1
|
Mejia EM, Sparagna GC, Miller DW, Hatch GM. Reduced protein kinase C delta in a high molecular weight complex in mitochondria and elevated creatine uptake into Barth syndrome B lymphoblasts. JOURNAL OF TRANSLATIONAL GENETICS AND GENOMICS 2024; 8:216-224. [PMID: 39372601 PMCID: PMC11451818 DOI: 10.20517/jtgg.2024.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Aim Barth syndrome (BTHS) is a rare X-linked genetic disease in which mitochondrial oxidative phosphorylation is impaired due to a mutation in the TAFAZZIN gene. The protein kinase C delta (PKCδ) signalosome exists as a high molecular weight complex in mitochondria and controls mitochondrial oxidative phosphorylation. Method Here, we examined PKCδ levels in mitochondria of aged-matched control and BTHS patient B lymphoblasts and its association with a higher molecular weight complex in mitochondria. Result Immunoblot analysis of blue-native polyacrylamide gel electrophoresis mitochondrial fractions revealed an increase in total PKCδ protein expression in BTHS lymphoblasts compared to controls. In contrast, PKCδ associated with a higher molecular weight complex was markedly reduced in BTHS patient B lymphoblasts compared to controls. Given the decrease in PKCδ associated with a higher molecular weight complex in mitochondria, we examined the uptake of creatine, a compound whose utilization is enhanced upon high energy demand. Creatine uptake was markedly elevated in BTHS lymphoblasts compared to controls. Conclusion We hypothesize that reduced PKCδ within this higher molecular weight complex in mitochondria may contribute to the bioenergetic defects observed in BTHS lymphoblasts and that enhanced creatine uptake may serve as one of several compensatory mechanisms for the defective mitochondrial oxidative phosphorylation observed in these cells.
Collapse
Affiliation(s)
- Edgard M. Mejia
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 0T6, Canada
| | - Genevieve C. Sparagna
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA
| | - Donald W. Miller
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 0T6, Canada
| | - Grant M. Hatch
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 0T6, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
| |
Collapse
|
2
|
Liang Z, Ralph-Epps T, Schmidtke MW, Lazcano P, Denis SW, Balážová M, Teixeira da Rosa N, Chakkour M, Hazime S, Ren M, Schlame M, Houtkooper RH, Greenberg ML. Upregulation of the AMPK-FOXO1-PDK4 pathway is a primary mechanism of pyruvate dehydrogenase activity reduction in tafazzin-deficient cells. Sci Rep 2024; 14:11497. [PMID: 38769106 PMCID: PMC11106297 DOI: 10.1038/s41598-024-62262-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024] Open
Abstract
Barth syndrome (BTHS) is a rare disorder caused by mutations in the TAFAZZIN gene. Previous studies from both patients and model systems have established metabolic dysregulation as a core component of BTHS pathology. In particular, features such as lactic acidosis, pyruvate dehydrogenase (PDH) deficiency, and aberrant fatty acid and glucose oxidation have been identified. However, the lack of a mechanistic understanding of what causes these conditions in the context of BTHS remains a significant knowledge gap, and this has hindered the development of effective therapeutic strategies for treating the associated metabolic problems. In the current study, we utilized tafazzin-knockout C2C12 mouse myoblasts (TAZ-KO) and cardiac and skeletal muscle tissue from tafazzin-knockout mice to identify an upstream mechanism underlying impaired PDH activity in BTHS. This mechanism centers around robust upregulation of pyruvate dehydrogenase kinase 4 (PDK4), resulting from hyperactivation of AMP-activated protein kinase (AMPK) and subsequent transcriptional upregulation by forkhead box protein O1 (FOXO1). Upregulation of PDK4 in tafazzin-deficient cells causes direct phospho-inhibition of PDH activity accompanied by increased glucose uptake and elevated intracellular glucose concentration. Collectively, our findings provide a novel mechanistic framework whereby impaired tafazzin function ultimately results in robust PDK4 upregulation, leading to impaired PDH activity and likely linked to dysregulated metabolic substrate utilization. This mechanism may underlie previously reported findings of BTHS-associated metabolic dysregulation.
Collapse
Affiliation(s)
- Zhuqing Liang
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Tyler Ralph-Epps
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | | | - Pablo Lazcano
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Simone W Denis
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism Institute, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences Institute, Amsterdam, The Netherlands
- Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, The Netherlands
| | - Mária Balážová
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 84005, Bratislava, Slovakia
| | | | - Mohamed Chakkour
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Sanaa Hazime
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Mindong Ren
- Department of Anesthesiology, Perioperative Care, and Pain Medicine, Grossman School of Medicine, New York University, New York, NY, USA
| | - Michael Schlame
- Department of Anesthesiology, Perioperative Care, and Pain Medicine, Grossman School of Medicine, New York University, New York, NY, USA
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism Institute, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences Institute, Amsterdam, The Netherlands
- Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, The Netherlands
| | - Miriam L Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
3
|
Liang Z, Ralph-Epps T, Schmidtke MW, Lazcano P, Denis SW, Balážová M, Chakkour M, Hazime S, Ren M, Schlame M, Houtkooper RH, Greenberg ML. Upregulation of the AMPK-FOXO1-PDK4 pathway is a primary mechanism of pyruvate dehydrogenase activity reduction and leads to increased glucose uptake in tafazzin-deficient cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.03.578755. [PMID: 38352304 PMCID: PMC10862887 DOI: 10.1101/2024.02.03.578755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Barth syndrome (BTHS) is a rare disorder caused by mutations in the TAFAZZIN gene. Previous studies from both patients and model systems have established metabolic dysregulation as a core component of BTHS pathology. In particular, features such as lactic acidosis, pyruvate dehydrogenase (PDH) deficiency, and aberrant fatty acid and glucose oxidation have been identified. However, the lack of a mechanistic understanding of what causes these conditions in the context of BTHS remains a significant knowledge gap, and this has hindered the development of effective therapeutic strategies for treating the associated metabolic problems. In the current study, we utilized tafazzin-knockout C2C12 mouse myoblasts (TAZ-KO) and cardiac and skeletal muscle tissue from tafazzin-knockout mice to identify an upstream mechanism underlying impaired PDH activity in BTHS. This mechanism centers around robust upregulation of pyruvate dehydrogenase kinase 4 (PDK4), resulting from hyperactivation of AMP-activated protein kinase (AMPK) and subsequent transcriptional upregulation by forkhead box protein O1 (FOXO1). Upregulation of PDK4 in tafazzin-deficient cells causes direct phospho-inhibition of PDH activity accompanied by increased glucose uptake and elevated intracellular glucose concentration. Collectively, our findings provide a novel mechanistic framework whereby impaired tafazzin function ultimately results in robust PDK4 upregulation, leading to impaired PDH activity and likely linked to dysregulated metabolic substrate utilization. This mechanism may underlie previously reported findings of BTHS-associated metabolic dysregulation.
Collapse
|
4
|
Thompson R, Jefferies J, Wang S, Pu WT, Takemoto C, Hornby B, Heyman A, Chin MT, Vernon HJ. Current and future treatment approaches for Barth syndrome. J Inherit Metab Dis 2022; 45:17-28. [PMID: 34713454 DOI: 10.1002/jimd.12453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022]
Abstract
Barth Syndrome is an X-linked disorder of mitochondrial cardiolipin metabolism caused by pathogenic variants in TAFAZZIN with pleiotropic effects including cardiomyopathy, neutropenia, growth delay, and skeletal myopathy. Management requires a multidisciplinary approach to the organ-specific manifestations including specialists from cardiology, hematology, nutrition, physical therapy, genetics, and metabolism. Currently, treatment is centered on management of specific clinical features, and is not targeted toward remediating the underlying biochemical defect. However, two clinical trials have been recently undertaken which target the mitochondrial pathology of this disease: a study to examine the effects of elamipretide, a cardiolipin targeted agent, and a study to examine the effects of bezafibrate, a peroxisome proliferator-activated receptor (PPAR) agonist. Treatments to directly target the defective TAFAZZIN pathway are under development, including enzyme and gene therapies.
Collapse
Affiliation(s)
- Reid Thompson
- Department of Pediatric Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - John Jefferies
- The Cardiovascular Institute, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Suya Wang
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - William T Pu
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Clifford Takemoto
- Division of Clinical Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Brittany Hornby
- Department of Physical Therapy, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Andrea Heyman
- Department of Nutrition, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Michael T Chin
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Hilary J Vernon
- Department of Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurogenetics, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Barth syndrome: cardiolipin, cellular pathophysiology, management, and novel therapeutic targets. Mol Cell Biochem 2021; 476:1605-1629. [PMID: 33415565 DOI: 10.1007/s11010-020-04021-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 12/11/2020] [Indexed: 12/15/2022]
Abstract
Barth syndrome is a rare X-linked genetic disease classically characterized by cardiomyopathy, skeletal myopathy, growth retardation, neutropenia, and 3-methylglutaconic aciduria. It is caused by mutations in the tafazzin gene localized to chromosome Xq28.12. Mutations in tafazzin may result in alterations in the level and molecular composition of the mitochondrial phospholipid cardiolipin and result in large elevations in the lysophospholipid monolysocardiolipin. The increased monolysocardiolipin:cardiolipin ratio in blood is diagnostic for the disease, and it leads to disruption in mitochondrial bioenergetics. In this review, we discuss cardiolipin structure, synthesis, and function and provide an overview of the clinical and cellular pathophysiology of Barth Syndrome. We highlight known pharmacological management for treatment of the major pathological features associated with the disease. In addition, we discuss non-pharmacological management. Finally, we highlight the most recent promising therapeutic options for this rare mitochondrial disease including lipid replacement therapy, peroxisome proliferator-activated receptor agonists, tafazzin gene replacement therapy, induced pluripotent stem cells, mitochondria-targeted antioxidants and peptides, and the polyphenolic compound resveratrol.
Collapse
|
6
|
Rohani L, Machiraju P, Sabouny R, Meng G, Liu S, Zhao T, Iqbal F, Wang X, Ravandi A, Wu JC, Khan A, Shutt T, Rancourt D, Greenway SC. Reversible Mitochondrial Fragmentation in iPSC-Derived Cardiomyocytes From Children With DCMA, a Mitochondrial Cardiomyopathy. Can J Cardiol 2020; 36:554-563. [PMID: 32046906 DOI: 10.1016/j.cjca.2019.09.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Dilated cardiomyopathy with ataxia syndrome (DCMA) is an understudied autosomal recessive disease caused by loss-of-function mutations in the poorly characterized gene DNAJC19. Clinically, DCMA is commonly associated with heart failure and early death in affected children through an unknown mechanism. DCMA has been linked to Barth syndrome, a rare but well-studied disorder caused by deficient maturation of cardiolipin (CL), a key mitochondrial membrane phospholipid. METHODS Peripheral blood mononuclear cells from 2 children with DCMA and severe cardiac dysfunction were reprogrammed into induced pluripotent stem cells (iPSCs). Patient and control iPSCs were differentiated into beating cardiomyocytes (iPSC-CMs) using a metabolic selection strategy. Mitochondrial structure and CL content before and after incubation with the mitochondrially targeted peptide SS-31 were quantified. RESULTS Patient iPSCs carry the causative DNAJC19 mutation (rs137854888) found in the Hutterite population, and the iPSC-CMs demonstrated highly fragmented and abnormally shaped mitochondria associated with an imbalanced isoform ratio of the mitochondrial protein OPA1, an important regulator of mitochondrial fusion. These abnormalities were reversible by incubation with SS-31 for 24 hours. Differentiation of iPSCs into iPSC-CMs increased the number of CL species observed, but consistent, significant differences in CL content were not seen between patients and control. CONCLUSIONS We describe a unique and novel cellular model that provides insight into the mitochondrial abnormalities present in DCMA and identifies SS-31 as a potential therapeutic for this devastating disease.
Collapse
Affiliation(s)
- Leili Rohani
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Pranav Machiraju
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Rasha Sabouny
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Guoliang Meng
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Shiying Liu
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Tian Zhao
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Fatima Iqbal
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Xuemei Wang
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Amir Ravandi
- Department of Physiology and Pathophysiology and Institute of Cardiovascular Sciences, St Boniface Hospital Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Aneal Khan
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Timothy Shutt
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Derrick Rancourt
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| | - Steven C Greenway
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
7
|
Fatica EM, DeLeonibus GA, House A, Kodger JV, Pearce RW, Shah RR, Levi L, Sandlers Y. Barth Syndrome: Exploring Cardiac Metabolism with Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Metabolites 2019; 9:E306. [PMID: 31861102 PMCID: PMC6950123 DOI: 10.3390/metabo9120306] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 12/14/2022] Open
Abstract
Barth syndrome (BTHS) is an X-linked recessive multisystem disorder caused by mutations in the TAZ gene (TAZ, G 4.5, OMIM 300394) that encodes for the acyltransferase tafazzin. This protein is highly expressed in the heart and plays a significant role in cardiolipin biosynthesis. Heart disease is the major clinical manifestation of BTHS with a high incidence in early life. Although the genetic basis of BTHS and tetralinoleoyl cardiolipin deficiency in BTHS-affected individuals are well-established, downstream metabolic changes in cardiac metabolism are still uncovered. Our study aimed to characterize TAZ-induced metabolic perturbations in the heart. Control (PGP1-TAZWT) and TAZ mutant (PGP1-TAZ517delG) iPS-CM were incubated with 13C6-glucose and 13C5-glutamine and incorporation of 13C into downstream Krebs cycle intermediates was traced. Our data reveal that TAZ517delG induces accumulation of cellular long chain acylcarnitines and overexpression of fatty acid binding protein (FABP4). We also demonstrate that TAZ517delG induces metabolic alterations in pathways related to energy production as reflected by high glucose uptake, an increase in glycolytic lactate production and a decrease in palmitate uptake. Moreover, despite mitochondrial dysfunction, in the absence of glucose and fatty acids, TAZ517delG-iPS-CM can use glutamine as a carbon source to replenish the Krebs cycle.
Collapse
Affiliation(s)
- Erica M. Fatica
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA; (E.M.F.); (G.A.D.); (A.H.); (J.V.K.); (R.W.P.); (R.R.S.)
| | - Gina A. DeLeonibus
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA; (E.M.F.); (G.A.D.); (A.H.); (J.V.K.); (R.W.P.); (R.R.S.)
| | - Alisha House
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA; (E.M.F.); (G.A.D.); (A.H.); (J.V.K.); (R.W.P.); (R.R.S.)
| | - Jillian V. Kodger
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA; (E.M.F.); (G.A.D.); (A.H.); (J.V.K.); (R.W.P.); (R.R.S.)
| | - Ryan W. Pearce
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA; (E.M.F.); (G.A.D.); (A.H.); (J.V.K.); (R.W.P.); (R.R.S.)
| | - Rohan R. Shah
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA; (E.M.F.); (G.A.D.); (A.H.); (J.V.K.); (R.W.P.); (R.R.S.)
| | - Liraz Levi
- Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Yana Sandlers
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA; (E.M.F.); (G.A.D.); (A.H.); (J.V.K.); (R.W.P.); (R.R.S.)
| |
Collapse
|
8
|
Machiraju P, Wang X, Sabouny R, Huang J, Zhao T, Iqbal F, King M, Prasher D, Lodha A, Jimenez-Tellez N, Ravandi A, Argiropoulos B, Sinasac D, Khan A, Shutt TE, Greenway SC. SS-31 Peptide Reverses the Mitochondrial Fragmentation Present in Fibroblasts From Patients With DCMA, a Mitochondrial Cardiomyopathy. Front Cardiovasc Med 2019; 6:167. [PMID: 31803760 PMCID: PMC6873783 DOI: 10.3389/fcvm.2019.00167] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 10/31/2019] [Indexed: 12/04/2022] Open
Abstract
We used patient dermal fibroblasts to characterize the mitochondrial abnormalities associated with the dilated cardiomyopathy with ataxia syndrome (DCMA) and to study the effect of the mitochondrially-targeted peptide SS-31 as a potential novel therapeutic. DCMA is a rare and understudied autosomal recessive disorder thought to be related to Barth syndrome but caused by mutations in DNAJC19, a protein of unknown function localized to the mitochondria. The clinical disease is characterized by 3-methylglutaconic aciduria, dilated cardiomyopathy, abnormal neurological development, and other heterogeneous features. Until recently no effective therapies had been identified and affected patients frequently died in early childhood from intractable heart failure. Skin fibroblasts from four pediatric patients with DCMA were used to establish parameters of mitochondrial dysfunction. Mitochondrial structure, reactive oxygen species (ROS) production, cardiolipin composition, and gene expression were evaluated. Immunocytochemistry with semi-automated quantification of mitochondrial structural metrics and transmission electron microscopy demonstrated mitochondria to be highly fragmented in DCMA fibroblasts compared to healthy control cells. Live-cell imaging demonstrated significantly increased ROS production in patient cells. These abnormalities were reversed by treating DCMA fibroblasts with SS-31, a synthetic peptide that localizes to the inner mitochondrial membrane. Levels of cardiolipin were not significantly different between control and DCMA cells and were unaffected by SS-31 treatment. Our results demonstrate the abnormal mitochondria in fibroblasts from patients with DCMA and suggest that SS-31 may represent a potential therapy for this devastating disease.
Collapse
Affiliation(s)
- Pranav Machiraju
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Xuemei Wang
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Rasha Sabouny
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Joshua Huang
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Tian Zhao
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Fatima Iqbal
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Melissa King
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Dimple Prasher
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Arijit Lodha
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Nerea Jimenez-Tellez
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Amir Ravandi
- Department of Physiology and Pathophysiology, St. Boniface Hospital Research Centre, Institute of Cardiovascular Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Bob Argiropoulos
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - David Sinasac
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Aneal Khan
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Timothy E. Shutt
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Steven C. Greenway
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
9
|
Finsterer J. Barth syndrome: mechanisms and management. APPLICATION OF CLINICAL GENETICS 2019; 12:95-106. [PMID: 31239752 PMCID: PMC6558240 DOI: 10.2147/tacg.s171481] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/04/2019] [Indexed: 12/21/2022]
Abstract
Objectives: Barth syndrome is an ultra-rare, infantile-onset, X-linked recessive mitochondrial disorder, primarily affecting males, due to variants in TAZ encoding for the cardiolipin transacylase tafazzin. This review aimed to summarize and discuss recent and earlier findings concerning the etiology, pathogenesis, clinical presentation, diagnosis, treatment, and outcome of Barth syndrome. Method: A literature review was undertaken through a MEDLINE search. Results: The phenotype of Barth syndrome is highly variable but most frequently patients present with hypertrophic/dilated/non-compaction cardiomyopathy, fibroelastosis, arrhythmias, neutropenia, mitochondrial myopathy, growth retardation, dysmorphism, cognitive impairment, and other, rarer features. Lactic acid and creatine kinase, and blood and urine organic acids, particularly 3-methylglutaconic acid and monolysocardiolipin, are often elevated. Cardiolipin is decreased. Biochemical investigations may show decreased activity of various respiratory chain complexes. The diagnosis is confirmed by documentation of a causative TAZ variant. Treatment is symptomatic and directed toward treating heart failure, arrhythmias, neutropenia, and mitochondrial myopathy. Conclusions: Although Barth syndrome is still an orphan disease, with fewer than 200 cases described so far, there is extensive ongoing research with regard to its pathomechanism and new therapeutic approaches. Although most of these approaches are still experimental, it can be expected that causative strategies will be developed in the near future.
Collapse
Affiliation(s)
- Josef Finsterer
- Krankenanstalt Rudolfstiftung, Messerli Institute, Vienna, Austria
| |
Collapse
|
10
|
Ghosh S, Iadarola DM, Ball WB, Gohil VM. Mitochondrial dysfunctions in barth syndrome. IUBMB Life 2019; 71:791-801. [PMID: 30746873 DOI: 10.1002/iub.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 12/18/2022]
Abstract
Barth syndrome (BTHS) is a rare multisystemic genetic disorder caused by mutations in the TAZ gene. TAZ encodes a mitochondrial enzyme that remodels the acyl chain composition of newly synthesized cardiolipin, a phospholipid unique to mitochondrial membranes. The clinical abnormalities observed in BTHS patients are caused by perturbations in various mitochondrial functions that rely on remodeled cardiolipin. However, the contribution of different cardiolipin-dependent mitochondrial functions to the pathology of BTHS is not fully understood. In this review, we will discuss recent findings from different genetic models of BTHS, including the yeast model of cardiolipin deficiency that has uncovered the specific in vivo roles of cardiolipin in mitochondrial respiratory chain biogenesis, bioenergetics, intermediary metabolism, mitochondrial dynamics, and quality control. We will also describe findings from higher eukaryotic models of BTHS that highlight a link between cardiolipin-dependent mitochondrial function and its impact on tissue and organ function. © 2019 IUBMB Life, 9999(9999):1-11, 2019.
Collapse
Affiliation(s)
- Sagnika Ghosh
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Donna M Iadarola
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Writoban Basu Ball
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Vishal M Gohil
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| |
Collapse
|
11
|
Agarwal P, Cole LK, Chandrakumar A, Hauff KD, Ravandi A, Dolinsky VW, Hatch GM. Phosphokinome Analysis of Barth Syndrome Lymphoblasts Identify Novel Targets in the Pathophysiology of the Disease. Int J Mol Sci 2018; 19:ijms19072026. [PMID: 30002286 PMCID: PMC6073761 DOI: 10.3390/ijms19072026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/06/2018] [Accepted: 07/09/2018] [Indexed: 12/25/2022] Open
Abstract
Barth Syndrome (BTHS) is a rare X-linked genetic disease in which the specific biochemical deficit is a reduction in the mitochondrial phospholipid cardiolipin (CL) as a result of a mutation in the CL transacylase tafazzin. We compared the phosphokinome profile in Epstein-Barr-virus-transformed lymphoblasts prepared from a BTHS patient with that of an age-matched control individual. As expected, mass spectrometry analysis revealed a significant (>90%) reduction in CL in BTHS lymphoblasts compared to controls. In addition, increased oxidized phosphatidylcholine (oxPC) and phosphatidylethanolamine (PE) levels were observed in BTHS lymphoblasts compared to control. Given the broad shifts in metabolism associated with BTHS, we hypothesized that marked differences in posttranslational modifications such as phosphorylation would be present in the lymphoblast cells of a BTHS patient. Phosphokinome analysis revealed striking differences in the phosphorylation levels of phosphoproteins in BTHS lymphoblasts compared to control cells. Some phosphorylated proteins, for example, adenosine monophosphate kinase, have been previously validated as bonafide modified phosphorylation targets observed in tafazzin deficiency or under conditions of reduced cellular CL. Thus, we report multiple novel phosphokinome targets in BTHS lymphoblasts and hypothesize that alteration in the phosphokinome profile may provide insight into the pathophysiology of BTHS and potential therapeutic targets.
Collapse
Affiliation(s)
- Prasoon Agarwal
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM), Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada.
- Manitoba Developmental Origins of Chronic Diseases in Children Network (DEVOTION), University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
| | - Laura K Cole
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
| | - Abin Chandrakumar
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
- Clinical Research Unit, Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada.
| | - Kristin D Hauff
- Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada.
| | - Amir Ravandi
- Physiology and Pathophysiology, University of Manitoba, St. Boniface Hospital Research Center, Winnipeg, MB R2H 2A6, Canada.
| | - Vernon W Dolinsky
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM), Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada.
- Manitoba Developmental Origins of Chronic Diseases in Children Network (DEVOTION), University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
| | - Grant M Hatch
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM), Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada.
- Center for Research and Treatment of Atherosclerosis, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
| |
Collapse
|