1
|
Yang P, Feng J, Chen J. Engineered S. cerevisiae construction for high-gravity ethanol production and targeted metabolomics. Appl Microbiol Biotechnol 2025; 109:67. [PMID: 40105951 PMCID: PMC11922986 DOI: 10.1007/s00253-025-13446-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 02/10/2025] [Accepted: 02/24/2025] [Indexed: 03/22/2025]
Abstract
Strong sugar tolerance and high bioethanol yield of yeast under high-gravity fermentation have caused great attention in the bioethanol industry. In this study, Clustered Regularly Interspaced Short Palindromic Repeats Cas9 (CRISPR-Cas9) technology was used to knock out S. cerevisiae GPD2, FPS1, ADH2, DLD3, ERG5, NTH1, and AMS1 to construct engineering strain S. cerevisiae GFADENA. Under high-gravity fermentation with 400 g/L of sucrose, S. cerevisiae GFADENA produced 135 g/L ethanol, which increased 17% compared with the wild-type strain. In addition, S. cerevisiae GFADENA produced 145 g/L of ethanol by simultaneous saccharification and fermentation (SSF) using 400 g/L of corn syrup with a sugar-ethanol conversion rate of 41.1%. Further, the targeted metabolomics involving energy, amino acid, and free fatty acid metabolisms were performed to unravel its molecular mechanisms. The deletion of seven genes in S. cerevisiae GFADENA caused a more significant effect on energy metabolism compared with amino acid and free fatty acid metabolisms based on the significantly different metabolites. Two metabolites α-ketoglutaric acid and fructose-1,6-bisphosphate were the most significantly different upregulation and downregulation metabolites, respectively (p < 0.05). Functions of metabolism, environmental information processing, and genetic information processing were related to sucrose tolerance enhancement and ethanol production increase in S. cerevisiae GFADENA by the regulation of significantly different metabolites. This study provided an effective pathway to increase ethanol yield and enhance sucrose tolerance in S. cerevisiae through bioengineering modification. KEY POINTS: • S. cerevisiae GFADENA with gene deletion was constructed by the CRISPR-Cas9 approach • S. cerevisiae GFADENA could produce ethanol using high-gravity fermentation condition • The ethanol yield of 145 g/L was produced using 400 g/L corn syrup by the SSF method.
Collapse
Affiliation(s)
- Peizhou Yang
- School of Food and Biological Engineering, Anhui Province Key Laboratory of Agricultural Products Modern Processing, Hefei University of Technology, Feicui Road 420, Shushan District, Hefei, 230601, China.
| | - Jiaqi Feng
- School of Food and Biological Engineering, Anhui Province Key Laboratory of Agricultural Products Modern Processing, Hefei University of Technology, Feicui Road 420, Shushan District, Hefei, 230601, China
| | - Jianchao Chen
- School of Food and Biological Engineering, Anhui Province Key Laboratory of Agricultural Products Modern Processing, Hefei University of Technology, Feicui Road 420, Shushan District, Hefei, 230601, China
| |
Collapse
|
2
|
Díaz-Navarrete P, Sáez-Arteaga A, Marileo L, Alors D, Correa-Galeote D, Dantagnan P. Enhancing Selenium Accumulation in Rhodotorula mucilaginosa Strain 6S Using a Proteomic Approach for Aquafeed Development. Biomolecules 2024; 14:629. [PMID: 38927033 PMCID: PMC11201420 DOI: 10.3390/biom14060629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
It is known that selenium (Se) is an essential trace element, important for the growth and other biological functions of fish. One of its most important functions is to contribute to the preservation of certain biological components, such as DNA, proteins, and lipids, providing protection against free radicals resulting from normal metabolism. The objective of this study was to evaluate and optimize selenium accumulation in the native yeast Rhodotorula mucilaginosa 6S. Sodium selenite was evaluated at different concentrations (5-10-15-20-30-40 mg/L). Similarly, the effects of different concentrations of nitrogen sources and pH on cell growth and selenium accumulation in the yeast were analyzed. Subsequently, the best cultivation conditions were scaled up to a 2 L reactor with constant aeration, and the proteome of the yeast cultured with and without sodium selenite was evaluated. The optimal conditions for biomass generation and selenium accumulation were found with ammonium chloride and pH 5.5. Incorporating sodium selenite (30 mg/L) during the exponential phase in the bioreactor after 72 h of cultivation resulted in 10 g/L of biomass, with 0.25 mg total Se/g biomass, composed of 25% proteins, 15% lipids, and 0.850 mg total carotenoids/g biomass. The analysis of the proteomes associated with yeast cultivation with and without selenium revealed a total of 1871 proteins. The results obtained showed that the dynamic changes in the proteome, in response to selenium in the experimental medium, are directly related to catalytic activity and oxidoreductase activity in the yeast. R. mucilaginosa 6S could be an alternative for the generation of selenium-rich biomass with a composition of other nutritional compounds also of interest in aquaculture, such as proteins, lipids, and pigments.
Collapse
Affiliation(s)
- Paola Díaz-Navarrete
- Departamento de Ciencias Veterinarias y Salud Pública, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4780000, Chile
- Núcleo de Investigación en Producción Alimentaria, Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4780000, Chile;
| | - Alberto Sáez-Arteaga
- Centro de Investigación Innovación y Creación (CIIC-UCT), Universidad Católica de Temuco, Temuco 4780000, Chile;
- Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4780000, Chile
| | - Luis Marileo
- Escuela de Medicina Veterinaria, Facultad de Recursos Naturales y Medicina Veterinaria, Universidad Santo Tomás, Temuco 4780000, Chile;
| | - David Alors
- Departamento de Ciencias Biológicas y Químicas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4780000, Chile;
| | - David Correa-Galeote
- Departamento de Microbiología, Facultad de Farmacia, Universidad de Granada, 18012 Granada, Spain;
| | - Patricio Dantagnan
- Núcleo de Investigación en Producción Alimentaria, Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4780000, Chile;
- Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4780000, Chile
| |
Collapse
|
3
|
Roberts TM, Kaltenbach HM, Rudolf F. Development and optimisation of a defined high cell density yeast medium. Yeast 2020; 37:336-347. [PMID: 32065695 DOI: 10.1002/yea.3464] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 01/05/2023] Open
Abstract
Saccharomyces cerevisiae cells grown in a small volume of chemically defined media neither reach the desired cell density nor grow at a fast enough rate to scale down the volume and increase the sample number of classical biochemical assays, as the detection limit of the readout often requires a high number of cells as an input. To ameliorate this problem, we developed and optimised a new high cell density (HCD) medium for S. cerevisiae. Starting from a widely used synthetic medium composition, we systematically varied the concentrations of all components without the addition of other compounds. We used response surface methodology to develop and optimise the five components of the medium: glucose, yeast nitrogen base, amino acids, monosodium glutamate, and inositol. We monitored growth, cell number, and cell size to ensure that the optimisation was towards a greater density of cells rather than just towards an increase in biomass (i.e., larger cells). Cells grown in the final medium, HCD, exhibit growth more similar to the complex medium yeast extract peptone dextrose (YPD) than to the synthetic defined (SD) medium. Whereas the final cell density of HCD prior to the diauxic shift is increased compared with YPD and SD about threefold and tenfold, respectively. We found normal cell-cycle behaviour throughout the growth phases by monitoring DNA content and protein expression using fluorescent reporters. We also ensured that HCD media could be used with a variety of strains and that they allow selection for all common yeast auxotrophic markers.
Collapse
Affiliation(s)
- Tania Michelle Roberts
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstr. 26, Basel, 4058, Switzerland
| | - Hans-Michael Kaltenbach
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstr. 26, Basel, 4058, Switzerland.,SIB Swiss Institute of Bioinformatics, ETH Zurich, Basel, Switzerland
| | - Fabian Rudolf
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstr. 26, Basel, 4058, Switzerland.,SIB Swiss Institute of Bioinformatics, ETH Zurich, Basel, Switzerland
| |
Collapse
|
4
|
Preparation of Selenium-Enriched Yeast by Re-Using Discarded Saccharomyces cerevisiae from the Beer Industry for Se-Supplemented Fodder Applications. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9183777] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Both inorganic and organic selenium (Se) can prevent and treat various diseases caused by Se deficiency. However, organic Se has less toxicity and a higher absorption rate than inorganic Se. In this study, inorganic Se (Na2SeO3) was bio-transformed into Se-enriched discarded beer yeast (Se-enriched DB-yeast) through fermentation accumulation by re-using discarded Saccharomyces cerevisiae from the beer industry for Se-enriched fodder application. Through a single-factor experiment and L9(34)-orthogonal test for optimization of fermentation conditions, the Se content and biomass of Se-enriched DB-yeast were calculated as 14.95 mg/L and 7.3 g/L, respectively, under the optimized condition. The total amino-acid content of Se-enriched DB-yeast was increased by 9.9% compared with that from DB yeast. Additionally, alkaline amino-acid content was increased, whereas acidic amino-acid and sulfur-containing amino-acid contents were decreased. Reducing capacity, hydroxyl radical removal capacity, and sulfhydryl content after treatment with H2O2 of the Se-enriched DB-yeast extracted protein were obviously increased compared with those of the DB-yeast extracted protein. Mouse and genetically improved farmed tilapia (Oreochromis niloticus) (GIFT) bioassays showed that the Se sedimentation of organs and serum indexes after feeding Se-enriched DB-yeast-containing fodder were higher than those of DB-yeast-containing fodder. The half lethal dose (LD50) of Se-enriched DB-yeast (9260.0 mg/kg body weight (BW), 18.97 mg/kg of Se content, non-toxic level) was considerably higher than that of Na2SeO3 (20.0 mg/kg BW, 5.08 mg/kg of Se content, highly toxic level) against mouse. Therefore, Se-enriched yeast prepared by re-using discarded S. cerevisiae from beer industry fermentation accumulation has the potential to be a safe and effective Se-enriched fodder additive.
Collapse
|
5
|
The mechanism of improved intracellular organic selenium and glutathione contents in selenium-enriched Candida utilis by acid stress. Appl Microbiol Biotechnol 2016; 101:2131-2141. [PMID: 27896382 DOI: 10.1007/s00253-016-8016-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/21/2016] [Accepted: 11/13/2016] [Indexed: 10/20/2022]
Abstract
Batch culture of Candida utilis CCTCC M 209298 for the preparation of selenium (Se)-enriched yeast was carried out under different pH conditions, and maximal intracellular organic Se and glutathione (GSH) contents were obtained in a moderate acid stress environment (pH 3.5). In order to elucidate the physiological mechanism of improved performance of Se-enriched yeast by acid stress, assays of the key enzymes involved in GSH biosynthesis and determinations of energy supply and regeneration were performed. The results indicated that moderate acid stress increased the activity of γ-glutamylcysteine synthetase and the ratios of NADH/NAD+ and ATP/ADP, although no significant changes in intracellular pH were observed. In addition, the molecular mechanism of moderate acid stress favoring the improvement of Se-yeast performance was revealed by comparing whole transcriptomes of yeast cells cultured at pH 3.5 and 5.5. Comparative analysis of RNA-Seq data indicated that 882 genes were significantly up-regulated by moderate acid stress. Functional annotation of the up-regulated genes based on gene ontology and the Kyoto Encyclopedia of Genes and Genome (KEGG) pathway showed that these genes are involved in ATP synthesis and sulfur metabolism, including the biosynthesis of methionine, cysteine, and GSH in yeast cells. Increased intracellular ATP supply and more amounts of sulfur-containing substances in turn contributed to Na2SeO3 assimilation and biotransformation, which ultimately improved the performance of the Se-enriched C. utilis.
Collapse
|
6
|
Wang D, Yang B, Wei G, Liu Z, Wang C. Efficient preparation of selenium/glutathione-enriched Candida utilis and its biological effects on rats. Biol Trace Elem Res 2012; 150:249-57. [PMID: 22661074 DOI: 10.1007/s12011-012-9459-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 05/20/2012] [Indexed: 10/28/2022]
Abstract
The main purpose of this study was to prepare selenium/glutathione-enriched Candida utilis and investigate its effect on growth performance, antioxidant capacity, and immune response in rats. The preparation of the selenium/glutathione-enriched yeast was conducted using fed-batch culture for high cell density. The optimal culture conditions for increased intracellular organic selenium and glutathione contents were as follows: the concentrated medium was fed beginning at 12 h using a polynomial feeding strategy until a total glucose concentration of 150 g/l was reached, and sodium selenite was continuously added together with glucose to a total concentration of 60 mg/l. As a result, 81 % of sodium selenite was assimilated and transformed into organic selenium by C. utilis under optimal conditions, which in turn resulted in greater glutathione accumulation and lower malondialdehyde cellular content in the yeast. To investigate and compare the effects of the prepared selenized C. utilis and other dietary supplements, 40 female rats were divided into five groups of eight rats each, following a randomized block design. Experimental feeding was conducted for a period of 6 weeks. Selenium supplementation with inorganic selenium (sodium selenite) and organic selenium (selenized C. utilis) showed better results than the control and other groups supplemented with yeast with or without glutathione. The body mass of rats, selenium deposition, and oxidative enzymes activities in both serum and liver samples, and immunity responses were all significantly improved by selenium supplementation, and between the two sources, organic selenium was more effective than inorganic selenium.
Collapse
Affiliation(s)
- Dahui Wang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China
| | | | | | | | | |
Collapse
|
7
|
Biener R, Steinkämper A, Horn T. Calorimetric control of the specific growth rate during fed-batch cultures of Saccharomyces cerevisiae. J Biotechnol 2012; 160:195-201. [DOI: 10.1016/j.jbiotec.2012.03.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 02/22/2012] [Accepted: 03/09/2012] [Indexed: 11/26/2022]
|