1
|
Tacias-Pascacio VG, Abellanas-Perez P, de Andrades D, Tavano O, Mendes AA, Berenguer-Murcia Á, Fernandez-Lafuente R. A comprehensive review of lipase-catalyzed acidolysis as a method for producing structured glycerides. Int J Biol Macromol 2025; 309:142878. [PMID: 40194578 DOI: 10.1016/j.ijbiomac.2025.142878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 04/09/2025]
Abstract
The production of structured lipids is a current trend in food technology in order to enhance the properties of fats and oils. Lipases have been utilized in many instances for this purpose, in most examples in an immobilized form. In this review, after discussing the different strategies to produce artificial lipids using lipases (esterification, transesterification, interesterification), we have focused on acidolysis. The reaction commences with hydrolysis at one position of the triglyceride molecule and is followed by the esterification between the released hydroxyl group and the target fatty acid (although other carboxylic acids can be used, such as phenolic acid derivatives). This means that water plays a double role, as substrate in the first step and as an undesired by-product in the second one. Therefore, the control of water activity becomes critical in these reactions. This review discusses the advantages, possibilities and drawbacks of this strategy to produce tailor-made designed lipids, summarizing many of the papers related to this strategy. The summarized results show the complexity of this reaction that can make the understanding and reproducibility of the reactions complex if there are no strict controls of all parameters determining the final yields.
Collapse
Affiliation(s)
- Veymar G Tacias-Pascacio
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico
| | - Pedro Abellanas-Perez
- Departamento de Biocatálisis, ICP-CSIC, C/ Marie Curie 2, Campus UAM-CSIC, Cantoblanco, 28049 Madrid. Spain
| | - Diandra de Andrades
- Departamento de Biocatálisis, ICP-CSIC, C/ Marie Curie 2, Campus UAM-CSIC, Cantoblanco, 28049 Madrid. Spain; Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Olga Tavano
- Faculty of Nutrition, Alfenas Federal Univ., 700 Gabriel Monteiro da Silva St, Alfenas, MG 37130-000, Brazil
| | - Adriano A Mendes
- Institute of Chemistry, Federal University of Alfenas, Alfenas, MG 37130-001, Brazil
| | - Ángel Berenguer-Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Alicante, Spain
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, C/ Marie Curie 2, Campus UAM-CSIC, Cantoblanco, 28049 Madrid. Spain.
| |
Collapse
|
2
|
Korma SA, Li L, Abdrabo KAE, Ali AH, Rahaman A, Abed SM, Bakry IA, Wei W, Wang X. A comparative study of lipid composition and powder quality among powdered infant formula with novel functional structured lipids and commercial infant formulas. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03597-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
3
|
Abed SM, Elbandy M, Abdel-Samie MA, Ali AH, Korma SA, Noman A, Wei W, Jin Q. Screening of lipases for production of novel structured lipids from single cell oils. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Polymeric Acidic Ionic Liquid-Functionalized SBA-15 as a Solid Catalyst for Production of Low-Calorie Structured Lipids. J AM OIL CHEM SOC 2018. [DOI: 10.1002/aocs.12155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
Xie W, Zhang C. Production of medium-chain structured lipids using dual acidic ionic liquids supported on Fe3O4@SiO2 composites as magnetically recyclable catalysts. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.03.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Abed SM, Wei W, Ali AH, Korma SA, Mousa AH, Hassan HM, Jin Q, Wang X. Synthesis of structured lipids enriched with medium-chain fatty acids via solvent-free acidolysis of microbial oil catalyzed by Rhizomucor miehei lipase. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.03.057] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Sneha R, Jeyarani T. Lipase-catalysed acidolysis of mango kernel fat with capric acid to obtain medium- and long-chain triacylglycerols. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13734] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Ramesh Sneha
- Traditional Food and Sensory Science Department; CSIR- Central Food Technological Research Institute; Mysuru 570020 Karnataka India
| | - Thangaraj Jeyarani
- Traditional Food and Sensory Science Department; CSIR- Central Food Technological Research Institute; Mysuru 570020 Karnataka India
| |
Collapse
|
8
|
Yamamoto Y, Yoshida H, Nagai T, Hara S. Preparation of Chiral Triacylglycerols, sn-POO and sn-OOP, via Lipase-mediated Acidolysis Reaction. J Oleo Sci 2018; 67:207-214. [DOI: 10.5650/jos.ess17149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yukihiro Yamamoto
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima
| | | | | | - Setsuko Hara
- Faculty of Science and Technology, Seikei University
| |
Collapse
|
9
|
Xie W, Yang X, Hu P. Cs2.5H0.5PW12O40 Encapsulated in Metal–Organic Framework UiO-66 as Heterogeneous Catalysts for Acidolysis of Soybean Oil. Catal Letters 2017. [DOI: 10.1007/s10562-017-2189-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
10
|
Madalozzo AD, Martini VP, Kuniyoshi KK, Souza EM, Pedrosa FDO, Zanin GM, Mitchell DA, Krieger N. Synthesis of flavor esters and structured lipids by a new immobilized lipase, LipC12, obtained from metagenomics. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2016. [DOI: 10.1016/j.bcab.2016.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Xie W, Zhang C. Propylsulfonic and arenesulfonic functionalized SBA-15 silica as an efficient and reusable catalyst for the acidolysis of soybean oil with medium-chain fatty acids. Food Chem 2016; 211:74-82. [PMID: 27283609 DOI: 10.1016/j.foodchem.2016.05.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 04/19/2016] [Accepted: 05/05/2016] [Indexed: 11/28/2022]
Abstract
The objective of this work was to develop a feasible ecofriendly process to produce medium-chain fatty acid (MCFA)-enriched structured lipids (SLs) in heterogeneous manners. For this purpose, the propyl-SO3H or arene-SO3H-modified SBA-15 materials were prepared through a surface functionalization of SBA-15 silica with propyl-SO3H and arene-SO3H groups. The organosulfonic acid-functionalized SBA-15 materials were characterized by Brönsted acidity determination, elemental analysis, XRD, C(13) MAS NMR, FT-IR, SEM, TG, TEM, and N2 adsorption-desorption techniques. Results showed that the propyl-SO3H and arene-SO3H groups were successfully tethered on the SBA-15 support, and the ordered mesoporous structure of SBA-15 silica was well retained after the organofunctionalization. This organic-inorganic hybrid material displayed high surface acidities and high activities in the acidolysis of soybean oil with caprylic or capric acid to produce SLs containing MCFAs. The influences of processing parameters on the reaction were investigated. The two studied catalysts showed an excellent recyclability for the reaction.
Collapse
Affiliation(s)
- Wenlei Xie
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Chi Zhang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| |
Collapse
|
12
|
Kim BH, Akoh CC. Recent Research Trends on the Enzymatic Synthesis of Structured Lipids. J Food Sci 2015; 80:C1713-24. [PMID: 26189491 DOI: 10.1111/1750-3841.12953] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/28/2015] [Indexed: 11/24/2022]
Abstract
Structured lipids (SLs) are lipids that have been chemically or enzymatically modified from their natural biosynthetic form. Because SLs are made to possess desired nutritional, physicochemical, or textural properties for various applications in the food industry, many research activities have been aimed at their commercialization. The production of SLs by enzymatic procedures has a great potential in the future market because of the specificity of lipases and phospholipases used as the biocatalysts. The aim of this review is to provide concise information on the recent research trends on the enzymatic synthesis of SLs of commercial interest, such as medium- and long-chain triacylglycerols, human milk fat substitutes, cocoa butter equivalents, trans-free or low-trans plastic fats (such as margarines and shortenings), low-calorie fats/oils, health-beneficial fatty acid-rich fats/oils, mono- or diacylglycerols, and structurally modified phospholipids. This limited review covers 108 research articles published between 2010 and 2014 which were searched in Web of Science.
Collapse
Affiliation(s)
- Byung Hee Kim
- Dept. of Food Science and Technology, Chung-Ang Univ, Anseong, 456-756, Republic of Korea
| | - Casimir C Akoh
- Dept. of Food Science and Technology, The Univ. of Georgia, Food Science Building, Athens, GA, 30602-2610, U.S.A
| |
Collapse
|
13
|
Bebarta B, M. J, Kotasthane P, Sunkireddy YR. Medium chain and behenic acid incorporated structured lipids from sal, mango and kokum fats by lipase acidolysis. Food Chem 2013; 136:889-94. [DOI: 10.1016/j.foodchem.2012.08.051] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 08/14/2012] [Accepted: 08/19/2012] [Indexed: 12/01/2022]
|