1
|
Liu YT, Wang YF, Zhang MZ, Zhu DY, Sun Y, Gong CW, Zhan L, Cui XM, Cao WC. High Diversity and Prevalence of Rickettsial Agents in Rhipicephalus microplus Ticks from Livestock in Karst Landscapes of Southwest China. Microorganisms 2025; 13:765. [PMID: 40284602 PMCID: PMC12029551 DOI: 10.3390/microorganisms13040765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/22/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025] Open
Abstract
Ticks and tick-borne pathogens pose a significant threat to human and animal health, yet the diversity and prevalence of tick-borne microorganisms in karst regions remains inadequately explored. In October 2023, a total of 274 Rhipicephalus microplus ticks were collected from livestock in Guizhou Province, which boasts the largest karst area in China. Pathogen identification was subsequently performed using PCR amplification, Sanger sequencing, and phylogenetic analysis. High microbial diversity was noted, with five bacterial species from the order Rickettsiales detected, including those from the genera Rickettsia (family Rickettsiaceae), Anaplasma, and Ehrlichia (family Anaplasmataceae). The overall prevalence of infection with at least one pathogen was remarkably high at 94.5%. The highest positive rate was observed for Candidatus Rickettsia jingxinensis at 90.9%. A novel Ehrlichia species, provisionally designated as Candidatus Ehrlichia carsus, was identified with a positive rate of 16.8%. In addition, Anaplasma marginale, Ehrlchia minasensis and Ehrlichia canis were detected in 15.3%, 4.7% and 1.5%, respectively. The co-infections involving two or three rickettsial species were observed in 34.3% ticks. These findings highlight the high diversity and prevalence of tick-borne rickettsial agents in the karst area, underscoring the need for enhanced surveillance and effective tick control to mitigate disease risks to both humans and livestock.
Collapse
Affiliation(s)
- Ya-Ting Liu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (Y.-T.L.)
| | - Yi-Fei Wang
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (Y.-F.W.)
| | - Ming-Zhu Zhang
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (Y.-F.W.)
| | - Dai-Yun Zhu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (Y.-T.L.)
| | - Yi Sun
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (Y.-T.L.)
| | - Cai-Wei Gong
- Animal Husbandry Development Center of Qiannan Buyei and Miao Autonomous Prefecture, Duyun 558000, China
| | - Lin Zhan
- National Health Commission Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People’s Hospital, Guiyang 550001, China
| | - Xiao-Ming Cui
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (Y.-T.L.)
| | - Wu-Chun Cao
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (Y.-T.L.)
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (Y.-F.W.)
| |
Collapse
|
2
|
Zubriková D, Blaňarová L, Hrkľová G, Syrota Y, Macko J, Blahútová D, Blažeková V, Stanko M, Švirlochová K, Víchová B. The Impact of Altitude on Tick-Borne Pathogens at Two Mountain Ranges in Central Slovakia. Pathogens 2024; 13:586. [PMID: 39057813 PMCID: PMC11279755 DOI: 10.3390/pathogens13070586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Ticks are ectoparasites of a wide range of animals and are important vectors of numerous pathogens affecting humans, livestock, and pets. This study investigates possible correlations between selected factors, altitude, soil pH, and a factor called 'amount' (number of ticks examined in pooled samples) on the occurrence of I. ricinus ticks positive for selected tick-borne microorganisms. Questing I. ricinus ticks were collected in 2016 and 2017 across various altitudes, at two mountain ranges in central Slovakia. Tick pools were screened for the presence of Anaplasma phagocytophilum, Borrelia burgdorferi sensu lato (Bbsl), Babesia/Theileria spp., Rickettsia spp., and tick-borne encephalitis virus (TBEV) using molecular methods. Regression analysis was employed to evaluate relationships between selected factors and the occurrence of vector-borne microorganisms. This study revealed a statistically significant influence of altitude on the occurrence of A. phagocytophilum; increasing altitude of the sampling site was associated with increased probability of pathogen occurrence. For Babesia/Theileria spp., neither altitude nor soil pH significantly affected pathogen occurrence. The occurrence of Bbsl was notably impacted by both altitude and soil pH; higher altitudes were associated with a decreased probability of pathogen presence, whereas higher soil pH increased the likelihood of pathogen occurrence. The presence of Rickettsia in a pooled sample was not affected by altitude and soil pH, but the 'amount' factor was a significant predictor, increasing the probability of pathogen detection. Neither altitude nor soil pH had a significant impact on TBEV occurrence. The regression models showed moderate goodness-of-fit levels to the data, underscoring their utility in examining the role of altitude and soil pH on pathogen occurrence. However, they explained only a small portion of the overall variance in pathogen occurrence, indicating the presence of other significant factors not covered in this study.
Collapse
Affiliation(s)
- Dana Zubriková
- Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 040 01 Košice, Slovakia (Y.S.)
| | - Lucia Blaňarová
- Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 040 01 Košice, Slovakia (Y.S.)
| | - Gabriela Hrkľová
- Department of Biology and Ecology, Catholic University in Ružomberok, Hrabovská Cesta 1A, 034 01 Ružomberok, Slovakia
| | - Yaroslav Syrota
- Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 040 01 Košice, Slovakia (Y.S.)
- I. I. Schmalhausen Institute of Zoology NAS of Ukraine, Bogdan Khmelnytsky Street, 15, 01054 Kyiv, Ukraine
| | - Jozef Macko
- Department of Biology and Ecology, Catholic University in Ružomberok, Hrabovská Cesta 1A, 034 01 Ružomberok, Slovakia
| | - Dana Blahútová
- Department of Biology and Ecology, Catholic University in Ružomberok, Hrabovská Cesta 1A, 034 01 Ružomberok, Slovakia
| | - Veronika Blažeková
- Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 040 01 Košice, Slovakia (Y.S.)
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia
| | - Michal Stanko
- Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 040 01 Košice, Slovakia (Y.S.)
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 06 Bratislava, Slovakia
| | - Klaudia Švirlochová
- Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 040 01 Košice, Slovakia (Y.S.)
| | - Bronislava Víchová
- Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 040 01 Košice, Slovakia (Y.S.)
| |
Collapse
|
3
|
Blažeková V, Stanko M, Sprong H, Kohl R, Zubriková D, Vargová L, Bona M, Miklisová D, Víchová B. Ixodiphagus hookeri (Hymenoptera: Encyrtidae) and Tick-Borne Pathogens in Ticks with Sympatric Occurrence (and Different Activities) in the Slovak Karst National Park (Slovakia), Central Europe. Pathogens 2024; 13:385. [PMID: 38787237 PMCID: PMC11123704 DOI: 10.3390/pathogens13050385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/27/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024] Open
Abstract
Ticks are involved in the transmission a plethora of pathogens. To effectively control ticks and mitigate the risks associated with tick-borne diseases, it is important to implement tick control measures. These may include the use of acaricides as well as the development and implementation of an alternative, environmentally friendly tick management program that include practices such as habitat modification or establishing biological control. Ixodiphagus hookeri Howard is a tick-specific parasitoid wasp that predates on several species of ixodid ticks and could contribute to the control of the tick population. This work aimed to detect the presence of parasitoid wasps in ticks (Ixodidae) using genetic approaches. Several tick species of the genera Ixodes, Haemaphysalis, and Dermacentor, with a sympatric occurrence in the Slovak Karst National Park in southeastern Slovakia, were screened for the presence of wasps of the genus Ixodiphagus. The DNA of the parasitoids was detected in four tick species from three genera. This work presents the first molecular detection of parasitoids in two Dermacentor tick species, as well as the first molecular identification of Ixodiphagus wasps in Ixodes ricinus and Haemaphysalis concinna ticks from the Karst area. In the given area, it was observed that I. ricinus and H. concinna ticks are hyper-parasitized by wasps. Moreover, it was observed that wasps here can parasitize several tick species, some of which are of less significance for human and animal health (as they transmit fewer pathogens).
Collapse
Affiliation(s)
- Veronika Blažeková
- Laboratory of Molecular Ecology of Vectors, Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 040 01 Košice, Slovakia; (V.B.); (M.S.); (D.Z.); (L.V.); (D.M.)
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 040 81 Košice, Slovakia
| | - Michal Stanko
- Laboratory of Molecular Ecology of Vectors, Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 040 01 Košice, Slovakia; (V.B.); (M.S.); (D.Z.); (L.V.); (D.M.)
- Institute of Zoology Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia
| | - Hein Sprong
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands; (H.S.); (R.K.)
| | - Robert Kohl
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands; (H.S.); (R.K.)
| | - Dana Zubriková
- Laboratory of Molecular Ecology of Vectors, Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 040 01 Košice, Slovakia; (V.B.); (M.S.); (D.Z.); (L.V.); (D.M.)
| | - Lucia Vargová
- Laboratory of Molecular Ecology of Vectors, Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 040 01 Košice, Slovakia; (V.B.); (M.S.); (D.Z.); (L.V.); (D.M.)
| | - Martin Bona
- Department of Medical Physiology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia;
| | - Dana Miklisová
- Laboratory of Molecular Ecology of Vectors, Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 040 01 Košice, Slovakia; (V.B.); (M.S.); (D.Z.); (L.V.); (D.M.)
| | - Bronislava Víchová
- Laboratory of Molecular Ecology of Vectors, Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 040 01 Košice, Slovakia; (V.B.); (M.S.); (D.Z.); (L.V.); (D.M.)
| |
Collapse
|
4
|
Petrović A, Stanić K, Popović A, Ivanović I, Supić D, Marinković D, Bursić V. Seasonal Dynamics and Physiological Age of Ixodid Ticks Collected from Dogs. Animals (Basel) 2023; 13:3026. [PMID: 37835632 PMCID: PMC10571853 DOI: 10.3390/ani13193026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
In order to reproduce and complete life cycles, ticks have to feed on different hosts, thus participating as vectors and reservoirs in the maintenance and circulation of different pathogens. Since dogs can serve as suitable hosts for numerous tick species, the aims of this study were to determine tick species and their seasonal occurrence on pet dogs and to compare the accuracy of three indices frequently used to calculate engorged female physiological age. Ticks were collected from dogs brought to veterinary clinics. Three indices were analyzed: scutal index, alloscutal/scutal index ratio, and physiological age index. Four tick species were identified: Ixodes ricinus, Dermacentor marginatus, D. reticulatus, and Rhipicephalus sanguineus group, and the last was the most abundant. The highest number of collected ticks was in April, but two species were continuously active throughout the year. The statistical analyses distinguished the physiological age index as more precise because of lower variability. Dog owners usually ignore regular dog anti-tick treatments throughout the year, as they are not aware that ticks could be active during the winter months. Tick surveillance is unquestionably important in order to monitor and prevent the distribution of these vectors and also the diseases they transmit.
Collapse
Affiliation(s)
- Aleksandra Petrović
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia; (A.P.); (K.S.); (I.I.); (D.M.); (V.B.)
| | - Ksenija Stanić
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia; (A.P.); (K.S.); (I.I.); (D.M.); (V.B.)
- Agro-Vet, Šenoina 16/I, 24000 Subotica, Serbia
| | - Aleksandra Popović
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia; (A.P.); (K.S.); (I.I.); (D.M.); (V.B.)
| | - Ivana Ivanović
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia; (A.P.); (K.S.); (I.I.); (D.M.); (V.B.)
| | - Dejan Supić
- Faculty of Ecological Agriculture, University Educons, Vojvode Putnika 87, 21208 Sremska Kamenica, Serbia;
| | - Dušan Marinković
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia; (A.P.); (K.S.); (I.I.); (D.M.); (V.B.)
| | - Vojislava Bursić
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia; (A.P.); (K.S.); (I.I.); (D.M.); (V.B.)
| |
Collapse
|
5
|
Noll M, Wall R, Makepeace BL, Vineer HR. Distribution of ticks in the Western Palearctic: an updated systematic review (2015-2021). Parasit Vectors 2023; 16:141. [PMID: 37095583 PMCID: PMC10127368 DOI: 10.1186/s13071-023-05773-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/12/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND The distributions of ticks and tick-borne pathogens are thought to have changed rapidly over the last two decades, with their ranges expanding into new regions. This expansion has been driven by a range of environmental and socio-economic factors, including climate change. Spatial modelling is being increasingly used to track the current and future distributions of ticks and tick-borne pathogens and to assess the associated disease risk. However, such analysis is dependent on high-resolution occurrence data for each species. To facilitate such analysis, in this review we have compiled georeferenced tick locations in the Western Palearctic, with a resolution accuracy under 10 km, that were reported between 2015 and 2021 METHODS: The PubMed and Web of Science databases were searched for peer-reviewed papers documenting the distribution of ticks that were published between 2015 and 2021, using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The papers were then screened and excluded in accordance with the PRISMA flow chart. Coordinate-referenced tick locations along with information on identification and collection methods were extracted from each eligible publication. Spatial analysis was conducted using R software (version 4.1.2). RESULTS From the 1491 papers identified during the initial search, 124 met the inclusion criteria, and from these, 2267 coordinate-referenced tick records from 33 tick species were included in the final dataset. Over 30% of articles did not record the tick location adequately to meet inclusion criteria, only providing a location name or general location. Among the tick records, Ixodes ricinus had the highest representation (55%), followed by Dermacentor reticulatus (22.1%) and Ixodes frontalis (4.8%). The majority of ticks were collected from vegetation, with only 19.1% collected from hosts. CONCLUSIONS The data presented provides a collection of recent high-resolution, coordinate-referenced tick locations for use in spatial analyses, which in turn can be used in combination with previously collated datasets to analyse the changes in tick distribution and research in the Western Palearctic. In the future it is recommended that, where data privacy rules allow, high-resolution methods are routinely used by researchers to geolocate tick samples and ensure their work can be used to its full potential.
Collapse
Affiliation(s)
- Madeleine Noll
- Institute of Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.
| | - Richard Wall
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Benjamin L Makepeace
- Institute of Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Hannah Rose Vineer
- Institute of Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
6
|
New challenges posed by ticks and tick-borne diseases. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01097-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|