1
|
Sobhi HF, Mercer KE, Lan RS, Yeruva L, Ten Have GAM, Deutz NEP, Piccolo BD, Debédat J, Pack LM, Adams SH. Novel odd-chain cyclopropane fatty acids: detection in a mammalian lipidome and uptake by hepatosplanchnic tissues. J Lipid Res 2024; 65:100632. [PMID: 39182606 PMCID: PMC11439845 DOI: 10.1016/j.jlr.2024.100632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/07/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024] Open
Abstract
Microbe-produced molecules (xenometabolites) found in foods or produced by gut microbiota are increasingly implicated in microbe-microbe and microbe-host communication. Xenolipids, in particular, are a class of metabolites for which the full catalog remains to be elaborated in mammalian systems. We and others have observed that cis-3,4-methylene-heptanoylcarnitine is a lipid derivative that is one of the most abundant medium-chain acylcarnitines in human blood, hypothesized to be a product of incomplete β-oxidation of one or more "odd-chain" long-chain cyclopropane fatty acids (CpFAs). We deduced two possible candidates, cis-11,12-methylene-pentadecanoic acid (cis-11,12-MPD) and cis-13,14-methylene-heptadecanoic acid (cis-13,14-MHD). Authentic standards were synthesized: cis-11-pentadecenoic acid and cis-13-heptadecenoic acid were generated (using Jones reagent) from cis-11-pentadecene-1-ol and cis-13-heptadecene-1-ol, respectively, and these were converted to CpFAs via a reaction involving diiodomethane. Using these standards in mass spectrometry analyses, we determined the presence/absence of cis-11,12-MPD and cis-13,14-MHD in archived piglet biospecimens. Both CpFAs were detected in rectal contents of sow and soy-fed piglets. Archived mass spectra were analyzed post hoc from a second independent study that used tissue-specific catheterization to monitor net metabolite flux in growing pigs. This confirmed the presence of both CpFAs in plasma and revealed a significant net uptake of the odd-chain CpFAs across the splanchnic tissue bed and liver. The results confirm that the novel xenolipids cis-11,12-MPD and cis-13,14-MHD can be components of the mammalian lipidome and are viable candidate precursors of cis-3,4-methylene-heptanoylcarnitine produced from partial β-oxidation in liver or other tissues.
Collapse
Affiliation(s)
- Hany F Sobhi
- Center for Organic Synthesis, Department of Natural Sciences, Coppin State University, Baltimore, Maryland, USA.
| | - Kelly E Mercer
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA; Arkansas Children's Nutrition Center, Little Rock, Arkansas, USA
| | - Renny S Lan
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA; Arkansas Children's Nutrition Center, Little Rock, Arkansas, USA
| | - Laxmi Yeruva
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA; Arkansas Children's Nutrition Center, Little Rock, Arkansas, USA; USDA-ARS Southeast Area, Microbiome and Metabolism Research Unit, Arkansas Children's Nutrition Center, Little Rock, Arkansas, USA
| | - Gabriella A M Ten Have
- Center for Translational Research in Aging and Longevity, Department of Health and Kinesiology, Texas A & M University, College Station, Texas, USA
| | - Nicolaas E P Deutz
- Center for Translational Research in Aging and Longevity, Department of Health and Kinesiology, Texas A & M University, College Station, Texas, USA
| | - Brian D Piccolo
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA; Arkansas Children's Nutrition Center, Little Rock, Arkansas, USA
| | - Jean Debédat
- Department of Surgery, University of California Davis School of Medicine, Sacramento, California, USA; Center for Alimentary and Metabolic Science, University of California Davis School of Medicine, Sacramento, California, USA
| | - Lindsay M Pack
- Arkansas Children's Nutrition Center, Little Rock, Arkansas, USA
| | - Sean H Adams
- Department of Surgery, University of California Davis School of Medicine, Sacramento, California, USA; Center for Alimentary and Metabolic Science, University of California Davis School of Medicine, Sacramento, California, USA.
| |
Collapse
|
2
|
Fox BW, Helf MJ, Burkhardt RN, Artyukhin AB, Curtis BJ, Palomino DF, Schroeder AF, Chaturbedi A, Tauffenberger A, Wrobel CJJ, Zhang YK, Lee SS, Schroeder FC. Evolutionarily related host and microbial pathways regulate fat desaturation in C. elegans. Nat Commun 2024; 15:1520. [PMID: 38374083 PMCID: PMC10876521 DOI: 10.1038/s41467-024-45782-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/31/2024] [Indexed: 02/21/2024] Open
Abstract
Fatty acid desaturation is central to metazoan lipid metabolism and provides building blocks of membrane lipids and precursors of diverse signaling molecules. Nutritional conditions and associated microbiota regulate desaturase expression, but the underlying mechanisms have remained unclear. Here, we show that endogenous and microbiota-dependent small molecule signals promote lipid desaturation via the nuclear receptor NHR-49/PPARα in C. elegans. Untargeted metabolomics of a β-oxidation mutant, acdh-11, in which expression of the stearoyl-CoA desaturase FAT-7/SCD1 is constitutively increased, revealed accumulation of a β-cyclopropyl fatty acid, becyp#1, that potently activates fat-7 expression via NHR-49. Biosynthesis of becyp#1 is strictly dependent on expression of cyclopropane synthase by associated bacteria, e.g., E. coli. Screening for structurally related endogenous metabolites revealed a β-methyl fatty acid, bemeth#1, which mimics the activity of microbiota-dependent becyp#1 but is derived from a methyltransferase, fcmt-1, that is conserved across Nematoda and likely originates from bacterial cyclopropane synthase via ancient horizontal gene transfer. Activation of fat-7 expression by these structurally similar metabolites is controlled by distinct mechanisms, as microbiota-dependent becyp#1 is metabolized by a dedicated β-oxidation pathway, while the endogenous bemeth#1 is metabolized via α-oxidation. Collectively, we demonstrate that evolutionarily related biosynthetic pathways in metazoan host and associated microbiota converge on NHR-49/PPARα to regulate fat desaturation.
Collapse
Affiliation(s)
- Bennett W Fox
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Maximilian J Helf
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Russell N Burkhardt
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Alexander B Artyukhin
- Chemistry Department, College of Environmental Science and Forestry, State University of New York, Syracuse, NY, 13210, USA
| | - Brian J Curtis
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Diana Fajardo Palomino
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Allen F Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Amaresh Chaturbedi
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Arnaud Tauffenberger
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Chester J J Wrobel
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Ying K Zhang
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Siu Sylvia Lee
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
3
|
Fox BW, Helf MJ, Burkhardt RN, Artyukhin AB, Curtis BJ, Palomino DF, Chaturbedi A, Tauffenberger A, Wrobel CJ, Zhang YK, Lee SS, Schroeder FC. Evolutionarily related host and microbial pathways regulate fat desaturation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.31.555782. [PMID: 37693574 PMCID: PMC10491262 DOI: 10.1101/2023.08.31.555782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Fatty acid desaturation is central to metazoan lipid metabolism and provides building blocks of membrane lipids and precursors of diverse signaling molecules. Nutritional conditions and associated microbiota regulate desaturase expression1-4, but the underlying mechanisms have remained unclear. Here, we show that endogenous and microbiota-dependent small molecule signals promote lipid desaturation via the nuclear receptor NHR-49/PPARα in C. elegans. Untargeted metabolomics of a β-oxidation mutant, acdh-11, in which expression of the stearoyl-CoA desaturase FAT-7/SCD1 is constitutively increased, revealed accumulation of a β-cyclopropyl fatty acid, becyp#1, that potently activates fat-7 expression via NHR-49. Biosynthesis of becyp#1 is strictly dependent on expression of cyclopropane synthase by associated bacteria, e.g., E. coli. Screening for structurally related endogenous metabolites revealed a β-methyl fatty acid, bemeth#1, whose activity mimics that of microbiota-dependent becyp#1, but is derived from a methyltransferase, fcmt-1, that is conserved across Nematoda and likely originates from bacterial cyclopropane synthase via ancient horizontal gene transfer. Activation of fat-7 expression by these structurally similar metabolites is controlled by distinct mechanisms, as microbiota-dependent becyp#1 is metabolized by a dedicated β-oxidation pathway, while the endogenous bemeth#1 is metabolized via α-oxidation. Collectively, we demonstrate that evolutionarily related biosynthetic pathways in metazoan host and associated microbiota converge on NHR-49/PPARα to regulate fat desaturation.
Collapse
Affiliation(s)
- Bennett W. Fox
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Maximilian J. Helf
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Russell N. Burkhardt
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Alexander B. Artyukhin
- Chemistry Department, College of Environmental Science and Forestry, State University of New York, Syracuse, New York 13210, United States
| | - Brian J. Curtis
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Diana Fajardo Palomino
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Amaresh Chaturbedi
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, United States
| | - Arnaud Tauffenberger
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Chester J.J. Wrobel
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Ying K. Zhang
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Siu Sylvia Lee
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, United States
| | - Frank C. Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
4
|
Increased Amount of Polyunsaturated Fatty Acids in the Intestinal Contents of Patients with Morbid Obesity. Obes Surg 2023; 33:1228-1236. [PMID: 36829082 PMCID: PMC10079747 DOI: 10.1007/s11695-023-06518-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 02/26/2023]
Abstract
INTRODUCTION Obesity is associated with disturbed gut microbiota homeostasis that translates into altered intestinal and blood metabolite profiles. The long-chain fatty acid (LCFA) may be absorbed in the intestine, but until now, their composition in intestinal contents of patients with obesity has not been studied. The aim of the present study was to verify whether obesity is related to any changes in fecal LCFA content and whether intestinal LCFA content may be associated with the health status of patients with obesity. METHODS The fatty acid composition has been studied in stool samples obtained from 26 patients with morbid obesity and 25 lean subjects by gas chromatography-mass spectrometry. The dietary habits were assessed using the Food Frequency Questionnaire (FFQ-6). RESULTS Our results show for the first time that lean subjects and patients with obesity differ in their stool LCFA profiles. The levels of most n-3 polyunsaturated fatty acids (PUFAs) and n-6 PUFAs were significantly higher in fecal samples from people with obesity than in those from lean controls. CONCLUSIONS Based on the current knowledge, we have defined three hypotheses that may explain proving the cause-and-effect relationships observed differences in fecal LCFA profiles between patients with obesity and lean subjects. They may be related to alterations in fat digestion and/or LCFA absorption and diet. However, proving the cause-and-effect relationships requires further research.
Collapse
|
5
|
Hebanowska A, Mika A, Rojek L, Stojek M, Goyke E, Swierczynski J, Sledzinski T, Adrych K. Serum n-3 Polyunsaturated Fatty Acids and C-Reactive Protein Concentrations Are Inversely Associated in Patients With Alcoholic Chronic Pancreatitis. Pancreas 2022; 51:e67-e69. [PMID: 35775642 DOI: 10.1097/mpa.0000000000002024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
|
6
|
Lolli V, Dall’Asta M, Caligiani A, Del Rio D, de la Fuente MA, Gómez-Cortés P. Detection of cyclopropane fatty acids in human breastmilk by GC-MS. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Śledziński M, Hliwa A, Gołębiewska J, Mika A. The Impact of Kidney Transplantation on the Serum Fatty Acid Profile in Patients with End-Stage Kidney Disease. Nutrients 2022; 14:nu14040772. [PMID: 35215422 PMCID: PMC8876092 DOI: 10.3390/nu14040772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 02/01/2023] Open
Abstract
Epidemiological data indicate that metabolic disturbances and increased cardiovascular risk in renal transplant patients are a significant and common problem. Therefore, it is important to search for new solutions and, at the same time, counteract the negative effects of currently used therapies. In this study, we examined the effect of kidney transplantation on the serum levels of fatty acids (FAs) in order to assess the role of these compounds in the health of transplant patients. The FA profile was analyzed by gas chromatography-mass spectrometry in the serum of 35 kidney transplant recipients, just before transplantation and 3 months later. The content of total n-3 polyunsaturated FAs (PUFAs) decreased after transplantation (3.06 ± 0.13% vs. 2.66 ± 0.14%; p < 0.05). The total amount of ultra-long-chain FAs containing 26 and more carbon atoms was significantly reduced (0.08 ± 0.009% vs. 0.05 ± 0.007%; p < 0.05). The desaturation index (18:1/18:0) increased after transplantation (3.92 ± 0.11% vs. 4.36 ± 0.18%; p < 0.05). The study showed a significant reduction in n-3 PUFAs in renal transplant recipients 3 months after transplantation, which may contribute to increased cardiovascular risk in this patient population.
Collapse
Affiliation(s)
- Maciej Śledziński
- Department of General, Endocrine and Transplant Surgery, Faculty of Medicine, Medical University of Gdansk, 80-214 Gdansk, Poland;
| | - Aleksandra Hliwa
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-211 Gdansk, Poland;
| | - Justyna Gołębiewska
- Department of Nephrology, Transplantology and Internal Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland;
| | - Adriana Mika
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-211 Gdansk, Poland;
- Correspondence:
| |
Collapse
|
8
|
The Causes and Potential Injurious Effects of Elevated Serum Leptin Levels in Chronic Kidney Disease Patients. Int J Mol Sci 2021; 22:ijms22094685. [PMID: 33925217 PMCID: PMC8125133 DOI: 10.3390/ijms22094685] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 12/15/2022] Open
Abstract
Leptin is an adipokine that regulates appetite and body mass and has many other pleiotropic functions, including regulating kidney function. Increased evidence shows that chronic kidney disease (CKD) is associated with hyperleptinemia, but the reasons for this phenomenon are not fully understood. In this review, we focused on potential causes of hyperleptinemia in patients with CKD and the effects of elevated serum leptin levels on patient kidney function and cardiovascular risk. The available data indicate that the increased concentration of leptin in the blood of CKD patients may result from both decreased leptin elimination from the circulation by the kidneys (due to renal dysfunction) and increased leptin production by the adipose tissue. The overproduction of leptin by the adipose tissue could result from: (a) hyperinsulinemia; (b) chronic inflammation; and (c) significant lipid disturbances in CKD patients. Elevated leptin in CKD patients may further deteriorate kidney function and lead to increased cardiovascular risk.
Collapse
|
9
|
Lolli V, Dall’Asta M, Del Rio D, Caligiani A. Identification of Cyclopropane Fatty Acids in Human Plasma after Controlled Dietary Intake of Specific Foods. Nutrients 2020; 12:nu12113347. [PMID: 33143177 PMCID: PMC7693023 DOI: 10.3390/nu12113347] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 11/21/2022] Open
Abstract
Cyclopropane fatty acids (CPFAs) are an investigated class of secondary fatty acids of microbial origin recently identified in foods. Even though the dietary daily intake of this class of compounds it has been recently estimated as not negligible, to date, no studies specifically have investigated their presence in human plasma after consumption of CPFA-rich sources. Therefore, the aims of this study were (i) to test CPFAs concentration in human plasma, thus demonstrating their in vivo bioaccessibility and potential bioavailability, (ii) to investigate a dose-response relationship between medium term chronic intake of CPFAs-rich foods and both CPFAs and plasma total fatty acid profiles in healthy subjects. Ten healthy normal weight adults were enrolled for conducting an in vivo study. Participants were asked to follow a CPFA-controlled diet for 3 weeks, consuming 50 g of Grana Padano cheese (GP) and 250 mL of whole cow milk, which correspond to a total of 22.1 mg of CPFAs. Fasting CPFAs concentration were monitored for eight timepoints during the whole study and plasma total fatty acids composition was determined by GC-MS. CPFAs, mainly dihydrosterculic acid (DHSA), were identified in plasma total fatty acids profile at the beginning of the study and after dietary treatment. A significant (p < 0.05) increase of CPFAs mean plasma concentration (n = 10) were observed at the end of the dietary intervention. Contrarily, the total fatty acids composition of the general plasma fatty acids profile did not significantly change (p ≥ 0.05) during the dietary intervention period. This is the first investigation demonstrating that CPFAs are bioaccessible in vivo and, as expected, their plasmatic concentration may be affected by consumption of CPFAs-rich foods. This research will open the door to further detailed research, which may better elucidate the role of these compounds in human health.
Collapse
Affiliation(s)
- Veronica Lolli
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (V.L.); (A.C.)
| | - Margherita Dall’Asta
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
- Correspondence:
| | - Daniele Del Rio
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy;
- School of Advanced Studies on Food and Nutrition, University of Parma, 43124 Parma, Italy
| | - Augusta Caligiani
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (V.L.); (A.C.)
| |
Collapse
|
10
|
Rodríguez-Gaxiola M, Domínguez-Vara I, Barajas-Cruz R, Contreras-Andrade I, Morales-Almaráz E, Bórquez-Gastelum J, Sánchez-Torres J, Trujillo-Gutiérrez D, Salem A, Ramírez-Bribiesca E, Anele U. Effect of enriched-chromium yeast on growth performance, carcass characteristics and fatty acid profile in finishing Rambouillet lambs. Small Rumin Res 2020. [DOI: 10.1016/j.smallrumres.2020.106118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
11
|
Alterations of Fatty Acid Profile May Contribute to Dyslipidemia in Chronic Kidney Disease by Influencing Hepatocyte Metabolism. Int J Mol Sci 2019; 20:ijms20102470. [PMID: 31109090 PMCID: PMC6566623 DOI: 10.3390/ijms20102470] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/09/2019] [Accepted: 05/17/2019] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease (CKD) is associated with atherogenic dyslipidemia. Our aim was firstly to investigate patterns of fatty acids (FA) composition through various stages of CKD, and secondly, to evaluate the effect of CKD-specific FA disturbances on the expression of genes related to lipid metabolism at a cellular level. Serum FA composition was analyzed in 191 patients with consecutive severity stages of CKD, and 30 healthy controls free from CKD. Next, HepG2 human hepatic cells were treated with major representatives of various FA groups, as well as with FA extracted from a mix of serums of controls and of CKD stage 5 patients. Across worsening stages of CKD severity, there was an increasing monounsaturated FA (MUFA) content. It was associated with a concomitant decrease in n-3 and n-6 polyunsaturated FA. The incubation of hepatocytes with FA from CKD patients (compared to that of healthy subjects), resulted in significantly higher mRNA levels of genes involved in FA synthesis (fatty acid synthase (FASN) increased 13.7 ± 3.5 times, stearoyl-CoA desaturase 1 (SCD1) increased 4.26 ± 0.36 times), and very low density lipoprotein (VLDL) formation (apolipoprotein B (ApoB) increased 7.35 ± 1.5 times, microsomal triacylglycerol transfer protein (MTTP) increased 2.74 ± 0.43 times). In conclusion, there were progressive alterations in serum FA composition of patients with CKD. These alterations may partly contribute to CKD hypertriglyceridemia by influencing hepatocyte expression of genes of lipid synthesis and release.
Collapse
|
12
|
Mika A, Sledzinski T, Stepnowski P. Current Progress of Lipid Analysis in Metabolic Diseases by Mass Spectrometry Methods. Curr Med Chem 2019; 26:60-103. [PMID: 28971757 DOI: 10.2174/0929867324666171003121127] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 09/14/2016] [Accepted: 10/10/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Obesity, insulin resistance, diabetes, and metabolic syndrome are associated with lipid alterations, and they affect the risk of long-term cardiovascular disease. A reliable analytical instrument to detect changes in the composition or structures of lipids and the tools allowing to connect changes in a specific group of lipids with a specific disease and its progress, is constantly lacking. Lipidomics is a new field of medicine based on the research and identification of lipids and lipid metabolites present in human organism. The primary aim of lipidomics is to search for new biomarkers of different diseases, mainly civilization diseases. OBJECTIVE We aimed to review studies reporting the application of mass spectrometry for lipid analysis in metabolic diseases. METHOD Following an extensive search of peer-reviewed articles on the mass spectrometry analysis of lipids the literature has been discussed in this review article. RESULTS The lipid group contains around 1.7 million species; they are totally different, in terms of the length of aliphatic chain, amount of rings, additional functional groups. Some of them are so complex that their complex analyses are a challenge for analysts. Their qualitative and quantitative analysis of is based mainly on mass spectrometry. CONCLUSION Mass spectrometry techniques are excellent tools for lipid profiling in complex biological samples and the combination with multivariate statistical analysis enables the identification of potential diagnostic biomarkers.
Collapse
Affiliation(s)
- Adriana Mika
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Poland.,Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Poland
| |
Collapse
|
13
|
Lolli V, Dall'Asta M, Del Rio D, Palla G, Caligiani A. Presence of cyclopropane fatty acids in foods and estimation of dietary intake in the Italian population. Int J Food Sci Nutr 2018; 70:467-473. [PMID: 30451036 DOI: 10.1080/09637486.2018.1540556] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Cyclopropane fatty acids (CPFAs) are the most abundant cyclic fatty acids in microorganisms with unknown role(s) regarding their dietary relevance and biological effects in humans. This work was aimed to draw up a list of CPFAs-containing foods for estimating their dietary intake in the Italian population to provide a basis for evaluating their nutritional relevance and potential health-related effects. The CPFAs content of more than 500 food items was investigated and a preliminary dietary intake was assessed (12.0 ± 6.0 mg/day), based on the data reported by the Italian National Food Consumption Survey INRAN-SCAI 2005-06. CPFAs should be considered of dietary relevance in view of their potential physiological activity in humans and their presence in significant amounts in dairy products, as Grana Padano cheese (9.0-30.0 mg/100 g), and in bovine meat (0.7-4.0 mg/100 g). Future studies should elucidate whether this uncommon class of fatty acids has a biological role in human health.
Collapse
Affiliation(s)
- Veronica Lolli
- a Department of Food and Drug , University of Parma , Parma , Italy
| | | | - Daniele Del Rio
- b Department of Veterinary Science , University of Parma , Parma , Italy
| | - Gerardo Palla
- a Department of Food and Drug , University of Parma , Parma , Italy
| | | |
Collapse
|
14
|
Lolli V, Dall’Asta M, Del Rio D, Caligiani A. In vitro digestibility of cyclopropane fatty acids in Grana Padano cheese: A study combining 1 H NMR and GC-MS techniques. J FOOD ENG 2018. [DOI: 10.1016/j.jfoodeng.2018.05.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Czumaj A, Mika A, Chmielewski M, Sledzinski T. Cyclopropaneoctanoic Acid 2-Hexyl Upregulates the Expression of Genes Responsible for Lipid Synthesis and Release in Human Hepatic HepG2 Cells. Lipids 2018; 53:345-351. [PMID: 29701265 DOI: 10.1002/lipd.12034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 02/06/2018] [Accepted: 02/21/2018] [Indexed: 01/09/2023]
Abstract
Recently we have found cyclopropaneoctanoic acid 2-hexyl (CPOA2H) in humans and demonstrated its elevated levels in patients with metabolic diseases associated with hypertriglyceridemia. However, it is still unclear whether CPOA2H may influence lipid metabolism in lipogenic tissues. To verify this, HepG2 hepatocytes and 3T3-L1 adipocytes were cultured with various concentrations of CPOA2H, and then the expressions of genes associated with lipid metabolism were determined. Incubation with CPOA2H at concentrations found in patients with metabolic diseases enhanced the expression of hepatocyte genes associated with lipid synthesis and release, in particular, the fatty acid synthase gene (nearly 20-fold increase in the mRNA level). In contrast, incubation with CPOA2H caused the downregulation of most adipocyte genes associated with lipid synthesis, whereas the level of leptin mRNA was increased. These findings suggest that CPOA2H may contribute to hypertriglyceridemia in patients with metabolic diseases, upregulating the expression of hepatocyte genes responsible for lipid synthesis and release.
Collapse
Affiliation(s)
- Aleksandra Czumaj
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, 1 Debinki Street, Gdansk, 80-211, Poland
| | - Adriana Mika
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, 1 Debinki Street, Gdansk, 80-211, Poland
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdansk, Poland
| | - Michał Chmielewski
- Department of Nephrology, Transplantology and Internal Medicine, Medical University of Gdansk, Debinki 7, 80-211, Gdansk, Poland
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, 1 Debinki Street, Gdansk, 80-211, Poland
| |
Collapse
|
16
|
Pazda M, Stepnowski P, Sledzinski T, Chmielewski M, Mika A. Suitability of selected chromatographic columns for analysis of fatty acids in dialyzed patients. Biomed Chromatogr 2017; 31. [PMID: 28493452 DOI: 10.1002/bmc.4006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 03/28/2017] [Accepted: 05/07/2017] [Indexed: 12/11/2022]
Abstract
Gas chromatography-mass spectrometry is a preferred method for fatty acid (FA) analysis in biofluids from patients with metabolic diseases. Complex characteristics of FAs make their analysis particularly challenging. Selection of an appropriate chromatographic column is particularly important component of the process as it provides optimal separation and detection of possibly all FAs present in the sample. However, no accurate protocol for comparative evaluation of capillary columns for the analysis of whole serum FA profile in patients with chronic kidney disease (CKD) has been developed thus far. Therefore, in the present study four columns were examined to select the one providing optimal separation and determination of FA profiles in this group of patients. Moreover, serum FA profiles obtained with the selected column in CKD patients subjected to peritoneal dialysis and healthy controls were compared. Thirty-seven component FAME Mix and sera from CKD patients were used to optimize chromatographic conditions and to select the most appropriate column. The ZB-5 column turned out to be the most appropriate for the analysis of whole FA profile in CKD patients' sera. Then, this column was used to compare FA profiles in patients subjected to peritoneal dialysis and in healthy controls. The analysis demonstrated many abnormalities in the FA profile of CKD patients. Further studies involving larger groups of patients presenting with other stages of CKD are required to explain the impact of the disease progression on composition of serum FAs.
Collapse
Affiliation(s)
- Magdalena Pazda
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Poland
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Poland
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Poland
| | - Michal Chmielewski
- Department of Nephrology, Trasplantology and Internal Medicine, Medical University of Gdansk, Poland
| | - Adriana Mika
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Poland.,Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Poland
| |
Collapse
|
17
|
Mika A, Sledzinski T. Alterations of specific lipid groups in serum of obese humans: a review. Obes Rev 2017; 18:247-272. [PMID: 27899022 DOI: 10.1111/obr.12475] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/16/2016] [Accepted: 09/05/2016] [Indexed: 12/15/2022]
Abstract
Obesity is a major contributor to the dysfunction of liver, cardiac, pulmonary, endocrine and reproductive system, as well as a component of metabolic syndrome. Although development of obesity-related disorders is associated with lipid abnormalities, most previous studies dealing with the problem in question were limited to routinely determined parameters, such as serum concentrations of triacylglycerols, total cholesterol, low-density and high-density lipoprotein cholesterol. Many authors postulated to extend the scope of analysed lipid compounds and to study obesity-related alterations in other, previously non-examined groups of lipids. Comprehensive quantitative, structural and functional analysis of specific lipid groups may result in identification of new obesity-related alterations. The review summarizes available evidence of obesity-related alterations in various groups of lipids and their impact on health status of obese subjects. Further, the role of diet and endogenous lipid synthesis in the development of serum lipid alterations is discussed, along with potential application of various lipid compounds as risk markers for obesity-related comorbidities.
Collapse
Affiliation(s)
- A Mika
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - T Sledzinski
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|