1
|
Cipolatti EP, de Andrade Souza LT, Moreno-Pérez S, Pinto MCC, Manoel EA, de Oliveira D, Pessela BC. Application of Goat and Lamb Lipases on the Development of New Immobilized Biocatalysts Aiming at Fish Oil Hydrolysis. Appl Biochem Biotechnol 2024; 196:8070-8081. [PMID: 38683451 DOI: 10.1007/s12010-024-04942-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 05/01/2024]
Abstract
The use of lipases from animal sources for the synthesis of new biocatalysts is barely studied in the literature. The present work focused on the immobilization of lipases from kid goat's and lamb's epiglottis in different ionic supports. For this, anionic supports (monoaminoethyl-N-aminoethyl-agarose (MANAE) and diethylaminoethyl-agarose (DEAE)) and cationic supports (carboxymethyl-agarose and sulfopropyl-agarose) were used. The immobilization parameters were evaluated, as well as the thermal stability of the immobilized enzymes and their stability at different values of pH. Then, the performance of the biocatalysts was evaluated in hydrolysis reactions for obtaining omega-3 fatty acids from fish oil (eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)). Values of 100% of recovered activity were obtained for lipase from goats, indicating that it was possible to maintain all the enzymatic activities of the immobilized enzymes on the supports. The immobilized enzymes were more stable in different pH conditions and at a temperature of 50 °C, reaching values of stabilization factor of 12.17 and t1/2 of 9.86 h-1, for lamb lipase immobilized in sulfopropyl agarose. In general, the anionic supports led to lower Km values and the cationic ones to a higher Vmax. Lamb lipase showed the highest selectivity values for EPA/DHA, reaching values of 6.43 using MANAE. Thus, the high potential for using such biocatalysts from animal sources in the food or pharmaceutical industries is observed.
Collapse
Affiliation(s)
- Eliane Pereira Cipolatti
- Departamento de Biotecnología y Microbiología de los Alimentos, Instituto de Investigación en Ciencias de La Alimentación, CIAL-CSIC, Calle Nicolás Cabrera 9, Campus UAM, Cantoblanco, 28049, Madrid, Spain.
- Departamento de Engenharia Química E de Alimentos, Universidade Federal de Santa Catarina (UFSC), P.O. Box 476, Florianópolis, SC, 88040-900, Brazil.
- Departamento de Engenharia Química, Instituto de Tecnologia, Universidade Federal Rural Do Rio de Janeiro (UFRRJ), BR-465, Km 7, Seropédica, Rio de Janeiro, RJ 23.897-000, Brazil.
| | - Lívia Tereza de Andrade Souza
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Pampulha, Box 486, 31270-901, Belo Horizonte, Brazil
| | - Sonia Moreno-Pérez
- Departamento de Biotecnología y Microbiología de los Alimentos, Instituto de Investigación en Ciencias de La Alimentación, CIAL-CSIC, Calle Nicolás Cabrera 9, Campus UAM, Cantoblanco, 28049, Madrid, Spain
| | - Martina C C Pinto
- Programa de Engenharia Química, COPPE, Universidade Do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Evelin Andrade Manoel
- Departamento de Biotecnologia Farmacêutica, Centro de Ciências da Saúde, Universidade Federal Do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, 373, Rio de Janeiro, RJ 21941-590, Brazil
| | - Débora de Oliveira
- Departamento de Engenharia Química E de Alimentos, Universidade Federal de Santa Catarina (UFSC), P.O. Box 476, Florianópolis, SC, 88040-900, Brazil
| | - Benevides Costa Pessela
- Departamento de Biotecnología y Microbiología de los Alimentos, Instituto de Investigación en Ciencias de La Alimentación, CIAL-CSIC, Calle Nicolás Cabrera 9, Campus UAM, Cantoblanco, 28049, Madrid, Spain
- Departamento de Engenharia E Tecnologias, Instituto Superior Politecnico E de Ciencias, ISPTEC, Av. Luanda Sul, Rua Lateral Via S10, Talatona-Luanda, Angola
| |
Collapse
|
2
|
Lu T, Qian Y, Zhu Y, Ju X, Dai W, Xu Q, Yang Q, Li S, Yuan B, Huang J. Efficient Expression and Application of a Modified Rhizomucor miehei Lipase for Simultaneous Production of Biodiesel and Eicosapentaenoic Acid Ethyl Ester from Nannochloropsis Oil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39028993 DOI: 10.1021/acs.jafc.4c02360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Few reports exist on one-step enzymatic methods for the simultaneous production of biodiesel and eicosapentaenoic acid ethyl ester (EPA-EE), a high-value pharmaceutical compound. This study aimed to efficiently express Rhizomucor miehei lipase (pRML) in Pichia pastoris X-33 via propeptide mutation and high-copy strain screening. The mutated enzyme was then used to simultaneously catalyze the production of both biodiesel and EPA-EE. The P46N mutation in the propeptide (P46N-pRML) significantly boosted its production, with the four-copy strain increasing enzyme yield by 3.7-fold, reaching 3425 U/mL. Meanwhile, its optimal temperature increased to 45-50 °C, pH expanded to 7.0-8.0, specific activity doubled, Km reduced to one-third, and kcat/Km increased 7-fold. Notably, P46N-pRML efficiently converts Nannochloropsis gaditana oil's eicosapentaenoic acid (EPA). Under optimal conditions, it achieves up to 93% biodiesel and 92% EPA-EE yields in 9 h. Our study introduces a novel, efficient one-step green method to produce both biodiesel and EPA-EE using this advanced enzyme.
Collapse
Affiliation(s)
- Tong Lu
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Yifan Qian
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - YuQing Zhu
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Xiuyun Ju
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Weiwei Dai
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Quanbin Xu
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Qianqian Yang
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Shuting Li
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Bo Yuan
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Jinjin Huang
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| |
Collapse
|
3
|
Enespa, Chandra P, Singh DP. Sources, purification, immobilization and industrial applications of microbial lipases: An overview. Crit Rev Food Sci Nutr 2022; 63:6653-6686. [PMID: 35179093 DOI: 10.1080/10408398.2022.2038076] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Microbial lipase is looking for better attention with the fast growth of enzyme proficiency and other benefits like easy, cost-effective, and reliable manufacturing. Immobilized enzymes can be used repetitively and are incapable to catalyze the reactions in the system continuously. Hydrophobic supports are utilized to immobilize enzymes when the ionic strength is low. This approach allows for the immobilization, purification, stability, and hyperactivation of lipases in a single step. The diffusion of the substrate is more advantageous on hydrophobic supports than on hydrophilic supports in the carrier. These approaches are critical to the immobilization performance of the enzyme. For enzyme immobilization, synthesis provides a higher pH value as well as greater heat stability. Using a mixture of immobilization methods, the binding force between enzymes and the support rises, reducing enzyme leakage. Lipase adsorption produces interfacial activation when it is immobilized on hydrophobic support. As a result, in the immobilization process, this procedure is primarily used for a variety of industrial applications. Microbial sources, immobilization techniques, and industrial applications in the fields of food, flavor, detergent, paper and pulp, pharmaceuticals, biodiesel, derivatives of esters and amino groups, agrochemicals, biosensor applications, cosmetics, perfumery, and bioremediation are all discussed in this review.
Collapse
Affiliation(s)
- Enespa
- School for Agriculture, Sri Mahesh Prasad Post Graduate College, University of Lucknow, Lucknow, Uttar Pradesh, India
| | - Prem Chandra
- Food Microbiology & Toxicology Laboratory, Department of Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, Uttar Pradesh, India
| | - Devendra Pratap Singh
- Department of Environmental Science, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
4
|
Remonatto D, Oliveira JV, Guisan JM, Oliveira D, Ninow J, Fernandez-Lorente G. Immobilization of Eversa Lipases on Hydrophobic Supports for Ethanolysis of Sunflower Oil Solvent-Free. Appl Biochem Biotechnol 2022; 194:2151-2167. [PMID: 35050455 PMCID: PMC9068681 DOI: 10.1007/s12010-021-03774-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 11/02/2022]
Abstract
Lipases are an important group of biocatalysts for many industrial applications. Two new commercial low-cost lipases Eversa® Transform and Eversa® Transform 2.0 was immobilized on four different hydrophobic supports: Lewatit-DVB, Purolite-DVB, Sepabeads-C18, and Purolite-C18. The performance of immobilized lipases was investigated in the transesterification of sunflower oil solvent-free in an anhydrous medium. Interesting results were obtained for both lipases and the four supports, but with Sepabeads support the lipases Eversa showed high catalytic activity. However, the more stable and efficient derivative was Eversa® Transform immobilized on Sepabeads C-18. A 98 wt% of ethyl ester of fatty acid (FAEE) was obtained, in 3 h at 40ºC, ethanol/sunflower oil molar ratio of 3:1 and a 10 wt% of the immobilized biocatalyst. After 6 reaction cycles, the immobilized biocatalyst preserved 70 wt% of activity. Both lipases immobilized in Sepabeads C-18 were highly active and stable in the presence of ethanol. The immobilization of Eversa Transform and Eversa Transform 2.0 in hydrophobic supports described in this study appears to be a promising alternative to the immobilization and application of these news lipases still unexplored.
Collapse
Affiliation(s)
- Daniela Remonatto
- Department of Engineering of Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903, Araraquara, SP, Brazil
| | - J Vladimir Oliveira
- Department of Chemical and Food Engineering, UFSC, 88040-900, Florianópolis, SC, Brazil
| | - J Manuel Guisan
- Departamento de Biocatálisis, Instituto de Catálisis-CSIC, UAM, Cantoblanco, 28049, Madrid, Spain
| | - Débora Oliveira
- Department of Chemical and Food Engineering, UFSC, 88040-900, Florianópolis, SC, Brazil
| | - Jorge Ninow
- Department of Chemical and Food Engineering, UFSC, 88040-900, Florianópolis, SC, Brazil
| | - Gloria Fernandez-Lorente
- Departamento de Biotecnología y Microbiología de los Alimentos, Instituto de Alimentación, CIAL (CSIC-UAM), Madrid, Spain.
| |
Collapse
|
5
|
Stabilization and operational selectivity alteration of Lipozyme 435 by its coating with polyethyleneimine: Comparison of the biocatalyst performance in the synthesis of xylose fatty esters. Int J Biol Macromol 2021; 192:665-674. [PMID: 34656534 DOI: 10.1016/j.ijbiomac.2021.10.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/09/2021] [Accepted: 10/08/2021] [Indexed: 01/13/2023]
Abstract
Differently modified Lipozyme 435 (L435) (immobilized lipase B from Candida antarctica) preparations were used as biocatalysts in the esterification reaction to synthesize sugar fatty acid esters (SFAEs) from xylose (acyl acceptor) and lauric/palmitic acids (acyl donors) in methyl ethyl ketone (MEK) solvent. The L435 treatment with polyethyleneimine (PEI) (2; 25; and 750 KDa) prevented the enzyme leakage in the crude sugar ester reaction product. The 2 KDa PEI coating of this enzyme preparation produced the highest enzyme stability in MEK, buffer solutions (pHs 5 and 7), and methanol aqueous phosphate buffer at pH 7. Using an excess of the acyl donor (1:5 xylose: fatty acid molar ratio), high xylose conversions (70-84%) were obtained after 24 h-reaction using both, non-modified and PEI (2 KDa) coated L435, but the PEI treated biocatalyst afforded a higher xylose modification degree. After 5 reuse cycles with the L435 coated with PEI 2 KDa, the xylose conversions only decreased 10%, while with the non-treated biocatalyst they decreased by 37%. The formation of SFAEs was confirmed by mass spectrometry, which showed the presence of xylose mono-, di-, and triesters. They exhibited emulsion capacities close to that of a commercial sucrose monolaurate.
Collapse
|
6
|
Strategies for the Immobilization of Eversa® Transform 2.0 Lipase and Application for Phospholipid Synthesis. Catalysts 2021. [DOI: 10.3390/catal11101236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Eversa® Transform 2.0 lipase (ET2) is a recent lipase formulation derived from the Thermomyces lanuginosus lipase cultivated on Aspergillus oryzae and specially designed for biodiesel production. Since it has not been available for a long time, research on the efficiency of this enzyme in other applications remains unexplored. Moreover, even though it has been launched as a free enzyme, its immobilization may extend the scope of ET2 applications. This work explored ET2 immobilization on octadecyl methacrylate beads (IB-ADS-3) and proved the efficiency of the derivatives for esterification of glycerophosphocholine (GPC) with oleic acid in anhydrous systems. ET2 immobilized via interfacial activation on commercial hydrophobic support Immobead IB-ADS-3 showed maximum enzyme loading of 160 mg/g (enzyme/support) and great stability for GPC esterification under 30% butanone and solvent-free systems. For reusability, yields above 63% were achieved after six reaction cycles for GPC esterification. Considering the very high enzyme loading and the number of reuses achieved, these results suggest a potential application of this immobilized biocatalyst for esterification reactions in anhydrous media. This study is expected to encourage the exploration of other approaches for this enzyme, thereby opening up several new possibilities.
Collapse
|
7
|
Sun Z, Wang Z, Zhang L, Wang Y, Xue C. Enrichment of Alkylglycerols and Docosahexaenoic Acid via Enzymatic Ethanolysis of Shark Liver Oil and Short-path Distillation. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2021. [DOI: 10.1080/10498850.2021.1894288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Zhaomin Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China
- Research and Development Center, Weihai Boow Foods Co., Ltd, Weihai, Shandong Province, China
| | - Zhaoqi Wang
- Food Department, Qingdao Institute for Food and Drug Control, Qingdao, Shandong Province, China
| | - Lingyu Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China
| | - Yuming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China
| |
Collapse
|
8
|
Production of new nanobiocatalysts via immobilization of lipase B from C. antarctica on polyurethane nanosupports for application on food and pharmaceutical industries. Int J Biol Macromol 2020; 165:2957-2963. [DOI: 10.1016/j.ijbiomac.2020.10.179] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/04/2020] [Accepted: 10/22/2020] [Indexed: 12/18/2022]
|
9
|
Borges JP, Quilles Junior JC, Ohe THK, Ferrarezi AL, Nunes CDCC, Boscolo M, Gomes E, Bocchini DA, da Silva R. Free and Substrate-Immobilised Lipases from Fusarium verticillioides P24 as a Biocatalyst for Hydrolysis and Transesterification Reactions. Appl Biochem Biotechnol 2020; 193:33-51. [PMID: 32808248 DOI: 10.1007/s12010-020-03411-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/12/2020] [Indexed: 11/26/2022]
Abstract
Fungal enzymes are widely used in technological processes and have some interesting features to be applied in a variety of biosynthetic courses. Here, free and substrate-immobilised lipases from Fusarium verticillioides P24 were obtained by solid-state fermentation using wheat bran as substrate and fungal carrier. Based on their hydrolytic and transesterification activities, the lipases were characterised as pH-dependent in both reactions, with higher substrate conversion in an alkaline environment. Thermally, the lipases performed well from 30 to 45 °C, being more stable in mild conditions. Organic solvents significantly influenced the lipase selectivity using different vegetable oils as fatty acid source. Omega(ω)-3 production in n-hexane achieved 45% using canola oil, against ≈ 18% in cyclohexane. However, ω-6 production was preferably produced for both solvents using linseed oil with significant alterations in the yield (≈ 79% and 49% for n-hexane and cyclohexane, respectively). Moreover, the greatest enzyme selectivity for ω-6 led us to suppose a lipase preference for the Sn1 position of the triacylglycerol. Lastly, a transesterification reaction was performed, achieving 90% of ester conversion in 72 h. This study reports the characterisation and use of free and substrate-immobilised lipases from Fusarium verticillioides P24 as an economic and efficient method for the first time.
Collapse
Affiliation(s)
- Janaina Pires Borges
- Departament of Biochemistry and Chemical Technology, IQ/UNESP, Rua Prof. Francisco Degni, 55, CEP, Araraquara, SP, 14800-060, Brazil
| | - José Carlos Quilles Junior
- Department of Chemistry and Environmental Sciences, IBILCE/UNESP, Rua Cristóvão Colombo, 2265, CEP, São José do Rio Preto, SP, 15054-000, Brazil
| | - Thiago Hideyuki Kobe Ohe
- Department of Chemistry and Environmental Sciences, IBILCE/UNESP, Rua Cristóvão Colombo, 2265, CEP, São José do Rio Preto, SP, 15054-000, Brazil
| | - Ana Lucia Ferrarezi
- Department of Biology, IBILCE/UNESP, Rua Cristóvão Colombo, 2265, CEP, São José do Rio Preto, SP, 15054-000, Brazil
| | | | - Mauricio Boscolo
- Department of Chemistry and Environmental Sciences, IBILCE/UNESP, Rua Cristóvão Colombo, 2265, CEP, São José do Rio Preto, SP, 15054-000, Brazil
| | - Eleni Gomes
- Department of Biology, IBILCE/UNESP, Rua Cristóvão Colombo, 2265, CEP, São José do Rio Preto, SP, 15054-000, Brazil
| | - Daniela Alonso Bocchini
- Departament of Biochemistry and Chemical Technology, IQ/UNESP, Rua Prof. Francisco Degni, 55, CEP, Araraquara, SP, 14800-060, Brazil
| | - Roberto da Silva
- Department of Chemistry and Environmental Sciences, IBILCE/UNESP, Rua Cristóvão Colombo, 2265, CEP, São José do Rio Preto, SP, 15054-000, Brazil.
| |
Collapse
|
10
|
Borges JP, Quilles Junior JC, Moreno-Perez S, Fernandez-Lorente G, Boscolo M, Gomes E, da Silva R, Bocchini DA, Guisan JM. Ethyl esters production catalyzed by immobilized lipases is influenced by n-hexane and ter-amyl alcohol as organic solvents. Bioprocess Biosyst Eng 2020; 43:2107-2115. [PMID: 32594315 DOI: 10.1007/s00449-020-02399-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/23/2020] [Indexed: 12/15/2022]
Abstract
Lipase stability in organic solvent is crucial for its application in many biotechnological processes as biocatalyst. One way to improve lipase's activity and stability in unusual reaction medium is its immobilization on inert supports. Here, lipases from different sources and immobilized through weak chemical interactions on hydrophobic and ionic supports had their transesterification ability dramatically dependent on the support and also on the solvent that had been used. The ethanolysis of sardine oil was carried out at the presence of cyclohexane and tert-amyl alcohol, in which Duolite A568-Thermomyces lanuginosa lipase derivative achieved 49% of ethyl esters production after 24 h in cyclohexane. The selectivity of immobilized lipases was also studied and, after 3 h of synthesis, the reaction with Duolite A568-Thermomyces lanuginosa derivative in cyclohexane produced 24% ethyl ester of eicosapentaenoic acid and 1.2% ethyl ester of docosahexaenoic acid, displaying a selectivity index of 20 times the ethyl ester of eicosapentaenoic acid. Different derivatives of Candida antarctica lipases fraction B (CALB) and phospholipase Lecitase® Ultra (Lecitase) were also investigated. Along these lines, a combination between these factors may be applied to improve the activity and selectivity of immobilized lipases, decreasing the total cost of the process.
Collapse
Affiliation(s)
- Janaina Pires Borges
- Department of Biochemistry and Chemical Technology, IQ/UNESP - Rua Prof. Francisco Degni, 55 - CEP, Araraquara - SP, 14800-060, Brazil
| | - José Carlos Quilles Junior
- Department of Chemistry and Environmental Sciences, IBILCE/UNESP - Rua Cristóvão Colombo, 2265 - CEP, São José Do Rio Preto - SP, 15054-000, Brazil.
| | - Sônia Moreno-Perez
- Department of Biotechnology and Food Microbiology, Research Institute for Food Science, CIAL, CSIC/Campus UAM, 28049, Madrid, Spain
| | - Glória Fernandez-Lorente
- Department of Biology, IBILCE/UNESP - Rua Cristóvão Colombo, 2265 - CEP, São José Do Rio Preto - SP, 15054-000, Brazil
| | - Mauricio Boscolo
- Department of Chemistry and Environmental Sciences, IBILCE/UNESP - Rua Cristóvão Colombo, 2265 - CEP, São José Do Rio Preto - SP, 15054-000, Brazil
| | - Eleni Gomes
- Department of Biology, IBILCE/UNESP - Rua Cristóvão Colombo, 2265 - CEP, São José Do Rio Preto - SP, 15054-000, Brazil
| | - Roberto da Silva
- Department of Chemistry and Environmental Sciences, IBILCE/UNESP - Rua Cristóvão Colombo, 2265 - CEP, São José Do Rio Preto - SP, 15054-000, Brazil
| | - Daniela Alonso Bocchini
- Department of Biochemistry and Chemical Technology, IQ/UNESP - Rua Prof. Francisco Degni, 55 - CEP, Araraquara - SP, 14800-060, Brazil
| | | |
Collapse
|
11
|
Castejón N, Señoráns FJ. Enzymatic modification to produce health-promoting lipids from fish oil, algae and other new omega-3 sources: A review. N Biotechnol 2020; 57:45-54. [PMID: 32224214 DOI: 10.1016/j.nbt.2020.02.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/13/2020] [Accepted: 02/16/2020] [Indexed: 01/23/2023]
Abstract
Lipases are a versatile class of enzymes that have aroused great interest in the food and pharmaceutical industries due to their ability to modify and synthesize new lipids for functional foods. Omega-3 polyunsaturated fatty acids (omega-3 PUFAs), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have shown important biological functions promoting human health, especially in the development and maintenance of brain function and vision. Lipases allow selective production of functional lipids enriched in omega-3 PUFAs and are unique enzymatic tools to improve the natural composition of lipids and provide specific bioactivities. This review comprises recent research trends on the enzymatic production of bioactive, structured lipids with improved nutritional characteristics, using new enzymatic processing technologies in combination with novel raw materials, including microalgal lipids and new seed oils high in omega-3 fatty acids. An extensive number of lipase applications in the synthesis of health-promoting lipids enriched in omega-3 fatty acids by enzymatic modification is reviewed, considering the main advances in recent years for production of ethyl esters, 2-monoacylglycerols and structured triglycerides and phospholipids with omega-3 fatty acids, in order to achieve bioactive lipids as new foods and drugs.
Collapse
Affiliation(s)
- Natalia Castejón
- Healthy-Lipids Group, Sección Departamental de Ciencias de la Alimentación, Faculty of Sciences, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | - Francisco J Señoráns
- Healthy-Lipids Group, Sección Departamental de Ciencias de la Alimentación, Faculty of Sciences, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| |
Collapse
|
12
|
Abreu Silveira E, Moreno-Perez S, Basso A, Serban S, Pestana-Mamede R, Tardioli PW, Farinas CS, Castejon N, Fernandez-Lorente G, Rocha-Martin J, Guisan JM. Biocatalyst engineering of Thermomyces Lanuginosus lipase adsorbed on hydrophobic supports: Modulation of enzyme properties for ethanolysis of oil in solvent-free systems. J Biotechnol 2019; 289:126-134. [DOI: 10.1016/j.jbiotec.2018.11.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 11/14/2018] [Accepted: 11/19/2018] [Indexed: 01/08/2023]
|
13
|
Synthesis of omega-3 ethyl esters from chia oil catalyzed by polyethylene glycol-modified lipases with improved stability. Food Chem 2019; 271:433-439. [DOI: 10.1016/j.foodchem.2018.07.215] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/06/2018] [Accepted: 07/31/2018] [Indexed: 12/13/2022]
|
14
|
Effect of magnetic field on the Eversa® Transform 2.0 enzyme: Enzymatic activity and structural conformation. Int J Biol Macromol 2018; 122:653-658. [PMID: 30416097 DOI: 10.1016/j.ijbiomac.2018.10.171] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 11/22/2022]
Abstract
Alternatives to improve the stability and activity of enzymes have been rising in the last years due to the potential industrial application of these catalysts. However, the enzymes characteristics in terms of stability and catalytic efficiency can reduce, in some cases, due to the reaction conditions. Due to a lack in the literature concerning structural information related to the new commercial Eversa® Transform 2.0 enzyme (NS-40116) we investigated the conformational structure by spectroscopic and mass spectrometry techniques after exposure in permanent magnetic flux density (0.7 and 1.34 T) in recirculation mode (1, 2, and 4 h) at 0.06 L·min-1. The influence of pH on the enzymatic solution associated with the magnetic flux (pH 5, 7, and 9) was also evaluated. Under the best reaction condition (pH 7 after 4 h in a recirculation mode at 1.34 T), enzyme activity 77% higher than the control sample was obtained. Mass spectrometry techniques showed changes in the NS-40116 tertiary structure. Thus, the application of magnetic fields as an enzymatic pre-treatment showed to be a promising technique and a viable alternative to increase the enzymatic activity since it is a low cost, environmentally friendly, and ease operation process.
Collapse
|
15
|
Immobilization Effects on the Catalytic Properties of Two Fusarium Verticillioides Lipases: Stability, Hydrolysis, Transesterification and Enantioselectivity Improvement. Catalysts 2018. [DOI: 10.3390/catal8020084] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
16
|
Abreu Silveira E, Moreno-Perez S, Basso A, Serban S, Pestana Mamede R, Tardioli PW, Sanchez Farinas C, Rocha-Martin J, Fernandez-Lorente G, Guisan JM. Modulation of the regioselectivity of Thermomyces lanuginosus lipase via biocatalyst engineering for the Ethanolysis of oil in fully anhydrous medium. BMC Biotechnol 2017; 17:88. [PMID: 29246143 PMCID: PMC5732512 DOI: 10.1186/s12896-017-0407-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 12/06/2017] [Indexed: 11/23/2022] Open
Abstract
Background Enzymatic ethanolysis of oils (for example, high oleic sunflower oil containing 90% of oleic acid) may yield two different reaction products depending on the regioselectivity of the immobilized lipase biocatalyst. Some lipase biocatalysts exhibit a 1,3-regioselectivity and they produced 2 mols of fatty acid ethyl ester plus 1 mol of sn2-monoacylglycerol (2-MAG) per mol of triglyceride without the release of glycerol. Other lipase biocatalysts are completely non-regioselective releasing 3 mols of fatty acid ethyl ester and 1 mol of glycerol per mol of triglyceride. Lipase from Thermomyces lanuginosus (TLL) adsorbed on hydrophobic supports is a very interesting biocatalyst for the ethanolysis of oil. Modulation of TLL regioselectivity in anhydrous medium was intended via two strategies of TLL immobilization: a. - interfacial adsorption on different hydrophobic supports and b.- interfacial adsorption on a given hydrophobic support under different experimental conditions. Results Immobilization of TLL on supports containing divinylbenezene moieties yielded excellent 1,3-regioselective biocatalysts but immobilization of TLL on supports containing octadecyl groups yielded non-regioselective biocatalysts. On the other hand, TLL immobilized on Purolite C18 at pH 8.5 and 30 °C in the presence of traces of CTAB yielded a biocatalyst with a perfect 1,3-regioselectivity and a very interesting activity: 2.5 μmols of oil ethanolyzed per min per gram of immobilized derivative. This activity is 10-fold higher than the one of commercial Lipozyme TL IM. Immobilization of the same enzyme on the same support, but at pH 7.0 and 25 °C, led to a biocatalyst which can hydrolyze all ester bonds in TG backbone. Conclusions Activity and regioselectivity of TLL in anhydrous media can be easily modulated via Biocatalysis Engineering producing very active immobilized derivatives able to catalyze the ethanolysis of triolein. When the biocatalyst was 1,3-regioselective a 33% of 2-monoolein was obtained and it may be a very interesting surfactant. When biocatalyst catalyzed the ethanolysis of the 3 positions during the reaction process, a 99% of ethyl oleate was obtained and it may be a very interesting drug-solvent and surfactant. The absence of acyl migrations under identical reaction conditions is clearly observed and hence the different activities and regioselectivities seem to be due to the different catalytic properties of different derivatives of TLL.
Collapse
Affiliation(s)
- Erick Abreu Silveira
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC. Campus UAM, Cantoblanco, 28049, Madrid, Spain.,Federal University of Sao Carlos, Sao Carlos, SP, Brazil
| | - Sonia Moreno-Perez
- Pharmacy and Biotechnology Department, School of Biomedical Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - Alessandra Basso
- Purolite, Unit D, Llantrisant Business Park, Llantrisant, CF72 8LF, UK
| | - Simona Serban
- Purolite, Unit D, Llantrisant Business Park, Llantrisant, CF72 8LF, UK
| | - Rita Pestana Mamede
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC. Campus UAM, Cantoblanco, 28049, Madrid, Spain
| | | | | | - Javier Rocha-Martin
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC. Campus UAM, Cantoblanco, 28049, Madrid, Spain
| | - Gloria Fernandez-Lorente
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC. Campus UAM, Cantoblanco, 28049, Madrid, Spain
| | - Jose M Guisan
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC. Campus UAM, Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
17
|
Souza LTDA, Moreno-Perez S, Fernández Lorente G, Cipolatti EP, de Oliveira D, Resende RR, Pessela BC. Immobilization of Moniliella spathulata R25L270 Lipase on Ionic, Hydrophobic and Covalent Supports: Functional Properties and Hydrolysis of Sardine Oil. Molecules 2017; 22:molecules22101508. [PMID: 28946698 PMCID: PMC6151709 DOI: 10.3390/molecules22101508] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 08/27/2017] [Accepted: 09/04/2017] [Indexed: 11/18/2022] Open
Abstract
The oleaginous yeast Moniliella spathulata R25L270 was the first yeast able to grow and produce extracellular lipase using Macaúba (Acrocomia aculeate) cake as substrate. The novel lipase was recently identified, and presented promising features for biotechnological applications. The M. spathulata R25L270 lipase efficiently hydrolyzed vegetable and animal oils, and showed selectivity for generating cis-5,8,11,15,17-eicosapentaenoic acid from sardine oil. The enzyme can act in a wide range of temperatures (25–48 °C) and pH (6.5–8.4). The present study deals with the immobilization of M. spathulata R25L270 lipase on hydrophobic, covalent and ionic supports to select the most active biocatalyst capable to obtain omega-3 fatty acids (PUFA) from sardine oil. Nine immobilized agarose derivatives were prepared and biochemically characterized for thermostability, pH stability and catalytic properties (KM and Vmax). Ionic supports improved the enzyme–substrate affinity; however, it was not an effective strategy to increase the M. spathulata R25L270 lipase stability against pH and temperature. Covalent support resulted in a biocatalyst with decreased activity, but high thermostability. The enzyme was most stabilized when immobilized on hydrophobic supports, especially Octyl-Sepharose. Compared with the free enzyme, the half-life of the Octyl-Sepharose derivative at 60 °C increased 10-fold, and lipase stability under acidic conditions was achieved. The Octyl-Sepharose derivative was selected to obtain omega-3 fatty acids from sardine oil, and the maximal enzyme selectivity was achieved at pH 5.0.
Collapse
Affiliation(s)
- Lívia T de A Souza
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Caixa Postal 486, Belo Horizonte MG 31270-901, Brazil.
| | - Sonia Moreno-Perez
- Pharmacy and Biotechnology Department, School of Biomedical Sciences, Universidad Europea, Villaviciosa de Odón, 28670 Madrid, Spain.
| | - Gloria Fernández Lorente
- Departamento de Biotecnología y Microbiología de Alimentos, Instituto de Investigación en Ciencias de la Alimentación CIAL (CSIC-UAM), Campus de la Universidad Autónoma de Madrid, Nicolás Cabrera 9, 28049 Madrid, Spain.
| | - Eliane P Cipolatti
- Departamento de Engenharia Química e Engenharia de Alimentos, Universidade Federal de Santa Catarina (UFSC), P.O. Box 476, Florianópolis SC 88040-900, Brazil.
| | - Débora de Oliveira
- Departamento de Engenharia Química e Engenharia de Alimentos, Universidade Federal de Santa Catarina (UFSC), P.O. Box 476, Florianópolis SC 88040-900, Brazil.
| | - Rodrigo R Resende
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Caixa Postal 486, Belo Horizonte MG 31270-901, Brazil.
- Instituto Nanocell, Divinópolis MG 35500-041, Brazil.
| | - Benevides C Pessela
- Departamento de Biotecnología y Microbiología de Alimentos, Instituto de Investigación en Ciencias de la Alimentación CIAL (CSIC-UAM), Campus de la Universidad Autónoma de Madrid, Nicolás Cabrera 9, 28049 Madrid, Spain.
- Departamento de Engenharia e Tecnologías, Instituto Superior Politécnico de Tecnologías e Ciências (ISPTEC) Av. Luanda Sul, Rua Lateral Via S10, P.O. Box 1316, Talatona-Luanda Sul, Angola.
| |
Collapse
|
18
|
Orrego AH, Trobo-Maseda L, Rocha-Martin J, Guisan JM. Immobilization-stabilization of a complex multimeric sucrose synthase from Nitrosomonas europaea. Synthesis of UDP-glucose. Enzyme Microb Technol 2017; 105:51-58. [PMID: 28756861 DOI: 10.1016/j.enzmictec.2017.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/17/2017] [Accepted: 06/11/2017] [Indexed: 11/25/2022]
Abstract
Sucrose synthases (SuSys) can be used to synthesize cost-effective uridine 5'-diphosphate glucose (UDP-glc) or can be coupled to glycosyltransferases (GTs) for the continuous recycling of UDP-glc. In this study, we present the first report of the immobilization-stabilization of a SuSy by multipoint covalent attachment. This stabilization strategy is very complex for multimeric enzymes because a very intense multipoint attachment can promote a dramatic loss of activity and/or stability. The homotetrameric SuSy from Nitrosomonas europaea (SuSyNe) was immobilized on a glyoxyl agarose support through two different orientations. The first occurred at pH 8.5 through the surface area containing the greatest number of amino termini from several enzyme subunits. The second orientation occurred at pH 10 through the region of the whole enzyme containing the highest number of Lys residues. The multipoint covalent immobilization of SuSy on glyoxyl agarose at pH 10 provided a very significant stabilization factor under reaction conditions (almost 1000-fold more stable than soluble enzyme). Unfortunately, this important enzyme rigidification led to a dramatic loss of catalytic activity. A less stabilized conjugate, which was 65-fold more stable than the soluble form, preserved 64% of its initial catalytic activity. This derivative could be used for 3 reaction cycles and yielded approximately 210mM of UDP-glc per cycle. This optimal biocatalyst was modified with a polycationic polymer, polyethyleneimine (PEI), increasing its stability in the presence of the organic co-solvents necessary to glycosylate apolar antioxidants by GTs coupled to SuSy.
Collapse
Affiliation(s)
- Alejandro H Orrego
- Departament of Biocatalysis. Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain
| | - Lara Trobo-Maseda
- Departament of Biocatalysis. Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain
| | - Javier Rocha-Martin
- Departament of Biocatalysis. Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain..
| | - Jose M Guisan
- Departament of Biocatalysis. Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain..
| |
Collapse
|
19
|
Moreno-Perez S, Luna P, Señorans J, Rocha-Martin J, Guisan JM, Fernandez-Lorente G. Enzymatic transesterification in a solvent-free system: synthesis of sn-2 docosahexaenoyl monoacylglycerol. BIOCATAL BIOTRANSFOR 2017. [DOI: 10.1080/10242422.2017.1319823] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Pilar Luna
- Departamento de Química Física Aplicada, Universidad Autónoma, Madrid, UK
| | - Javier Señorans
- Departamento de Química Física Aplicada, Universidad Autónoma, Madrid, UK
| | | | - Jose M. Guisan
- Instituto de Catálisis CSIC, Campus UAM-CSIC, Madrid, UK
| | - Gloria Fernandez-Lorente
- Instituto de Catálisis CSIC, Campus UAM-CSIC, Madrid, UK
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) CSIC-UAM, Madrid, UK
| |
Collapse
|
20
|
Turati DFM, Morais Júnior WG, Terrasan CRF, Moreno-Perez S, Pessela BC, Fernandez-Lorente G, Guisan JM, Carmona EC. Immobilization of Lipase from Penicillium sp. Section Gracilenta (CBMAI 1583) on Different Hydrophobic Supports: Modulation of Functional Properties. Molecules 2017; 22:molecules22020339. [PMID: 28241445 PMCID: PMC6155730 DOI: 10.3390/molecules22020339] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 02/14/2017] [Accepted: 02/14/2017] [Indexed: 11/25/2022] Open
Abstract
Lipases are promising enzymes that catalyze the hydrolysis of triacylglycerol ester bonds at the oil/water interface. Apart from allowing biocatalyst reuse, immobilization can also affect enzyme structure consequently influencing its activity, selectivity, and stability. The lipase from Penicillium sp. section Gracilenta (CBMAI 1583) was successfully immobilized on supports bearing butyl, phenyl, octyl, octadecyl, and divinylbenzyl hydrophobic moieties wherein lipases were adsorbed through the highly hydrophobic opened active site. The highest activity in aqueous medium was observed for the enzyme adsorbed on octyl support, with a 150% hyperactivation regarding the soluble enzyme activity, and the highest adsorption strength was verified with the most hydrophobic support (octadecyl Sepabeads), requiring 5% Triton X-100 to desorb the enzyme from the support. Most of the derivatives presented improved properties such as higher stability to pH, temperature, and organic solvents than the covalently immobilized CNBr derivative (prepared under very mild experimental conditions and thus a reference mimicking free-enzyme behavior). A 30.8- and 46.3-fold thermostabilization was achieved in aqueous medium, respectively, by the octyl Sepharose and Toyopearl butyl derivatives at 60 °C, in relation to the CNBr derivative. The octyl- and phenyl-agarose derivatives retained 50% activity after four and seven cycles of p-nitrophenyl palmitate hydrolysis, respectively. Different derivatives exhibited different properties regarding their properties for fish oil hydrolysis in aqueous medium and ethanolysis in anhydrous medium. The most active derivative in ethanolysis of fish oil was the enzyme adsorbed on a surface covered by divinylbenzyl moieties and it was 50-fold more active than the enzyme adsorbed on octadecyl support. Despite having identical mechanisms of immobilization, different hydrophobic supports seem to promote different shapes of the adsorbed open active site of the lipase and hence different functional properties.
Collapse
Affiliation(s)
- Daniela F M Turati
- Department of Biochemistry and Microbiology, Biosciences Institute, Universidade Estadual Paulista (UNESP), 13506-900 Rio Claro, SP, Brazil.
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, 28049 Madrid, Spain.
- Instituto de Catálisis y Petroleoquímica (ICP), CSIC-UAM, 28049 Madrid, Spain.
| | - Wilson G Morais Júnior
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, 28049 Madrid, Spain.
| | - César R F Terrasan
- Instituto de Catálisis y Petroleoquímica (ICP), CSIC-UAM, 28049 Madrid, Spain.
| | - Sonia Moreno-Perez
- Pharmacy and Biotechnology Department, School of Biomedical Sciences, Universidad Europea, 28670 Madrid, Spain.
| | - Benevides C Pessela
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, 28049 Madrid, Spain.
| | - Gloria Fernandez-Lorente
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, 28049 Madrid, Spain.
| | - Jose M Guisan
- Instituto de Catálisis y Petroleoquímica (ICP), CSIC-UAM, 28049 Madrid, Spain.
| | - Eleonora C Carmona
- Department of Biochemistry and Microbiology, Biosciences Institute, Universidade Estadual Paulista (UNESP), 13506-900 Rio Claro, SP, Brazil.
| |
Collapse
|
21
|
Fernandez-Lopez L, Virgen-OrtÍz JJ, Pedrero SG, Lopez-Carrobles N, Gorines BC, Otero C, Fernandez-Lafuente R. Optimization of the coating of octyl-CALB with ionic polymers to improve stability and decrease enzyme leakage. BIOCATAL BIOTRANSFOR 2017. [DOI: 10.1080/10242422.2016.1278212] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | - Jose J. Virgen-OrtÍz
- Catedrático CONACYT – Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD) – Centro de Innovación y Desarrollo Agroalimentario de Michoacán, A.C. (CIDAM), Morelia, Michoacán, Mexico
| | - Sara G. Pedrero
- Departamento de Biocatálisis, Instituto de Catálisis-CSIC, Madrid, Spain and
| | | | - Beatriz C. Gorines
- Departamento de Biocatálisis, Instituto de Catálisis-CSIC, Madrid, Spain and
| | - Cristina Otero
- Departamento de Biocatálisis, Instituto de Catálisis-CSIC, Madrid, Spain and
| | | |
Collapse
|
22
|
Moreno-Perez S, Turati DFM, Borges JP, Luna P, Señorans FJ, Guisan JM, Fernandez-Lorente G. Critical Role of Different Immobilized Biocatalysts of a Given Lipase in the Selective Ethanolysis of Sardine Oil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:117-122. [PMID: 27973785 DOI: 10.1021/acs.jafc.6b05243] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Different immobilized derivatives of two lipases were tested as catalysts of the synthesis of ethyl esters of omega-3 fatty acids during the ethanolysis of sardine oil in solvent-free systems at 25 °C. Lipases from Thermomyces lanuginosus (TLL) and Lecitase Ultra (a phospholipase with lipolytic activity) were studied. Lipases were adsorbed on hydrophobic Sepabeads C18 through the open active center and on an anion-exchanger Duolite with the active center exposed to the reaction medium. TLL-Sepabeads derivatives exhibit a high activity of 9 UI/mg of immobilized enzyme, and they are 20-fold more active than TLL-Duolite derivatives and almost 1000-fold more active than Lipozyme TL IM (the commercial derivative from Novozymes). Lecitase-Sepabeads exhibit a high selectivity for the synthesis of the ethyl ester of EPA that is 43-fold faster than the synthesis of the ethyl ester of DHA.
Collapse
Affiliation(s)
| | - Daniela Flavia Machado Turati
- Department of Biochemistry and Microbiology, Univ Estadual Paulista at Rio Claro - 8 UNESP , Rio Claro, SP 13506-900, Brazil
| | - Janaina Pires Borges
- Departamento de Quı́mica e Tecnologia, Instituto de Química - UNESP , 14800-069, 10 Araraquara, SP, Brazil
| | - Pilar Luna
- Departamento de Quı́mica Fı́sica Aplicada, Universidad Autónoma , 28049 Madrid, Sapin
| | | | - Jose M Guisan
- Instituto de Catálisis, CSIC , Campus UAM-CSIC, 28049 Madrid, Spain
| | | |
Collapse
|
23
|
He Y, Li J, Kodali S, Chen B, Guo Z. The near-ideal catalytic property of Candida antarctica lipase A to highly concentrate n-3 polyunsaturated fatty acids in monoacylglycerols via one-step ethanolysis of triacylglycerols. BIORESOURCE TECHNOLOGY 2016; 219:466-478. [PMID: 27521783 DOI: 10.1016/j.biortech.2016.08.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/01/2016] [Accepted: 08/03/2016] [Indexed: 06/06/2023]
Abstract
Declining quantity/quality of available n-3 polyunsaturated fatty acids (n-3 PUFAs) resources demand innovative technology to concentrate n-3 PUFAs from low quality oils into value-added products/health-beneficial ingredients rich in n-3 PUFAs. This work proposed the catalytic property and specificity of an ideal enzyme required to tackle this task and identified Candida antarctica lipase A (CAL-A) is such a near-ideal enzyme in practice, which concentrates n-3 PUFAs from 25% to 27% in oils to a theoretically closer value 90% in monoacylglycerols (MAGs) via one-step enzymatic ethanolysis. Non-regiospecificity and high non-n-3 PUFAs preference of CAL-A are the catalytic feature to selectively cleave non-n-3 PUFAs in all 3 positions of triacylglycerols (TAGs); while high ethanol/TAGs ratio, low operation temperature and high tolerance to polar ethanol are essential conditions beyond biocatalyst itself. C-13 Nuclear magnetic resonance ((13)C NMR) analysis and competitive factor estimation verified the hypothesis and confirmed the plausible suggestion of catalytic mechanism of CAL-A.
Collapse
Affiliation(s)
- Yongjin He
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; Department of Engineering, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | - Jingbo Li
- Department of Engineering, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | - Sitharam Kodali
- Department of Engineering, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | - Bilian Chen
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology of Ministry of Education, Fujian Normal University, Fuzhou 350117, China.
| | - Zheng Guo
- Department of Engineering, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| |
Collapse
|
24
|
Immobilization of Candida antarctica lipase B onto Purolite® MN102 and its application in solvent-free and organic media esterification. Bioprocess Biosyst Eng 2016; 40:23-34. [DOI: 10.1007/s00449-016-1671-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/10/2016] [Indexed: 10/21/2022]
|
25
|
Cipolatti EP, Valério A, Ninow JL, de Oliveira D, Pessela BC. Stabilization of lipase from Thermomyces lanuginosus by crosslinking in PEGylated polyurethane particles by polymerization: Application on fish oil ethanolysis. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
Kim SJ, Kim HK. Production of Omega-3 Fatty Acid Ethyl Esters from Menhaden Oil Using Proteus vulgaris Lipase-Mediated One-Step Transesterification and Urea Complexation. Appl Biochem Biotechnol 2016; 179:347-60. [DOI: 10.1007/s12010-016-1998-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/22/2016] [Indexed: 11/30/2022]
|
27
|
Cipolatti EP, Moreno-Pérez S, Souza LTDA, Valério A, Guisán JM, Araújo PH, Sayer C, Ninow JL, Oliveira DD, Pessela BC. Synthesis and modification of polyurethane for immobilization of Thermomyces lanuginosus (TLL) lipase for ethanolysis of fish oil in solvent free system. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.09.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Khasanov KT, Davranov K, Rakhimov MM. State of fungal lipases of Rhizopus microsporus, Penicillium sp. and Oospora lactis in border layers water—solid phase and factors affecting catalytic properties of Enzymes. APPL BIOCHEM MICRO+ 2015. [DOI: 10.1134/s0003683815050129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|