantly decreased (P < 0.05). The Oil red staining revealed a fewer presence of red fat droplets in ICP2 following treatment with 4 mM butyric acid, accompanied by decreased levels of total cholesterol (TC) and triglycerides (TG). RNA-seq analysis shown that the number of up and down-regulated genes were 2095 and 1042 respectively in OAB group (oleic acid+butyric acid) when compared with OA group (oleic acid). Meanwhile the AMPK signaling pathway, FOXO signaling pathway and focal adhesion were significantly enriched in OAB group. Additionally, 4 mM butyric acid inhibited the expression of lipid differentiation genes including FABP4, C/EBPα, PPARγ and LPL in OAB group (P < 0.05), as well as lipogenesis proteins such as FABP4, C/EBP-α and PPARγ (P < 0.05). In conclusion, 12 mM butyric acid effectively inhibited the proliferation of ICP2 by slowing down cell cycle progression, while 4 mM butyric acid alleviated lipid deposition by reducing the production of lipid droplets through inhibiting the expression of lipid differentiation marker genes and proteins.
Collapse
Affiliation(s)
- Xiaoying Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Kailong Qin
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Chaohui Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xi Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yun Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yanli Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
3
|
Rong M, Xing X, Zhang R. Muscle Transcriptome Analysis of Mink at Different Growth Stages Using RNA-Seq. BIOLOGY 2024; 13:283. [PMID: 38785766 PMCID: PMC11117779 DOI: 10.3390/biology13050283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
Mink is a kind of small and precious fur animal resource. In this study, we employed transcriptomics technology to analyze the gene expression profile of mink pectoral muscle tissue, thereby elucidating the regulatory mechanisms underlying mink growth and development. Consequently, a total of 25,954 gene expression profiles were acquired throughout the growth and development stages of mink at 45, 90, and 120 days. Among these profiles, 2607 genes exhibited significant differential expression (|log2(fold change)| ≥ 2 and p_adj < 0.05). GO and KEGG enrichment analyses revealed that the differentially expressed genes were primarily associated with the mitotic cell cycle process, response to growth factors, muscle organ development, and insulin resistance. Furthermore, GSEA enrichment analysis demonstrated a significant enrichment of differentially expressed genes in the p53 signaling pathway at 45 days of age. Subsequent analysis revealed that genes associated with embryonic development (e.g., PEG10, IGF2, NRK), cell cycle regulation (e.g., CDK6, CDC6, CDC27, CCNA2), and the FGF family (e.g., FGF2, FGF6, FGFR2) were all found to be upregulated at 45 days of age in mink, which suggested a potential role for these genes in governing early growth and developmental processes. Conversely, genes associated with skeletal muscle development (PRVA, TNNI1, TNNI2, MYL3, MUSTN1), a negative regulator of the cell cycle gene (CDKN2C), and IGFBP6 were found to be up-regulated at 90 days of age, suggesting their potential involvement in the rapid growth of mink. In summary, our experimental data provide robust support for elucidating the regulatory mechanisms underlying the growth and development of mink.
Collapse
Affiliation(s)
- Min Rong
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (M.R.); (X.X.)
- Dezhou Animal Husbandry and Veterinary Development Center, Dezhou 253000, China
| | - Xiumei Xing
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (M.R.); (X.X.)
- Key Laboratory of Genetics, Breeding and Reproduction of Special Economic Animals, Ministry of Agriculture and Rural Affairs, Changchun 130112, China
| | - Ranran Zhang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (M.R.); (X.X.)
- Key Laboratory of Genetics, Breeding and Reproduction of Special Economic Animals, Ministry of Agriculture and Rural Affairs, Changchun 130112, China
| |
Collapse
|
4
|
Nazari E, Khalili-Tanha G, Asadnia A, Pourali G, Maftooh M, Khazaei M, Nasiri M, Hassanian SM, Ghayour-Mobarhan M, Ferns GA, Kiani MA, Avan A. Bioinformatics analysis and machine learning approach applied to the identification of novel key genes involved in non-alcoholic fatty liver disease. Sci Rep 2023; 13:20489. [PMID: 37993474 PMCID: PMC10665370 DOI: 10.1038/s41598-023-46711-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 11/03/2023] [Indexed: 11/24/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) comprises a range of chronic liver diseases that result from the accumulation of excess triglycerides in the liver, and which, in its early phases, is categorized NAFLD, or hepato-steatosis with pure fatty liver. The mortality rate of non-alcoholic steatohepatitis (NASH) is more than NAFLD; therefore, diagnosing the disease in its early stages may decrease liver damage and increase the survival rate. In the current study, we screened the gene expression data of NAFLD patients and control samples from the public dataset GEO to detect DEGs. Then, the correlation betweenbetween the top selected DEGs and clinical data was evaluated. In the present study, two GEO datasets (GSE48452, GSE126848) were downloaded. The dysregulated expressed genes (DEGs) were identified by machine learning methods (Penalize regression models). Then, the shared DEGs between the two training datasets were validated using validation datasets. ROC-curve analysis was used to identify diagnostic markers. R software analyzed the interactions between DEGs, clinical data, and fatty liver. Ten novel genes, including ABCF1, SART3, APC5, NONO, KAT7, ZPR1, RABGAP1, SLC7A8, SPAG9, and KAT6A were found to have a differential expression between NAFLD and healthy individuals. Based on validation results and ROC analysis, NR4A2 and IGFBP1b were identified as diagnostic markers. These key genes may be predictive markers for the development of fatty liver. It is recommended that these key genes are assessed further as possible predictive markers during the development of fatty liver.
Collapse
Affiliation(s)
- Elham Nazari
- Department of Health Information Technology and Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Khalili-Tanha
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Asadnia
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghazaleh Pourali
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mina Maftooh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammadreza Nasiri
- Recombinant Proteins Research Group, The Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Falmer, Brighton, BN1 9PH, Sussex, UK
| | - Mohammad Ali Kiani
- Department of Pediatrics, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq.
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, 4000, Australia.
| |
Collapse
|
5
|
Xie HL, Zhang YH, Tan XD, Zheng Y, Ni HY, Dong LP, Zheng JL, Diao JZ, Yin YJ, Zhang JB, Sun XQ, Yang YW. miR-375 Induced the Formation and Transgenerational Inheritance of Fatty Liver in Poultry by Targeting MAP3K1. DNA Cell Biol 2022; 41:590-599. [PMID: 35533015 DOI: 10.1089/dna.2022.0078] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The liver of poultry is the primary site of lipid synthesis. The excessive production of lipids accumulates in liver tissues causing lipid metabolism disorders, which result in fatty liver disease and have a transgenerational effect of acquired phenotypes. However, its specific mechanisms have not yet been fully understood. In this study, the differentially expressed miR-375 as well as its target gene MAP3K1 (mitogen-activated protein kinase kinase kinase 1) were screened out by interaction network analysis of microRNA sequencing results and transcriptome profiling in the fatty liver group of the F0-F3 generation (p < 0.05 or p < 0.01). Furthermore, the results showed that the number of lipid droplets and triglyceride content were significantly decreased after upregulation of miR-375 in primary hepatocyte culture in vitro (p < 0.05 or p < 0.01). The MAP3K1 knockdown group exhibited the opposite trends (p < 0.05 or p < 0.01). P53, Bcl-x, PMP22, and CDKN2C related to cell proliferation were significantly upregulated or downregulated after knocking down MAP3K1 (p < 0.05). This research uniquely revealed that silencing miR-375 inhibits lipid biosynthesis and promotes cell proliferation, which may be due to the partial regulation of the expression level of MAP3K1, thereby further participating in the transgenerational inheritance process of regulating liver lipid metabolism. These results reveal the pathogenesis of fatty liver in noncoding RNA and provide good candidate genes for breeding progress of disease resistance in chickens.
Collapse
Affiliation(s)
- Heng-Li Xie
- College of Animal Science, Jilin University, Changchun, P.R. China
| | - Yong-Hong Zhang
- College of Animal Science, Jilin University, Changchun, P.R. China
| | - Xiao-Dong Tan
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Yi Zheng
- College of Animal Science, Jilin University, Changchun, P.R. China
| | - Hong-Yu Ni
- College of Animal Science, Jilin University, Changchun, P.R. China
| | - Li-Ping Dong
- College of Animal Science, Jilin University, Changchun, P.R. China
| | - Jin-Lei Zheng
- College of Animal Science, Jilin University, Changchun, P.R. China
| | - Ji-Zhe Diao
- College of Animal Science, Jilin University, Changchun, P.R. China
| | - Yi-Jing Yin
- College of Animal Science, Jilin University, Changchun, P.R. China
| | - Jia-Bao Zhang
- College of Animal Science, Jilin University, Changchun, P.R. China
| | - Xue-Qi Sun
- College of Animal Science, Jilin University, Changchun, P.R. China.,Jilin Academy of Agricultural Sciences, Changchun, P.R. China
| | - Yu-Wei Yang
- College of Animal Science, Jilin University, Changchun, P.R. China
| |
Collapse
|
6
|
Pereira MJ, Vranic M, Kamble PG, Jernow H, Kristófi R, Holbikova E, Skrtic S, Kullberg J, Svensson MK, Hetty S, Eriksson JW. CDKN2C expression in adipose tissue is reduced in type II diabetes and central obesity: impact on adipocyte differentiation and lipid storage? Transl Res 2022; 242:105-121. [PMID: 34896253 DOI: 10.1016/j.trsl.2021.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/16/2021] [Accepted: 12/06/2021] [Indexed: 10/19/2022]
Abstract
CDKN2C/p18 (Cyclin-Dependent Kinase Inhibitor 2C) is a cell growth regulator that controls cell cycle progression and has previously been associated with increased risk for type II diabetes (T2D) and reduced peripheral adipose tissue (AT) storage capacity. This study explored the role of CDKN2C in AT lipid and glucose metabolism in T2D. Expression of CDKN2C and other genes was analyzed by transcriptomics, or real-time PCR in subcutaneous AT (SAT) samples obtained from T2D and control subjects matched for sex, age and BMI and also in paired SAT and omental AT (OAT) samples. Functional studies included adipocyte glucose uptake and lipolysis rates. CRISPR/Cas9 CDKN2C gene knockdown was performed in human preadipocytes to assess adipogenesis. CDKN2C mRNA expression in SAT and OAT was reduced in T2D and obese subjects compared to controls. CDKN2C expression in SAT was inversely correlated with measures of hyperglycemia, insulin resistance and visceral adiposity and positively correlated with expression of genes in several metabolic pathways, including insulin signaling and fatty acid and carbohydrate metabolism. CDKN2C protein was mainly expressed in adipocytes compared to stromal vascular cells, and its gene and protein expression was up-regulated during adipocyte differentiation. Knockdown of CDKN2C did not affect the percentage of differentiating cells compared to wild type cultures. However, CDKN2C knockdown cultures had significantly lower expression of differentiation markers CEBPA, ADIPOQ and FASN and transiently reduced lipid accumulation per adipocyte during differentiation. Our findings suggest that adipose CDKN2C expression might be reduced as a consequence of insulin resistance and obesity, and this can further contribute to impairment of SAT lipid storage.
Collapse
Affiliation(s)
- Maria J Pereira
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden.
| | - Milica Vranic
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Prasad G Kamble
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Henning Jernow
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Robin Kristófi
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Ema Holbikova
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Stanko Skrtic
- Innovation Strategies & External Liaison, Pharmaceutical Technologies & Development, AstraZeneca, Gothenburg, Sweden; Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Joel Kullberg
- Radiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Maria K Svensson
- Department of Medical Sciences, Renal Medicine, Uppsala University, Uppsala, Sweden
| | - Susanne Hetty
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Jan W Eriksson
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| |
Collapse
|
7
|
Huo W, Weng K, Gu T, Zhang Y, Zhang Y, Chen G, Xu Q. Difference in developmental dynamics between subcutaneous and abdominal adipose tissues in goose (Anser Cygnoides). Poult Sci 2021; 100:101185. [PMID: 34192641 PMCID: PMC8253911 DOI: 10.1016/j.psj.2021.101185] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 11/21/2022] Open
Abstract
Goose (Anas cygnoides), as a typical species domesticated from a migratory bird, has maintained the capability of depositing excess lipid and preferentially accumulating fat within the abdomen and subcutaneous, which not only leads to decrease in yield of meat product, but also affects the feed conversion rate. Here, an experiment was conducted to examine the difference in developmental dynamics between subcutaneous (SAT) and abdominal adipose tissues (AAT) in goose. The results showed that SAT could be clearly observed at embryonic days (E) 15, whereas AAT were clearer until E20. Although the weights of SAT and AAT showed a significant rising with advancing age (P < 0.05), their gains were not completely uniform, and more adipose deposited preferentially toward AAT after birth (P < 0.05). Additionally, a clear expansion in adipocyte size was observed in AAT and SAT during embryonic stages (P < 0.05). The average adipocyte area in AAT continued to increase after birth (P < 0.05), while the cell areas in SAT were relatively invariable (P > 0.05). Furthermore, the expression levels of FABP4/aP2, ACSL1 and PPARγ were much higher in SAT than in AAT, whereas relative higher expression level of IL-6 was observed in the AAT during embryonic stages. After birth, the more expression of LPL and PPARα were detected in AAT than did in SAT (P < 0.05), whereas greater ATGL expression was in SAT (P < 0.05). Taken together, these findings suggest that AAT may display greater fat storage capacity than SAT accompanied by changes in cell area and lipogenic capacity. Considering that there is disparity in the individual adipose tissues, we suggested that careful consideration for the precise interventions used to control SAT or AAT deposition in meat-producing animals to improve feed efficiency.
Collapse
Affiliation(s)
- Weiran Huo
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Kaiqi Weng
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Tiantian Gu
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yu Zhang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yang Zhang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Guohong Chen
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Qi Xu
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
8
|
Kim DH, Lee J, Suh Y, Cressman M, Lee K. Research Note: All-trans retinoic acids induce adipogenic differentiation of chicken embryonic fibroblasts and preadipocytes. Poult Sci 2020; 99:7142-7146. [PMID: 33248631 PMCID: PMC7704976 DOI: 10.1016/j.psj.2020.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 01/26/2023] Open
Abstract
Adipocytes store excess energy in the form of lipids, whereas fat accretion contributes to feed efficiency, meat quality, and female reproduction in poultry. As a metabolite of vitamin A, all-trans retinoic acid (atRA) has been shown to have influence over metabolic functions such as lipid and energy homeostasis, as well as adipogenesis. Although atRA has been known to function as a regulating factor in mammalian adipogenesis, the effects of atRA on adipogenesis has not been studied in chickens. In this study, chicken preadipocytes isolated from leg fat tissues at embryonic day (E) 14 and chicken embryonic fibroblasts (CEF) harvested at E5 were cultured. The preadipocytes and CEF in culture with 10% chicken serum were treated with various concentrations (0 μmol, 100 μmol, or 150 μmol) of supplemented atRA for 48 h. In these cells, cytoplasmic lipid droplet accumulation and mRNA expression for adipogenic genes were analyzed by Oil-Red-O staining and quantitative real-time PCR, respectively. Analysis of the relative amount of Oil-Red-O staining (lipid accumulation) revealed that all 3 variables increased in a dose-dependent manner, in response to increasing atRA supplementation. Genes involved in adipocyte differentiation, fatty acid transport, and triacylglycerol synthesis in both E14 preadipocytes and E5 CEF were upregulated by supplementation of atRA. These data demonstrated that atRA alone promoted adipogenesis of embryonic preadipocytes and fibroblasts in vitro, suggesting that atRA has an influential role in multiple stages of adipogenesis in chicken embryos.
Collapse
Affiliation(s)
- Dong-Hwan Kim
- Department of Animal Sciences, The Ohio State University, Columbus, OH, USA
| | - Joonbum Lee
- Department of Animal Sciences, The Ohio State University, Columbus, OH, USA; The Ohio State University Interdisciplinary Human Nutrition Program, The Ohio State University, Columbus 43210, USA
| | - Yeunsu Suh
- Department of Animal Sciences, The Ohio State University, Columbus, OH, USA
| | - Michael Cressman
- Department of Animal Sciences, The Ohio State University, Columbus, OH, USA
| | - Kichoon Lee
- Department of Animal Sciences, The Ohio State University, Columbus, OH, USA; The Ohio State University Interdisciplinary Human Nutrition Program, The Ohio State University, Columbus 43210, USA.
| |
Collapse
|
9
|
Lv C, Niu S, Yan S, Bai C, Yu X, Hou J, Gao W, Zhang J, Zhao Z, Yang C, Zhang Y. Low-density lipoprotein receptor-related protein 1 regulates muscle fiber development in cooperation with related genes to affect meat quality. Poult Sci 2019; 98:3418-3425. [PMID: 30982888 DOI: 10.3382/ps/pez168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 03/13/2019] [Indexed: 12/30/2022] Open
Abstract
Low-density lipoprotein receptor-related protein 1 (LRP1) is an important signal protein that is widely involved in physiological processes, such as lipid metabolism, cell movement, and disease processes. However, the relationship between LRP1 and meat quality remains unknown in chickens. The present study aimed to investigate the correlation between LRP1 and meat quality that builds on our preliminary research, as well as to reveal the underlying molecular mechanism of LRP1 on meat-quality traits. The results showed that LRP1 was significantly correlated with shear force (P < 0.05). Several key genes involved in muscle growth and development, including IGF-1, IGFBP-5, IGF-1R, IGF-2, and MyoD, were down-regulated significantly (P < 0.05 or P < 0.01), and MSTN was up-regulated significantly (P < 0.01) in the presence of LRP1 interference. Cell proliferation- or apoptosis-related genes, including PMP22, CDKN2C, and p53, increased significantly (P < 0.05 or P < 0.01), whereas Bcl-x decreased significantly (P < 0.05) in the RNAi group. We conclude that LRP1 regulates muscle fiber development in cooperation with related genes that affect myoblast proliferation and apoptosis, thereby impacting shear force in chickens. This study will provide a valuable resource for biological investigations of muscle growth and meat-quality-related genes in chickens. The results could be useful in identifying candidate genes that could be used for selective breeding to improve meat quality.
Collapse
Affiliation(s)
- Chao Lv
- College of Animal Science, Jilin University, Changchun 130062, P. R. China
| | - Shuling Niu
- College of Animal Science, Jilin University, Changchun 130062, P. R. China.,Department of Animal Science and Technology, Changchun Sci-Tech University, Changchun 130600, P. R. China
| | - Shouqing Yan
- College of Animal Science, Jilin University, Changchun 130062, P. R. China
| | - Chunyan Bai
- College of Animal Science, Jilin University, Changchun 130062, P. R. China
| | - Xi Yu
- College of Animal Science, Jilin University, Changchun 130062, P. R. China
| | - Jiani Hou
- Department of Animal Science and Technology, Changchun Sci-Tech University, Changchun 130600, P. R. China
| | - Wenjing Gao
- College of Animal Science, Jilin University, Changchun 130062, P. R. China
| | - Jinyu Zhang
- College of Animal Science, Jilin University, Changchun 130062, P. R. China
| | - Zhihui Zhao
- College of Animal Science, Jilin University, Changchun 130062, P. R. China
| | - Caini Yang
- College of Animal Science, Jilin University, Changchun 130062, P. R. China
| | - Yonghong Zhang
- College of Animal Science, Jilin University, Changchun 130062, P. R. China
| |
Collapse
|
10
|
Xiao Y, Wang G, Gerrard ME, Wieland S, Davis M, Cline MA, Siegel PB, Gilbert ER. Changes in adipose tissue physiology during the first two weeks posthatch in chicks from lines selected for low or high body weight. Am J Physiol Regul Integr Comp Physiol 2019; 316:R802-R818. [PMID: 30969842 DOI: 10.1152/ajpregu.00017.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Chickens from lines selected for low (LWS) or high (HWS) body weight (BW) differ in appetite and adiposity. Mechanisms associated with the predisposition to becoming obese are unclear. The objective of the experiment was to evaluate developmental changes in depot-specific adipose tissue during the first 2 wk posthatch. Subcutaneous (SQ), clavicular (CL), and abdominal (AB) depots were collected at hatch (DOH) and days 4 (D4) and 14 (D14) posthatch for histological and mRNA measurements. LWS chicks had decreased SQ fat mass on a BW basis with reduced adipocyte size from DOH to D4 and increased BW and fat mass with unchanged adipocyte size from D4 to D14. HWS chicks increased in BW from DOH to D14 and increased in fat mass in all three depots with enlarged adipocytes in the AB depot from D4 to D14. Meanwhile, CCAAT/enhancer-binding protein-α, neuropeptide Y, peroxisome proliferator-activated receptor-γ, and acyl-CoA dehydrogenase mRNAs differed among depots between lines at different ages. Plasma nonesterified fatty acids were greater in LWS than HWS at D4 and D14. From DOH to D4, LWS chicks mobilized SQ fat and replenished the reservoir through hyperplasia, whereas HWS chicks were dependent on hyperplasia and hypertrophy to maintain adipocyte size and depot mass. From D4 to D14, adipose tissue catabolism and adipogenesis slowed. Whereas LWS fat depots and adipocyte sizes remained stable, HWS chicks rapidly accumulated fat in CL and AB depots. Chicks predisposed to be anorexic or obese have different fat development patterns during the first 2 wk posthatch.
Collapse
Affiliation(s)
- Yang Xiao
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University , Blacksburg, Virginia
| | - Guoqing Wang
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University , Blacksburg, Virginia
| | - Miranda E Gerrard
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University , Blacksburg, Virginia
| | - Sarah Wieland
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University , Blacksburg, Virginia
| | - Mary Davis
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University , Blacksburg, Virginia
| | - Mark A Cline
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University , Blacksburg, Virginia
| | - Paul B Siegel
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University , Blacksburg, Virginia
| | - Elizabeth R Gilbert
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University , Blacksburg, Virginia
| |
Collapse
|