1
|
Koch E, Bagci M, Kuhn M, Hartung NM, Mainka M, Rund KM, Schebb NH. GC-MS analysis of oxysterols and their formation in cultivated liver cells (HepG2). Lipids 2023; 58:41-56. [PMID: 36195466 DOI: 10.1002/lipd.12360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/09/2022] [Accepted: 09/09/2022] [Indexed: 02/04/2023]
Abstract
Oxysterols play a key role in many (patho)physiological processes and they are potential biomarkers for oxidative stress in several diseases. Here we developed a rapid gas chromatographic-mass spectrometry-based method for the separation and quantification of 11 biologically relevant oxysterols bearing hydroxy, epoxy, and dihydroxy groups. Efficient chromatographic separation (resolution ≥ 1.9) was achieved using a medium polarity 35%-diphenyl/65%-dimethyl polysiloxane stationary phase material (30 m × 0.25 mm inner diameter and 0.25 μm film thickness). Based on thorough analysis of the fragmentation during electron ionization we developed a strategy to deduce structural information of the oxysterols. Optimized sample preparation includes (i) extraction with a mixture of n-hexane/iso-propanol, (ii) removal of cholesterol by solid phase extraction with unmodified silica, and (iii) trimethylsilylation. The method was successfully applied on the analysis of brain samples, showing consistent results with previous studies and a good intra- and interday precision of ≤20%. Finally, we used the method for the investigation of oxysterol formation during oxidative stress in HepG2 cells. Incubation with tert-butyl hydroperoxide led to a massive increase in free radical formed oxysterols (7-keto-chol > 7β-OH-chol >> 7α-OH-chol), while 24 h incubation with the glutathione peroxidase 4 inhibitor RSL3 showed no increase in oxidative stress based on the oxysterol pattern. Overall, the new method described here enables the robust analysis of a biologically meaningful pattern of oxysterols with high sensitivity and precision allowing us to gain new insights in the biological formation and role of oxysterols.
Collapse
Affiliation(s)
- Elisabeth Koch
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Mustafa Bagci
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Michael Kuhn
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Nicole M Hartung
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Malwina Mainka
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Katharina M Rund
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Nils Helge Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| |
Collapse
|
2
|
Blache D, Gautier T, Tietge UJF, Lagrost L. Activated platelets contribute to oxidized low‐density lipoproteins and dysfunctional high‐density lipoproteins through a phospholipase A2‐dependent mechanism. FASEB J 2011; 26:927-37. [DOI: 10.1096/fj.11-191593] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Denis Blache
- Institut National de la Santé et de la Recherche Médicale (INSERM)/Université de Bourgogne, Lipids, Nutrition, Cancer, Faculté de Médecine Dijon France
| | - Thomas Gautier
- Institut National de la Santé et de la Recherche Médicale (INSERM)/Université de Bourgogne, Lipids, Nutrition, Cancer, Faculté de Médecine Dijon France
| | - Uwe J. F. Tietge
- Department of Pediatrics, Center for Liver, Digestive, and Metabolic DiseaseUniversity Medical Center Groningen, University of Groningen Groningen The Netherlands
| | - Laurent Lagrost
- Institut National de la Santé et de la Recherche Médicale (INSERM)/Université de Bourgogne, Lipids, Nutrition, Cancer, Faculté de Médecine Dijon France
| |
Collapse
|
3
|
Gas chromatography–mass spectrometry determination of conjugated linoleic acids and cholesterol oxides and their stability in a model system. Anal Biochem 2010; 400:130-8. [PMID: 20117071 DOI: 10.1016/j.ab.2010.01.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 01/18/2010] [Accepted: 01/25/2010] [Indexed: 12/13/2022]
|
4
|
Bourdon E, Loreau N, Lagrost L, Davignon J, Bernier L, Blache D. Differential effects of oxidized LDL on apolipoprotein AI and B synthesis in HepG2 cells. Free Radic Biol Med 2006; 41:786-96. [PMID: 16895799 DOI: 10.1016/j.freeradbiomed.2006.05.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Revised: 05/05/2006] [Accepted: 05/23/2006] [Indexed: 11/26/2022]
Abstract
Oxidized low-density lipoproteins (Ox-LDL) are key elements in atherogenesis. Apolipoprotein AI (apoAI) is an active component of the antiatherogenic high-density lipoproteins (HDL). In contrast, plasma apolipoprotein B (apoB), the main component of LDL, is highly correlated with coronary risk. Our results, obtained in HepG2 cells, show that Ox-LDL, unlike native LDL, leads to opposite effects on apoB and apoAI, namely a decrease in apoAI and an increase in apoB secretion as evaluated by [(3)H]leucine incorporation and specific immunoprecipitation. Parallel pulse-chase studies show that Ox-LDL impaired apoB degradation, whereas apoAI degradation was increased and mRNA levels were decreased. We also found that enhanced lipid biosynthesis of both triglycerides and cholesterol esters was involved in the Ox-LDL-induced increase in apoB secretion. Our data suggest that the increase in apoB and decrease in apoAI secretion may in part contribute to the known atherogenicity of Ox-LDL through an elevated LDL/HDL ratio, a strong predictor of coronary risk in patients.
Collapse
Affiliation(s)
- Emmanuel Bourdon
- INSERM U498, Dijon, France;-Faculté de Médecine, Université de Bourgogne, 21079 Dijon, France
| | | | | | | | | | | |
Collapse
|
5
|
Blache D, Devaux S, Joubert O, Loreau N, Schneider M, Durand P, Prost M, Gaume V, Adrian M, Laurant P, Berthelot A. Long-term moderate magnesium-deficient diet shows relationships between blood pressure, inflammation and oxidant stress defense in aging rats. Free Radic Biol Med 2006; 41:277-84. [PMID: 16814108 DOI: 10.1016/j.freeradbiomed.2006.04.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Revised: 03/23/2006] [Accepted: 04/06/2006] [Indexed: 02/05/2023]
Abstract
Epidemiological and experimental studies have indicated a relationship among aging, dietary Mg, inflammatory stress, and cardiovascular disease. Our aim in the present study was to investigate possible links between dietary Mg, oxidant stress parameters, and inflammatory status with aging in rats. We designed a long-term study in which rats were fed for 22 months with moderately deficient (150 mg/kg), standard (800 mg/kg), or supplemented (3200 mg/kg) Mg diets. Comparisons were made with young rats fed with the same diets for 1 month. Compared to the standard and supplemented diets, the Mg-deficient diet significantly increased blood pressure, plasma interleukin-6, fibrinogen, and erythrocyte lysophosphatidylcholine, particularly in aging rats, it decreased plasma albumin. The impairment of redox status was indicated by increases in plasma thiobarbituric acid reactive substances and oxysterols and an increased blood susceptibility to in vitro free-radical-induced hemolysis. We concluded that Mg deficiency induced a chronic impairment of redox status associated with inflammation which could significantly contribute to increased oxidized lipids and promote hypertension and vascular disorders with aging. Extrapolating to the human situation and given that Mg deficiency has been reported to be surprisingly common, particularly in the elderly, Mg supplementation might be useful as an adjuvant therapy in preventing cardiovascular disease.
Collapse
Affiliation(s)
- Denis Blache
- INSERM U 498, Biochimie des Lipoprotéines, Dijon, F-21079, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Shan H, Pang J, Li S, Chiang TB, Wilson WK, Schroepfer GJ. Chromatographic behavior of oxygenated derivatives of cholesterol. Steroids 2003; 68:221-33. [PMID: 12628685 DOI: 10.1016/s0039-128x(02)00185-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Oxygenated derivatives of cholesterol have important functions in many biochemical processes. These oxysterols are difficult to study because of their low physiological concentrations, the facile formation of cholesterol autoxidation artifacts, and lack of information on their chromatographic behavior. Focusing on metabolites and autoxidation products of cholesterol, we have documented the chromatographic mobilities of 35 oxysterols under a variety of conditions: eight solvent systems for thin-layer chromatography on silica gel, several mobile phases for reversed-phase high-performance liquid chromatography (HPLC), and two types of stationary phase for capillary gas chromatography (GC) using trimethylsilyl derivatives. Notable differences in selectivity could be obtained by modifying the stationary or mobile phases. Separations of oxysterol pairs isomeric at side-chain carbons or C-7 were achieved on normal-phase, reversed-phase, chiral, or silver-ion HPLC columns. Chromatographic behavior is also described for side-chain hexadeuterated and heptafluorinated oxysterols, which are useful as standards in isotope dilution analyses and autoxidation studies, respectively. The overall results are relevant to many problems of oxysterol analysis, including the initial separation of oxysterols from cholesterol, determination of highly polar and nonpolar oxysterols, separation of isomeric pairs, selection of derivatization conditions for GC analysis, and quantitation of the extent of cholesterol autoxidation.
Collapse
Affiliation(s)
- Hui Shan
- Department of Biochemistry and Cell Biology, Rice University, MS 140, 6100 Main Street, Houston, TX 77005-1892, USA
| | | | | | | | | | | |
Collapse
|
7
|
Moldovan Z, Jover E, Bayona JM. Systematic characterisation of long-chain aliphatic esters of wool wax by gas chromatography-electron impact ionisation mass spectrometry. J Chromatogr A 2002; 952:193-204. [PMID: 12064531 DOI: 10.1016/s0021-9673(02)00073-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A detailed structural characterisation of the aliphatic high-molecular-mass esters extracted from raw wool based on high-temperature gas chromatography-electron impact ionisation mass spectrometry is described. The raw wool esters extracted are in the range of C37 to C54 (i.e., molecular mass 550-788). The selected ion chromatogram exhibited four isomers for the esters with an odd number of carbon atoms (i:a, i:n, a:n and n:n) and five for those with an even number of carbon atoms (i:i, a:a, i:n, a:n and n:n). Isomeric structural elucidation is discussed with respect to the long-chain fatty acid and long-chain fatty alcohol structures, on the basis of chromatographic retention behaviour and mass spectral information.
Collapse
Affiliation(s)
- Zaharie Moldovan
- National Institute for Research and Development for Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | | | | |
Collapse
|
8
|
Bourdon E, Loreau N, Davignon J, Bernier L, Blache D. Involvement of oxysterols and lysophosphatidylcholine in the oxidized LDL-induced impairment of serum albumin synthesis by HEPG2 cells. Arterioscler Thromb Vasc Biol 2000; 20:2643-50. [PMID: 11116066 DOI: 10.1161/01.atv.20.12.2643] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Oxidized low density lipoproteins (Ox-LDLs) are increasingly thought to be a key element in atherogenesis. We have previously reported that serum albumin has important antioxidant properties and that a reduced synthesis of albumin may represent a crucial point in the overall antioxidant defense. In the present work, we aimed at determining whether Ox-LDL could modulate albumin synthesis in cultured human hepatocytes (HepG2 cells). With the use of enzyme immunoassay and radiolabeled leucine incorporation followed by specific immunoprecipitation, Ox-LDL was found to lead to a dose-dependent decrease in albumin secretion. Moreover, the protein synthesis and mRNA levels were decreased in the presence of Ox-LDL, as assessed by Northern blot analysis. Because oxysterols and lysophospholipids are key components of Ox-LDL, we tested the effects of oxysterols (7-ketocholesterol and 25-hydroxycholesterol) and lysophosphatidylcholine on albumin secretion and expression. In our experimental conditions, we found that incubations with oxysterols or lysophosphatidylcholine at pathophysiological concentrations similar to those measured in Ox-LDLs reproduced the above-mentioned inhibitory effects on albumin synthesis. On the basis of our in vitro data, we propose that this newly described biological effect of Ox-LDL might partly explain the findings of epidemiological studies indicating that reduced levels of serum albumin are associated with increased mortality.
Collapse
Affiliation(s)
- E Bourdon
- INSERM U498, Biochimie des Lipoprotéines et Interactions Vasculaires, Université de Bourgogne, Dijon, France
| | | | | | | | | |
Collapse
|
9
|
Gesquière L, Loreau N, Blache D. Role of the cyclic AMP-dependent pathway in free radical-induced cholesterol accumulation in vascular smooth muscle cells. Free Radic Biol Med 2000; 29:181-90. [PMID: 10980406 DOI: 10.1016/s0891-5849(00)00337-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We have previously reported that free radical-treated vascular smooth muscle cells (SMC) lead to cholesterol accumulation in vitro. In the current study, we investigated the effects of oxidative stress on cyclic AMP concentration and cAMP-dependent enzymes involved in cholesterol homeostasis in A7r5 cells. Under our conditions of a mild oxidative stress, namely with no change in cell viability, we found that free radicals, initiated using azobis-amidinopropane dihydrochloride (AAPH), resulted in a dose-dependent decrease in cellular cAMP which was opposed by vitamin E preincubation. Although the addition of adenylate cyclase activators (carbacyclin and forskolin) increased cAMP levels it did not succeed in restoring the AAPH-induced decrease. The oxidative stress-induced increase in activities of 3-hydroxy-3-methylglutaryl coenzyme A reductase and of acyl coenzyme A: cholesterol acyltransferase and the decrease in neutral cholesteryl ester hydrolase activity were suppressed by addition of dibutyryl cAMP. Taken together, these results strongly suggest that free radicals reduce cAMP concentrations by altering cell membrane adenylate cyclase activity. The changes of cAMP-dependent enzymes induced by oxidative stress resulting in cholesterol accumulation might be one of the processes leading to SMC-derived foam cells depicted in atheroma plaque. Moreover, if extrapolated to in vivo, these data may explain in part the beneficial effects of antioxidants in the reduction of cardiovascular diseases.
Collapse
Affiliation(s)
- L Gesquière
- INSERM U 498, Biochimie des Lipoprotéines et Interactions Vasculaires, Université de Bourgogne, Dijon, France
| | | | | |
Collapse
|
10
|
Blache D, Gesquière L, Loreau N, Durand P. Oxidant stress: the role of nutrients in cell-lipoprotein interactions. Proc Nutr Soc 1999; 58:559-63. [PMID: 10604187 DOI: 10.1017/s0029665199000737] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Oxidant stress is increasingly becoming an important hypothesis to explain the genesis of several pathologies, including cancer, atherosclerosis and also ageing. Beside a few rare genetic defects, dietary factors are thought to play a key role in the regulation of the production of reactive oxygenated species. An imbalance between nutrients, and in particular those involved in antioxidant status, could explain the onset of an enhanced production of free radicals. We will briefly review information concerning oxidation of lipids and lipoproteins which lead to atherothrombosis. We also present new findings supporting a role for blood platelets in generating oxidant species. New data are also described concerning the role of oxygenated derivatives of cholesterol, oxysterols, in cellular cholesterol efflux and NO production. Also, new developments relating to the influence of direct effects of free radicals on cellular cholesterol homeostasis are presented. Finally, the in vitro effects of butyrate, a natural short-chain fatty acid produced by bacterial fermentation, in the protection against free radical-mediated cytotoxicity are discussed. These data provide information on the mechanisms of dietary antioxidants in preventing oxidant stress.
Collapse
Affiliation(s)
- D Blache
- INSERM U498, Université de Bourgogne, Dijon, France.
| | | | | | | |
Collapse
|
11
|
Gesquière L, Loreau N, Minnich A, Davignon J, Blache D. Oxidative stress leads to cholesterol accumulation in vascular smooth muscle cells. Free Radic Biol Med 1999; 27:134-45. [PMID: 10443930 DOI: 10.1016/s0891-5849(99)00055-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The transformation of macrophages and smooth muscle cells into foam cells by modified low-density lipoproteins (LDL) is one of the key events of atherogenesis. Effects of free radicals have mainly been studied in LDL, and other than toxicity, data dealing with direct action of free radicals on cells are scarce. This study focused on the direct effects of free radicals on cholesterol metabolism of smooth muscle cells. A free radical generator, azobis-amidinopropane dihydrochloride, was used, and conditions for a standardized oxidative stress were set up in vascular smooth muscle cells. After free radical action, the cells presented an accumulation of cholesterol that appeared to be the result of: (i) an increase in cholesterol biosynthesis and esterification; (ii) a decrease in cell cholesteryl ester hydrolysis; and (iii) a reduced cholesterol efflux. All these parameters were opposed by antioxidants. In addition, oxidant stress induced an increased degradation of acetyl-LDL, whereas no change was noted for native LDL. From this data, it was concluded that cholesterol metabolism of vascular smooth muscle cells was markedly altered by in vitro treatment with free radicals, although cell viability was unaffected. The resulting disturbance in cholesterol metabolism favors accumulation of cholesterol and cholesteryl esters in vascular cells, and thus may contribute to the formation of smooth muscle foam cells.
Collapse
Affiliation(s)
- L Gesquière
- INSERM U498, Biochimie des Lipoprotéines et Interactions Vasculaires, Université de Bourgogne, Dijon, France
| | | | | | | | | |
Collapse
|
12
|
Bourdon E, Loreau N, Blache D. Glucose and free radicals impair the antioxidant properties of serum albumin. FASEB J 1999; 13:233-44. [PMID: 9973311 DOI: 10.1096/fasebj.13.2.233] [Citation(s) in RCA: 214] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Epidemiological data consistently show that reduced levels of serum albumin, which is the most abundant protein in plasma, are associated with an increased mortality risk. Various biological properties evidenced by direct effects of the albumin molecule may explain its beneficial effects. The present work aimed to investigate in vitro whether glycation or free radicals or both factors would affect the antioxidant properties of bovine serum albumin (BSA). Glycation was performed by long-term incubations (60 days) of BSA with increasing concentrations of glucose (up to 500 mmol/l) at 37 degreesC. Minimally oxidized BSA was obtained after controlled incubations of dialyzed BSA samples with a water-soluble free radical generator [2,2' azo-bis(2-amidinopropane) HCl]. The glycation-mediated modifications and the free radical-induced conformational changes of BSA were monitored using intrinsic fluorescence measurements of the tryptophan residues and acrylamide as a quenching agent. Thiol groups, Amadori glycophore contents, and boronate binding were also measured. We found that the changes observed in the conformation of the BSA molecule were associated with modifications of its antioxidant properties. The latter were studied by the copper-mediated oxidation of human low density lipoproteins and the free radical-induced blood hemolysis test. Our data support the concept that oxidative-induced BSA modifications are important determinants in the antioxidant properties of BSA. Glycated BSA still behaved as an antioxidant but became pro-oxidant in the presence of copper, probably by generating oxygenated species. These data confirm the key role of metals ions in this process. Although these results warrant further in vivo investigations, we propose that, considering the poor glucose control found in diabetics as well as the key role of oxidative stress in vascular complications, glycation-mediated and free radical-induced impairment of the antioxidant properties of albumin might be important parameters in vascular complications encountered in diabetes.
Collapse
Affiliation(s)
- E Bourdon
- INSERM U498, Biochimie des Lipoprotéines et Interactions Vasculaires, Université de Bourgogne, Dijon, France
| | | | | |
Collapse
|