1
|
Li Q, Wang X, Wang Y, Liu F, Fu B. A unilateral external fixator combined with bone transport and tibio-talar fusion for the treatment of severe postoperative infection of peri-ankle fractures: retrospective analysis of 32 cases. J Orthop Surg Res 2024; 19:110. [PMID: 38308313 PMCID: PMC10837972 DOI: 10.1186/s13018-024-04586-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/26/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND To investigate the clinical effects of a unilateral external fixator combined with bone transport and tibio-talar fusion in the treatment of severe postoperative infection of peri-ankle fractures. METHODS The clinical data of 32 patients (22 men and 10 women) with severe postoperative infection of peri-ankle fractures were retrospectively analyzed. Patients' age ranged from 26 to 62 (mean, 42 ± 9.5) years old. The types of fractures were distal tibia fracture (25 cases), distal tibia and fibula fracture (5 cases), and talus fracture (2 cases). All patients underwent treatment with unilateral external fixation combined with bone transport and tibio-talar fusion. 6 patients with severe infection received two-stage treatment involving focal debridement and external fixation, osteotomy, and bone transport. The remaining 26 patients underwent debridement, external fixation, and osteotomy simultaneously. The length of bone transport, total fixation time of the external fixator, and postoperative complications were recorded for all patients. The efficacy of the treatment was assessed using the American Association of Foot and Ankle Society (AOFAS) ankle-hindfoot score. RESULTS Patients were followed up for 16-36 months, with an average follow-up time of 24 months. The length of tibia bone transport ranged from 5 to 15 cm, with a mean length of 8.5 cm. The external fixator was applied for 12-24 months, with an average duration of 16 months. One patient suffered from refracture at tibio-talar fusion site, and one patient had external fixation pin-tract infection. No complications, such as recurrent infections (especially the MRSA infection), poor mineralization, refracture, iatrogenic nerve damage or fusion failure, were found in the remaining patients. The preoperative AOFAS ankle-hindfoot function score was 40.0 ± 3.8 (range, 30-52) points, and it increased to 75.0 ± 3.0 (range, 67-78) points at the last follow-up. CONCLUSION A unilateral external fixator combined with bone transport and tibio-talar fusion is an effective method for treating severe postoperative infection of peri-ankle fractures. This approach is capable of reconstructing large bone defects that remain after clearing the infected lesion. Additionally, it provides stability to the ankle, enhances ankle-hindfoot function, and improves the patient's quality of life.
Collapse
Affiliation(s)
- Qinghu Li
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Road Jing Wu Wei Qi, Jinan, 250021, Shandong, China
| | - Xin Wang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Road Jing Wu Wei Qi, Jinan, 250021, Shandong, China
| | - Yonghui Wang
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Road Jing Wu Wei Qi, Jinan, 250021, Shandong, China
| | - Fanxiao Liu
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Road Jing Wu Wei Qi, Jinan, 250021, Shandong, China
| | - Baisheng Fu
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Road Jing Wu Wei Qi, Jinan, 250021, Shandong, China.
| |
Collapse
|
2
|
Bacevich BM, Smith RDJ, Reihl AM, Mazzocca AD, Hutchinson ID. Advances with Platelet-Rich Plasma for Bone Healing. Biologics 2024; 18:29-59. [PMID: 38299120 PMCID: PMC10827634 DOI: 10.2147/btt.s290341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/17/2024] [Indexed: 02/02/2024]
Abstract
Despite significant advances in the understanding and delivery of osteosynthesis, fracture non-union remains a challenging clinical problem in orthopaedic surgery. To bridge the gap, basic science characterization of fracture healing provides a platform to identify and target biological strategies to enhance fracture healing. Of immense interest, Platelet-rich plasma (PRP) is a point of care orthobiologic that has been extensively studied in bone and soft tissue healing given its relative ease of translation from the benchtop to the clinic. The aim of this narrative review is to describe and relate pre-clinical in-vitro and in-vivo findings to clinical observations investigating the efficacy of PRP to enhance bone healing for primary fracture management and non-union treatment. A particular emphasis is placed on the heterogeneity of PRP preparation techniques, composition, activation strategies, and delivery. In the context of existing data, the routine use of PRP to enhance primary fracture healing and non-union management cannot be supported. However, it is acknowledged that extensive heterogeneity of PRP treatments in clinical studies adds obscurity; ultimately, refinement (and consensus) of PRP treatments for specific clinical indications, including repetition studies are warranted.
Collapse
Affiliation(s)
- Blake M Bacevich
- Division of Sports Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Massachusetts General Brigham, Boston, MA, USA
| | - Richard David James Smith
- Division of Sports Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Massachusetts General Brigham, Boston, MA, USA
| | - Alec M Reihl
- Division of Sports Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Massachusetts General Brigham, Boston, MA, USA
| | - Augustus D Mazzocca
- Division of Sports Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Massachusetts General Brigham, Boston, MA, USA
- Medical Director, Division of Sports Medicine, Department of Orthopaedic Surgery, Massachusetts General Brigham, Boston, MA, USA
| | - Ian D Hutchinson
- Division of Sports Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Massachusetts General Brigham, Boston, MA, USA
| |
Collapse
|
3
|
Efficacy of Platelet-Rich Plasma in the Treatment of Fractures: A Meta-Analysis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:5105725. [PMID: 35693268 PMCID: PMC9184162 DOI: 10.1155/2022/5105725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022]
Abstract
Background Although numerous studies have reported the effectiveness of platelet-rich plasma (PRP) in promoting and enhancing bone healing, many orthopedic physicians remain skeptical of platelet-rich plasma in the treatment of fractures. The objective of this meta-analysis was to assess the efficacy of PRP in the treatment of fractures. Methods We search for research on PRP treatment of fractures in Pubmed, Embase, Medline, and Cochrane libraries. Two independent reviewers assessed included studies and met to develop a consensus on included studies. We also assessed the risk of bias using Review Manager 5.3 software. Results The present meta-analysis included 10 randomized controlled trials (RCT) containing 652 patients. In the fixed-effect meta-analysis of 10 RCTs, 8 RCTs found that fracture patients benefited from PRP treatment. The use of PRP reduced the time of fracture healing in 4 RCTs. Three RCTs found that PRP adjuvant therapy enhanced bone mineral density in the fracture trace and reduced the time of bone regeneration in mandibular fractures patients (standardized mean difference (SMD) = −1.99, 95%confidence interval (CI) = −2.64–−1.35). And 3 RCTs found that PRP adjuvant therapy decreased the risk of revision surgery in fracture patients (SMD = 1.83, 95%CI = 1.10–3.04). Conclusion PRP adjuvant therapy is beneficial for the treatment of fracture patients, particularly those with mandibular fractures, and decreased the risk of revision surgery in fracture patients.
Collapse
|
4
|
Wickramasinghe ML, Dias GJ, Premadasa KMGP. A novel classification of bone graft materials. J Biomed Mater Res B Appl Biomater 2022; 110:1724-1749. [PMID: 35156317 DOI: 10.1002/jbm.b.35029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/19/2022]
Affiliation(s)
- Maduni L. Wickramasinghe
- Department of Biomedical Engineering General Sir John Kotelawala Defense University Ratmalana Sri Lanka
| | - George J. Dias
- Department of Anatomy, School of Medical Sciences University of Otago Dunedin New Zealand
| | | |
Collapse
|
5
|
Jamal M, Hurley E, Asad H, Asad A, Taneja T. The role of Platelet Rich Plasma and other orthobiologics in bone healing and fracture management: A systematic review. J Clin Orthop Trauma 2022; 25:101759. [PMID: 35036312 PMCID: PMC8749440 DOI: 10.1016/j.jcot.2021.101759] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/27/2021] [Accepted: 12/31/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Treatment of large bone defects and fracture healing complications (delayed and non-union) presents a substantial challenge for orthopaedic surgeons. Given that bone healing requires mechanical stability as well as a favourable biological microenvironment, orthobiologics such as Platelet-Rich Plasma (PRP) may have a significant clinical role to play. AIMS To perform a systematic review of the available literature to assess the clinical effect of PRP, with or without other orthobiologics, on bone healing. METHOD Two independent reviewers performed the literature search based on the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Clinical studies of any evidence, assessing effect of PRP with or without other orthobiologics on bone healing, were included. A qualitative analysis was carried out on the clinical and radiological outcomes reported. RESULT 27 articles with 1631 patients (mean age = 43.56, 57.1% male, mean follow-up = 17.27 months) were included in the qualitative. Of the 27 studies, 13 dealt with fracture complications (delayed or non-unions), 7 with acute fracture healing, 4 with tibial osteotomies and lengthening procedures and 3 with lumbar spine pathology. 18/27 studies showed a clinical benefit of PRP, 8/27 showed no significant effect, and 1/27 showed a worse outcome with PRP. CONCLUSION Our review suggests PRP may play a clinical role in bone healing but further randomised controlled trials (RCTs) using standardised outcomes should be performed to establish its efficacy.
Collapse
Affiliation(s)
- M.S. Jamal
- Blizzard Institute, Barts and the London School of Medicine & Dentistry, London, UK,Corresponding author. Royal London Hospital, Whitechapel Rd, London, E1 1FR, UK.
| | - E.T. Hurley
- Department of Trauma & Orthopaedic Surgery, NYU Langone Health, New York, USA
| | - H. Asad
- Blizzard Institute, Barts and the London School of Medicine & Dentistry, London, UK
| | - A. Asad
- Blizzard Institute, Barts and the London School of Medicine & Dentistry, London, UK
| | - T. Taneja
- Blizzard Institute, Barts and the London School of Medicine & Dentistry, London, UK,Department of Trauma & Orthopaedic Surgery, Homerton University Hospital, London, UK
| |
Collapse
|
6
|
Zhang Y, Xing F, Luo R, Duan X. Platelet-Rich Plasma for Bone Fracture Treatment: A Systematic Review of Current Evidence in Preclinical and Clinical Studies. Front Med (Lausanne) 2021; 8:676033. [PMID: 34414200 PMCID: PMC8369153 DOI: 10.3389/fmed.2021.676033] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/06/2021] [Indexed: 02/05/2023] Open
Abstract
Background: Recently, there is an increasing interest in the therapeutic potential of platelet-rich plasma (PRP) for bone fracture treatment. Nevertheless, the effect of PRP for bone fracture treatment remains controversial and is still a matter of discussion. Therefore, we performed a systematic review to evaluate the efficacy and safety of PRP injection for treatment of bone fracture. Methods: The main bibliographic databases, including Medline, PubMed, Embase, Web of Science, and the Cochrane library, were comprehensively searched for studies focusing on the application of platelet-rich plasma (PRP) on bone fracture treatment. All relevant articles were screened for eligibility and subdivided into the preclinical and clinical studies. Data were extracted and presented systematically. Results: Finally, twenty-six in vitro preclinical studies (basic studies), nine in vivo preclinical studies (animal studies), and nine clinical studies, met the selection criteria, and were included in the present systematic review. Preclinical studies showed an overall positive effect of PRP on osteoblast-like cells in vitro and bone healing in animal models. The most used treatment for bone fracture in animal and clinical studies is fixation surgery combined with PRP injection. The clinical studies reported PRP shortened bony healing duration, and had no positive effect on improving the healing rate of closed fractures. However, the results of functional outcomes are controversial. Additionally, compared with control group, PRP would not increase the rate of postoperative wound infection. Conclusion: The present systematic review confirmed the continuing interests of PRP as an additional treatment for bone fracture. Preclinical studies highlighted the potential value of PRP as promising therapy for bone fracture. However, the preclinical evidence did not translate into a similar result in the clinical studies. In addition, types of fractures and procedures of PRP preparation are heterogeneous in enrolled studies, which might result in controversial results. Meanwhile, characteristics of PRP, such as platelet concentration, the numbers of leukocytes, still need to be determined and further research is required.
Collapse
Affiliation(s)
- Yangming Zhang
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Xing
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, China
| | - Rong Luo
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Duan
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Van Lieshout EMM, Den Hartog D. Effect of platelet-rich plasma on fracture healing. Injury 2021; 52 Suppl 2:S58-S66. [PMID: 33431160 DOI: 10.1016/j.injury.2020.12.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 02/02/2023]
Abstract
Bone has the ability to completely regenerate under normal healing conditions. Although fractures generally heal uneventfully, healing problems such as delayed union or nonunion still occur in approximately 10% of patients. Optimal healing potential involves an interplay of biomechanical and biological factors. Orthopedic implants are commonly used for providing the necessary biomechanical support. In situations where the biological factors that are needed for fracture healing are deemed inadequate, additional biological enhancement is needed. With platelets being packed with granules that contain growth factors and other proteins that have osteoinductive capacity, local application of platelet concentrates, also called platelet-rich plasma (PRP) seems an attractive biological to enhance fracture healing. This review shows an overview of the use PRP and its effect in enhancing fracture healing. PRP is extracted from the patient's own blood, supporting that its use is considered safe. Although PRP showed effective in some studies, other studies showed controversial results. Conflicts in the literature may be explained by the absence of consensus about the preparation of PRP, differences in platelet counts, low number of patients, and absence of a standard application technique. More studies addressing these issues are needed in order to determine the true effect of PRP on fracture healing.
Collapse
Affiliation(s)
- Esther M M Van Lieshout
- Trauma Research Unit Department of Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Dennis Den Hartog
- Trauma Research Unit Department of Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
8
|
Blanton CM, Clougherty CO. The Role of Bone Marrow Aspirate in Osseous and Soft Tissue Pathology. Clin Podiatr Med Surg 2021; 38:1-16. [PMID: 33220739 DOI: 10.1016/j.cpm.2020.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Bone marrow aspirate (BMA) is an emerging therapy that is gaining popularity for orthoplastic reconstruction. The stem cells collected are multipotent and regenerative in nature. In addition to stem cells, other biological components collected augment the mitogen of local cells, proliferation, and angiogenesis, and inhibit proinflammatory cytokine and bacteria to optimize an environment to heal. The most common site for harvest is the iliac crest. Techniques for harvesting BMA are simple to perform, financially modest, and associated with low morbidity. Additional research is needed to evolve and standardize the technology; however, BMA is proven to be advantageous for tissue repair.
Collapse
Affiliation(s)
- Casie M Blanton
- The Reconstruction Institute of The Bellevue Hospital, 102 Commerce Park Drive, Suite D, Bellevue, OH 44811, USA.
| | - Coleman O Clougherty
- The Reconstruction Institute of The Bellevue Hospital, 102 Commerce Park Drive, Suite D, Bellevue, OH 44811, USA
| |
Collapse
|
9
|
Rollo G, Bonura EM, Falzarano G, Bisaccia M, Ribes Iborra J, Grubor P, Filipponi M, Pichierri P, Hitov P, Leonetti D, Russi V, Daghino W, Meccariello L. Platet Rich Plasma or Hyperbaric Oxygen Therapy as callus accellerator in aseptic tibial non union. Evaluate of outcomes. ACTA BIO-MEDICA : ATENEI PARMENSIS 2020; 91:e2020188. [PMID: 33525281 PMCID: PMC7927478 DOI: 10.23750/abm.v91i4.8818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 05/16/2020] [Indexed: 01/14/2023]
Abstract
BACKGROUND AND AIM OF THE WORK The incidence of long bone non-unions has been estimated to range between 5-10%. Nonunion of fracture is a delayed complication of fracture. A large bone resection, associated with Ilizarov's osteo-distraction technique, is commonly used in these cases. The war experience was very important for dealing with these injuries. The purpose of this study is to report whether the use of Platelet Rich of Plasma(PRP) or Hyperbric Oxygen Therapy(HOT) as an adjuvant to the osteogenic distraction of Ilizarov with respect to the classical method has advantages. METHODS From 183 tibial non union, we enrolled 50 patients suffering by Type B according ASAMI non union classification. We divided the patients into two groups. The first group was a retrospective group of patient treated by Ilizarov Tecnique plus PRP. Instead the second group, patients were treated by Ilizarov Tecnique associated with HOT. The chosen criteria to evaluate the two groups during the clinical and radiological follow-up were: the complication after the surgery in the two groups; the duration of surgery; the objective quality Bone results and functional results were evaluated according to ASAMI classification while the subjective quality of life correlated with Ilizarov frame function by the Short Form 12 Health Survey (SF-12); The correlation between bone regenerate/bone healing and X-rays. The evaluation endpoint was set at 12 months from the remotion of Ilizarov's frame for both groups. RESULTS In comparing the complications of the two populations, there were a significant statistically difference(p<0.05) in the local skin inflammation and Dockin Point Skin retraction for HOT group while in refracture p<0.05 was for group PRP. From the SF-12 we discovered not statistically differences p<0.05. The average correlation between Bone Regenerate-Bone Healing/ X-rays is absolutely in the PRP as in the HOT, p>0.05. The average Time for remove Ilizarov's Frame in months was 15.37(±7.34; range 9-32) in PRP while in HOT was15.22(± 7.83; range 9-31), p>0.05. CONCLUSIONS From our study we can conclude that the association of HOT and PRP with the Ilizarov technique does not improve the functional outcomes but allows a more rapid healing of the regenerated bone and therefore an early removal of the device and a corresponding improvement in the quality of life.
Collapse
Affiliation(s)
- Giuseppe Rollo
- Department of Orthopaedics and Traumatology, Vito Fazzi Hospital, Lecce, Italy.
| | - Enrico Maria Bonura
- Department of Orthopaedics and Traumatology, Poliambulanza Foundation Hospital, Brescia, Italy..
| | - Gabriele Falzarano
- Department of Orthopaedics and Traumatology, Azienda Ospedaliera "Gaetano Rummo", Benevento, Italy.
| | - Michele Bisaccia
- Division of Orthopaedics and Trauma Surgery, University of Perugia, "S. Maria della Misericordia" Hospital, Perugia, Italy.
| | - Julio Ribes Iborra
- University of Valencia, "La Ribera" Hospital, Valencia, Spain Division of Orthopaedics and Trauma Surgery.
| | - Predrag Grubor
- Clinic of Traumatology, University Hospital Clinical Center Banja Luka, Bosnia and Herzegovina.
| | - Marco Filipponi
- Department of Orthopaedics and Traumatology, Vito Fazzi Hospital, Lecce, Italy.
| | - Paolo Pichierri
- Department of Orthopaedics and Traumatology, Vito Fazzi Hospital, Lecce, Italy.
| | - Philip Hitov
- 2nd Clinic of Orthopaedics and Traumatology, "N.I. Pirogov" University multiprofile Hospital, Sofia, Bulgaria.
| | - Danilo Leonetti
- Department of Orthopaedics and Traumatology, University Hospital "Gaetano Martino" Messina, Italy.
| | - Valentina Russi
- Department of Orthopaedics and Traumatology, Vito Fazzi Hospital, Lecce, Italy.
| | - Walter Daghino
- Orthopaedic Clinic, CTO University Hospital, Turin, Italy..
| | - Luigi Meccariello
- Department of Orthopaedics and Traumatology, Vito Fazzi Hospital, Lecce, Italy.
| |
Collapse
|
10
|
Mott A, Mitchell A, McDaid C, Harden M, Grupping R, Dean A, Byrne A, Doherty L, Sharma H. Systematic review assessing the evidence for the use of stem cells in fracture healing. Bone Jt Open 2020; 1:628-638. [PMID: 33215094 PMCID: PMC7659646 DOI: 10.1302/2633-1462.110.bjo-2020-0129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
AIMS Bone demonstrates good healing capacity, with a variety of strategies being utilized to enhance this healing. One potential strategy that has been suggested is the use of stem cells to accelerate healing. METHODS The following databases were searched: MEDLINE, CENTRAL, EMBASE, Cochrane Database of Systematic Reviews, WHO-ICTRP, ClinicalTrials.gov, as well as reference checking of included studies. The inclusion criteria for the study were: population (any adults who have sustained a fracture, not including those with pre-existing bone defects); intervention (use of stem cells from any source in the fracture site by any mechanism); and control (fracture healing without the use of stem cells). Studies without a comparator were also included. The outcome was any reported outcomes. The study design was randomized controlled trials, non-randomized or observational studies, and case series. RESULTS In all, 94 eligible studies were identified. The clinical and methodological aspects of the studies were too heterogeneous for a meta-analysis to be undertaken. A narrative synthesis examined study characteristics, stem cell methods (source, aspiration, concentration, and application) and outcomes. CONCLUSION Insufficient high-quality evidence is available to determine the efficacy of stem cells for fracture healing. The studies were heterogeneous in population, methods, and outcomes. Work to address these issues and establish standards for future research should be undertaken.Cite this article: Bone Joint Open 2020;1-10:628-638.
Collapse
Affiliation(s)
- Andrew Mott
- York Trials Unit, Department of Health Sciences, University of York, York, UK
| | - Alex Mitchell
- York Trials Unit, Department of Health Sciences, University of York, York, UK
| | - Catriona McDaid
- York Trials Unit, Department of Health Sciences, University of York, York, UK
| | - Melissa Harden
- Centre for Reviews and Dissemination, University of York, York, UK
| | - Rachael Grupping
- Department of Trauma and Orthopaedics, Hull University Teaching Hospitals, Hull, UK
| | - Alexandra Dean
- York Trials Unit, Department of Health Sciences, University of York, York, UK
| | - Ailish Byrne
- York Trials Unit, Department of Health Sciences, University of York, York, UK
| | - Laura Doherty
- York Trials Unit, Department of Health Sciences, University of York, York, UK
| | - Hemant Sharma
- Department of Trauma and Orthopaedics, Hull University Teaching Hospitals, Hull, UK
| |
Collapse
|
11
|
Raven TF, Moghaddam A, Ermisch C, Westhauser F, Heller R, Bruckner T, Schmidmaier G. Use of Masquelet technique in treatment of septic and atrophic fracture nonunion. Injury 2019; 50 Suppl 3:40-54. [PMID: 31378541 DOI: 10.1016/j.injury.2019.06.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Treatment of atrophic non-unions and large bone defects or infections remains a challenging task for the treating surgeon. In the herein study, we present our experience of the 'Masquelet technique' according to the 'diamond concept' for the treatment of complex long bone reconstruction procedures. METHODS Between February 2010 and March 2015, 150 patients (mean age 51.4) with atrophic and- /or infected non-unions were included in this prospective study. All patients received autologous bone graft, a graft expander (TCP (tricalcium phosphate)) and BMP (bone morphogenic protein). Clinical and radiological parameters were assessed at 6 weeks, and at 3, 6 and 12 months. The SF-12 questionnaire was used to evaluate the subjective health of patients. RESULTS A successful bony consolidation of the non-unions was observed in 120 (80%) cases with a median healing time of 12.1 months. The mean defect gap was 4.4cm. Initial infection was documented in 54 cases. The most frequently identified pathogen was staphylococcus epidermidis and staphylococcus aureus. A successful removal of microorganisms with subsequent healing was achieved in 39 cases (72%). The SF-12 scores of subjective physical and mental health increased from PCS 31.5 preoperatively to 36.7 one year postoperatively, while MCS increased from 45.5 to 48.7. CONCLUSIONS Our study showed that the Masquelet technique according to the 'diamond concept' is a valid method to treat complex atrophic non-unions with large bone defects and associated infection. Following the principles of the 'diamond concept' (targeted optimization of tissue engineering and bone regeneration) a high rate of success can be expected in these difficult reconstruction cases.
Collapse
Affiliation(s)
- T F Raven
- ATORG - Aschaffenburg Trauma and Orthopaedic Research Group, Center for Trauma Surgery, Orthopaedics and Sports Medicine, Hospital Aschaffenburg-Alzenau, Am Hasenkopf 1, D-63739, Aschaffenburg, Germany; HTRG - Heidelberg Trauma Research Group, Division of Trauma and Reconstructive Surgery, Center for Orthopaedics, Trauma Surgery and Spinal Cord Injury, University Hospital Heidelberg, Schlierbacher Landstraße 200a, D-69118, Heidelberg, Germany.
| | - A Moghaddam
- ATORG - Aschaffenburg Trauma and Orthopaedic Research Group, Center for Trauma Surgery, Orthopaedics and Sports Medicine, Hospital Aschaffenburg-Alzenau, Am Hasenkopf 1, D-63739, Aschaffenburg, Germany; HTRG - Heidelberg Trauma Research Group, Division of Trauma and Reconstructive Surgery, Center for Orthopaedics, Trauma Surgery and Spinal Cord Injury, University Hospital Heidelberg, Schlierbacher Landstraße 200a, D-69118, Heidelberg, Germany
| | - C Ermisch
- HTRG - Heidelberg Trauma Research Group, Division of Trauma and Reconstructive Surgery, Center for Orthopaedics, Trauma Surgery and Spinal Cord Injury, University Hospital Heidelberg, Schlierbacher Landstraße 200a, D-69118, Heidelberg, Germany
| | - F Westhauser
- HTRG - Heidelberg Trauma Research Group, Division of Trauma and Reconstructive Surgery, Center for Orthopaedics, Trauma Surgery and Spinal Cord Injury, University Hospital Heidelberg, Schlierbacher Landstraße 200a, D-69118, Heidelberg, Germany
| | - R Heller
- HTRG - Heidelberg Trauma Research Group, Division of Trauma and Reconstructive Surgery, Center for Orthopaedics, Trauma Surgery and Spinal Cord Injury, University Hospital Heidelberg, Schlierbacher Landstraße 200a, D-69118, Heidelberg, Germany
| | - T Bruckner
- Institute for Medical Biometry and Informatics, Im Neuenheimer Feld 130.3, D- 69120, Heidelberg, Germany
| | - G Schmidmaier
- HTRG - Heidelberg Trauma Research Group, Division of Trauma and Reconstructive Surgery, Center for Orthopaedics, Trauma Surgery and Spinal Cord Injury, University Hospital Heidelberg, Schlierbacher Landstraße 200a, D-69118, Heidelberg, Germany
| |
Collapse
|
12
|
Miller TJ, Rodriguez-Collazo E, Frania SJ, Thione A. Regenerative Surgery & Intra-Operative Protocols Utilizing Bone Marrow Aspirate Concentrate in Microsurgical & Limb Reconstruction. ACTA ACUST UNITED AC 2019. [DOI: 10.29337/ijops.29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
13
|
Pulsed electromagnetic fields and platelet rich plasma alone and combined for the treatment of wear-mediated periprosthetic osteolysis: An in vivo study. Acta Biomater 2018; 77:106-115. [PMID: 29981946 DOI: 10.1016/j.actbio.2018.07.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/26/2018] [Accepted: 07/05/2018] [Indexed: 12/17/2022]
Abstract
Wear-mediated osteolysis is a common complication occurring around implanted prosthesis, which ultimately leads to bone loss with mechanical instability and the need for surgical revision. At the moment, revision surgery is the only effective treatment. The aim of this study was to assess the efficacy of pulsed electromagnetic fields (PEMFs) and platelet rich plasma (PRP), alone and in association, in a clinically relevant in vivo model of periprosthetic osteolysis. Titanium alloy pins were implanted intramedullary in distal femurs of male inbred rats and, after osseointegration, polyethylene particles were injected intra-articularly to induce osteolysis. Animals were divided in four groups of treatment: PEMFs, PRP, PEMFs + PRP and no treatment. Microtomography was performed during the course of experiments to monitor bone stock and microarchitecture. Histology, histomorphometry, immunohistochemistry and biomechanics were evaluated after treatments. Biophysical and biological stimulations significantly enhanced bone to implant contact, bone volume and bone microhardness and reduced fibrous capsule formation and the number of osteoclasts around implants. Among treatments, PEMFs alone and in association with PRP exerted better results than PRP alone. Present data suggest that biophysical stimulation, with or without the enrichment with platelet derived growth factors, might be a safe, mini-invasive and conservative therapy for counteracting osteolysis and prompting bone formation around implants. STATEMENT OF SIGNIFICANCE Pulsed electromagnetic fields (PEMFs) and platelet rich plasma (PRP) show anabolic and anti-inflammatory effects and they are already been used in clinical practice, but separately. To date, there are no preclinical in vivo studies evaluating their combined efficacy in periprosthetic osteolysis, in bone tissue microarchitecture and in biomechanics. The aim of the present study was to evaluate the effects of PEMFs and PRP in vivo, when administered individually and in combination in the treatment of periprosthetic wear mediated ostelysis, and in restoring the osteogenetic properties of perimplant bone tissue and its biomechanical competence. The combination of PEMFs and PRP could be employed for counteracting the ostelysis process in a conservative and non surgical manner.
Collapse
|
14
|
Zhao E, Carney D, Chambers M, Ewalefo S, Hogan M. The role of biologic in foot and ankle trauma-a review of the literature. Curr Rev Musculoskelet Med 2018; 11:495-502. [PMID: 30054808 DOI: 10.1007/s12178-018-9512-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW The use of biologics in orthopedics is becoming increasingly popular as an adjuvant in healing musculoskeletal injuries. Though many biologics involved in the management of foot and ankle injuries are used based on physician preference, reports of improved outcomes when combined with standard operative treatment has led to further clinical interest especially in foot and ankle trauma. RECENT FINDINGS The most recent studies have shown benefits for biologic use in patients predisposed to poor bone and soft tissue healing. Biologics have shown benefit in treating soft tissue injuries such as Achilles ruptures as well as the complications of trauma such as non-unions and osteoarthritis. Biologics have shown some benefit in improving functional and pain scores, as well as reducing time to heal in foot and ankle traumatic injuries, with particular success shown with patients that have risk factors for poor healing. As the use of biologics continues to increase, there is a need for high-level studies to confirm early findings of lower level reports.
Collapse
Affiliation(s)
- Emily Zhao
- Department of Orthopaedic Surgery, University of Pittsburgh, 3471 Fifth Avenue, Suite 1011, Pittsburgh, PA, 15213, USA
| | - Dwayne Carney
- Department of Orthopaedic Surgery, University of Pittsburgh, 3471 Fifth Avenue, Suite 1011, Pittsburgh, PA, 15213, USA
| | - Monique Chambers
- Department of Orthopaedic Surgery, University of Pittsburgh, 3471 Fifth Avenue, Suite 1011, Pittsburgh, PA, 15213, USA
| | - Samuel Ewalefo
- Department of Orthopaedic Surgery, University of Pittsburgh, 3471 Fifth Avenue, Suite 1011, Pittsburgh, PA, 15213, USA
| | - MaCalus Hogan
- Department of Orthopaedic Surgery, University of Pittsburgh, 3471 Fifth Avenue, Suite 1011, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
15
|
Li J, Li B, Zhang Z, Wang S, Liu L. Ilizarov external fixation versus plate internal fixation in the treatment of end-stage ankle arthritis: decision analysis of clinical parameters. Sci Rep 2017; 7:16155. [PMID: 29170505 PMCID: PMC5701001 DOI: 10.1038/s41598-017-16473-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/13/2017] [Indexed: 02/05/2023] Open
Abstract
The purpose of this study was to evaluate the effect of Ilizarov external fixation (IEF) and plate internal fixation (PIF) in the treatment of end-stage ankle arthritis on pain relieving and function improvement. The study cohort consisted of 59 patients with end-stage ankle arthritis underwent ankle arthrodesis with IEF or PIF between June 2011 and June 2015. Standard radiographs and computed tomography (CT) scans were obtained before surgery and during the follow-up. Functional assessments were performed using Foot and Ankle pain score of American Orthopedics Foot and Ankle Society (AOFAS) and Visual Analogue Scale (VAS). The average AOFAS scores in both IEF group and PIF groups increased significantly after operation, from 45.5 ± 6.3 to 84.8 ± 4.9 and from 45.9 ± 6.6 to 86.6 ± 5.4, respectively. The average VAS scores in both groups decreased significantly after operation, from 8.4 ± 1.9 to 2.5 ± 0.6 and from 8.2 ± 1.5 to 2.3 ± 0.7, respectively. Nevertheless, there was no significant difference for preoperative or postoperative AOFAS and VAS scores between the two groups. The IEF would result in comparable postoperative functional recovery and pain relieving to PIF and may be an effective substitute to PIF in the treatment of end-stage ankle arthritis.
Collapse
Affiliation(s)
- Jun Li
- Department of Orthopedics, West China Hospital, Sichuan University, 37# Wainan Guoxue Road, Chengdu, 610041, People's Republic of China
| | - Bohua Li
- Department of Orthopedics, West China Hospital, Sichuan University, 37# Wainan Guoxue Road, Chengdu, 610041, People's Republic of China
| | - Zhengdong Zhang
- Department of Orthopedics, West China Hospital, Sichuan University, 37# Wainan Guoxue Road, Chengdu, 610041, People's Republic of China
| | - Shanxi Wang
- Department of Orthopedics, West China Hospital, Sichuan University, 37# Wainan Guoxue Road, Chengdu, 610041, People's Republic of China
| | - Lei Liu
- Department of Orthopedics, West China Hospital, Sichuan University, 37# Wainan Guoxue Road, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
16
|
Walmsley GG, Ransom RC, Zielins ER, Leavitt T, Flacco JS, Hu MS, Lee AS, Longaker MT, Wan DC. Stem Cells in Bone Regeneration. Stem Cell Rev Rep 2017; 12:524-529. [PMID: 27250635 DOI: 10.1007/s12015-016-9665-5] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Bone has the capacity to regenerate and repair itself. However, this capacity may be impaired or lost depending on the size of the defect or the presence of certain disease states. In this review, we discuss the key principles underlying bone healing, efforts to characterize bone stem and progenitor cell populations, and the current status of translational and clinical studies in cell-based bone tissue engineering. Though barriers to clinical implementation still exist, the application of stem and progenitor cell populations to bone engineering strategies has the potential to profoundly impact regenerative medicine.
Collapse
Affiliation(s)
- Graham G Walmsley
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, 257 Campus Drive Room GK106, Stanford, CA, 94305-5461, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Hagey Building, 257 Campus Dr., Stanford, CA, 94305, USA
| | - Ryan C Ransom
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, 257 Campus Drive Room GK106, Stanford, CA, 94305-5461, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Hagey Building, 257 Campus Dr., Stanford, CA, 94305, USA
| | - Elizabeth R Zielins
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, 257 Campus Drive Room GK106, Stanford, CA, 94305-5461, USA
| | - Tripp Leavitt
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, 257 Campus Drive Room GK106, Stanford, CA, 94305-5461, USA
| | - John S Flacco
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, 257 Campus Drive Room GK106, Stanford, CA, 94305-5461, USA
| | - Michael S Hu
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, 257 Campus Drive Room GK106, Stanford, CA, 94305-5461, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Hagey Building, 257 Campus Dr., Stanford, CA, 94305, USA.,Department of Surgery, John A. Burns School of Medicine, University of Hawai'i, Honolulu, Hawai'i, USA
| | - Andrew S Lee
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Hagey Building, 257 Campus Dr., Stanford, CA, 94305, USA
| | - Michael T Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, 257 Campus Drive Room GK106, Stanford, CA, 94305-5461, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Hagey Building, 257 Campus Dr., Stanford, CA, 94305, USA
| | - Derrick C Wan
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, 257 Campus Drive Room GK106, Stanford, CA, 94305-5461, USA.
| |
Collapse
|
17
|
Quantitative Assessment of Optimal Bone Marrow Site for the Isolation of Porcine Mesenchymal Stem Cells. Stem Cells Int 2017; 2017:1836960. [PMID: 28539939 PMCID: PMC5429955 DOI: 10.1155/2017/1836960] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/28/2017] [Indexed: 12/13/2022] Open
Abstract
Background. One of the most plentiful sources for MSCs is the bone marrow; however, it is unknown whether MSC yield differs among different bone marrow sites. In this study, we quantified cellular yield and evaluated resident MSC population from five bone marrow sites in the porcine model. In addition, we assessed the feasibility of a commercially available platelet concentrator (Magellan® MAR01™ Arteriocyte Medical Systems, Hopkinton, MA) as a bedside stem cell concentration device. Methods. Analyses of bone marrow aspirate (BMA) and concentrated bone marrow aspirate (cBMA) included bone marrow volume, platelet and nucleated cell yield, colony-forming unit fibroblast (CFU-F) number, flow cytometry, and assessment of differentiation potential. Results. Following processing, the concentration of platelets and nucleated cells significantly increased but was not significantly different between sites. The iliac crest had significantly less bone marrow volume; however, it yielded significantly more CFUs compared to the other bone marrow sites. Culture-expanded cells from all tested sites expressed high levels of MSC surface markers and demonstrated adipogenic and osteogenic differentiation potential. Conclusions. All anatomical bone marrow sites contained MSCs, but the iliac crest was the most abundant source of MSCs. Additionally, the Magellan can function effectively as a bedside stem cell concentrator.
Collapse
|
18
|
A Retrospective Look at Integrating a Novel Regenerative Medicine Approach in Plastic Limb Reconstruction. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2017; 5:e1214. [PMID: 28203511 PMCID: PMC5293309 DOI: 10.1097/gox.0000000000001214] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 12/02/2016] [Indexed: 11/25/2022]
Abstract
Full-thickness wounds that have rendered patients candidates for amputation may require techniques that may include a combinatorial approach above traditional standard of care. The purpose of this retrospective study was to evaluate the effectiveness of an innovative approach whereby several therapies were combined to avoid amputation. Patients with full-thickness wounds who were previously recommended for amputation and were treated with the combinatorial approach of muscle flap reconstruction and concentrated bone marrow aspirate, platelet-rich plasma, INTEGRA Wound matrix, vacuum-assisted closure, and split-thickness skin grafts were assessed retrospectively. The mean age of the patients identified was 48 years (range, 34–66 years). The average size of the defects was 19.6 cm2. All defects were successfully covered with medial hemisoleus, lateral hemisoleus, or peroneus brevis muscle flaps combined with split-thickness skin grafts, concentrated bone marrow aspirate, and platelet-rich plasma. All flaps healed with an average time to fixator removal of 8.3 weeks; there was 1 above-knee amputation that occurred approximately after successful wound closing and fixator removal. The combinatorial approach described here including several regenerative medicine tools is an effective means of lower limb reconstruction to avoid amputation.
Collapse
|
19
|
Platelet-rich plasma for the treatment of bone defects: from pre-clinical rational to evidence in the clinical practice. A systematic review. INTERNATIONAL ORTHOPAEDICS 2016; 41:221-237. [PMID: 27888295 DOI: 10.1007/s00264-016-3342-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 11/07/2016] [Indexed: 12/23/2022]
Abstract
PURPOSE The treatment of large bone defects represents a significant challenge for orthopaedic surgeons. In recent years, biologic agents have also been used to further improve bone healing. Among these, platelet-rich plasma (PRP) is the most exploited strategy. The aim of the present study was to systematically review the available literature to identify: 1) preclinical in-vivo results supporting the rational of PRP use for bone healing; 2) evidence from the clinical practice on the actual clinical benefit of PRP for the treatment of fractures and complications such as delayed unions and non-unions. METHODS A systematic review of the literature was performed on the application of PRP in bone healing, using the following inclusion criteria: pre-clinical and clinical reports of any level of evidence, written in English language, published in the last 20 years (1996-2016), on the use of PRP to stimulate long-bone defect treatment, with focus on fracture and delayed/non-unions healing. RESULTS The search in the Pubmed database identified 64 articles eligible for inclusion: 45 were preclinical in-vivo studies and 19 were clinical studies. Despite the fact that the overall pre-clinical results seem to support the benefit of PRP in 91.1 % of the studies, a more in depth analysis underlined a lower success rate, with a positive outcome of 84.4 % in terms of histological analysis, and even lower values considering radiological and biomechanical results (75.0 % and 72.7 % positive outcome respectively). This was also mirrored in the clinical literature, where the real benefit of PRP use to treat fractures and non-unions is still under debate. CONCLUSION Overall, the available literature presents major limitations in terms of low quality and extreme heterogeneity, which hamper the possibility to optimize PRP treatment and translate it into a real clinical benefit despite positive preclinical findings on its biological potential to favour bone healing.
Collapse
|
20
|
Gubin AV, Borzunov DY, Marchenkova LO, Malkova TA, Smirnova IL. Contribution of G.A. Ilizarov to bone reconstruction: historical achievements and state of the art. Strategies Trauma Limb Reconstr 2016; 11:145-152. [PMID: 27432154 PMCID: PMC5069200 DOI: 10.1007/s11751-016-0261-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/09/2016] [Indexed: 02/07/2023] Open
Abstract
Methodological solutions of Prof. G.A. Ilizarov are the core stone of the contemporary bone lengthening and reconstruction surgery. They have been acknowledged in the orthopaedic world as one of the greatest contributions to treating bone pathologies. The Ilizarov method of transosseous compression-distraction osteosynthesis has been widely used for managing bone non-union and defects, bone infection, congenital and posttraumatic limb length discrepancies, hand and foot disorders. The optimal conditions for implementing distraction and compression osteogenesis were proven by numerous experimental studies that Prof. G.A. Ilizarov organized and supervised at a large orthopaedic research institute in Kurgan. The tension stress effect on regeneration and growth of tissues was thoroughly investigated with radiographic, histological and biochemical methods. The impact of the Ilizarov method on the progress of bone lengthening and reconstruction surgery could be called revolutionary.
Collapse
Affiliation(s)
- Alexander V Gubin
- Russian Ilizarov Scientific Center for Restorative Traumatology and Orthopaedics, 6, M. Ulianova Street, Kurgan, Russian Federation, 640014
| | - Dmitry Y Borzunov
- Russian Ilizarov Scientific Center for Restorative Traumatology and Orthopaedics, 6, M. Ulianova Street, Kurgan, Russian Federation, 640014
| | - Larisa O Marchenkova
- Russian Ilizarov Scientific Center for Restorative Traumatology and Orthopaedics, 6, M. Ulianova Street, Kurgan, Russian Federation, 640014
| | - Tatiana A Malkova
- Russian Ilizarov Scientific Center for Restorative Traumatology and Orthopaedics, 6, M. Ulianova Street, Kurgan, Russian Federation, 640014.
| | - Irina L Smirnova
- Russian Ilizarov Scientific Center for Restorative Traumatology and Orthopaedics, 6, M. Ulianova Street, Kurgan, Russian Federation, 640014
| |
Collapse
|