1
|
Hasan MM, Noyon MAR, Akash AI, Uddin ME, Islam R, Maafa I, Yousef A. Fabrication of PVA-PVC composite membrane for enhanced TDS removal from tannery effluent: sustainable water treatment approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:976-992. [PMID: 39715930 DOI: 10.1007/s11356-024-35811-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 12/13/2024] [Indexed: 12/25/2024]
Abstract
The environmental burden of tannery wastewater, characterized by high levels of total dissolved solids (TDS) and other contaminants, presents a significant challenge for sustainable water management. This study addresses this issue by developing a novel polyvinyl alcohol (PVA) and polyvinyl chloride (PVC) composite membrane optimized for efficient TDS removal from tannery effluent. The membrane was fabricated using a solution casting technique, with glutaraldehyde employed as a crosslinking agent to enhance mechanical properties and stability. Characterization techniques, including Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), zeta potential analysis, and contact angle measurements, were used to evaluate the membrane's surface chemistry, morphology, and hydrophilicity, which are crucial for pollutant separation. Performance testing demonstrated that the membrane achieved a TDS removal efficiency of 91.73% at an optimal pH of 8 and a transmembrane pressure of 3.5 bar, with a permeability of 194 Lm-2 h-1 bar-1. Additionally, substantial reductions in turbidity (94.51%), chemical oxygen demand (COD, 91.91%), biological oxygen demand (BOD, 89.70%), salinity (80.57%), and total suspended solids (TSS, 96.45%) were observed. The membrane exhibited impressive mechanical properties, with a tensile strength of 44 ± 0.43 MPa, 150 ± 0.67% elongation at break, Young's modulus of 750 ± 0.47 MPa, and flexibility of 23 ± 0.53%, indicating its flexibility and durability. Its partial biodegradability and potential for scalable production contribute to its environmental sustainability. This work establishes the PVA-PVC composite membrane as a promising and cost-effective solution for industrial wastewater treatment, offering a sustainable approach to mitigating water pollution in the leather industry.
Collapse
Affiliation(s)
- Md Mahadi Hasan
- Department of Leather Engineering, Faculty of Mechanical Engineering, Khulna University of Engineering & Technology, Khulna, 9203, Bangladesh
| | - Md Ashikur Rahaman Noyon
- Department of Leather Engineering, Faculty of Mechanical Engineering, Khulna University of Engineering & Technology, Khulna, 9203, Bangladesh
| | - Azmain Iktider Akash
- Department of Leather Engineering, Faculty of Mechanical Engineering, Khulna University of Engineering & Technology, Khulna, 9203, Bangladesh
| | - Md Elias Uddin
- Department of Leather Engineering, Faculty of Mechanical Engineering, Khulna University of Engineering & Technology, Khulna, 9203, Bangladesh.
| | - Rashedul Islam
- Department of Leather Engineering, Faculty of Mechanical Engineering, Khulna University of Engineering & Technology, Khulna, 9203, Bangladesh
| | - Ibrahim Maafa
- Department of Chemical Engineering, Faculty of Engineering, Jazan University, 11451, Jazan, Saudi Arabia
| | - Ayman Yousef
- Department of Chemical Engineering, Faculty of Engineering, Jazan University, 11451, Jazan, Saudi Arabia
- Department of Mathematics and Physics Engineering, Faculty of Engineering at Mataria, Helwan University, Cairo, 11718, Egypt
| |
Collapse
|
2
|
Lau HS, Lau SK, Soh LS, Hong SU, Gok XY, Yi S, Yong WF. State-of-the-Art Organic- and Inorganic-Based Hollow Fiber Membranes in Liquid and Gas Applications: Looking Back and Beyond. MEMBRANES 2022; 12:539. [PMID: 35629866 PMCID: PMC9144028 DOI: 10.3390/membranes12050539] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022]
Abstract
The aggravation of environmental problems such as water scarcity and air pollution has called upon the need for a sustainable solution globally. Membrane technology, owing to its simplicity, sustainability, and cost-effectiveness, has emerged as one of the favorable technologies for water and air purification. Among all of the membrane configurations, hollow fiber membranes hold promise due to their outstanding packing density and ease of module assembly. Herein, this review systematically outlines the fundamentals of hollow fiber membranes, which comprise the structural analyses and phase inversion mechanism. Furthermore, illustrations of the latest advances in the fabrication of organic, inorganic, and composite hollow fiber membranes are presented. Key findings on the utilization of hollow fiber membranes in microfiltration (MF), nanofiltration (NF), reverse osmosis (RO), forward osmosis (FO), pervaporation, gas and vapor separation, membrane distillation, and membrane contactor are also reported. Moreover, the applications in nuclear waste treatment and biomedical fields such as hemodialysis and drug delivery are emphasized. Subsequently, the emerging R&D areas, precisely on green fabrication and modification techniques as well as sustainable materials for hollow fiber membranes, are highlighted. Last but not least, this review offers invigorating perspectives on the future directions for the design of next-generation hollow fiber membranes for various applications. As such, the comprehensive and critical insights gained in this review are anticipated to provide a new research doorway to stimulate the future development and optimization of hollow fiber membranes.
Collapse
Affiliation(s)
- Hui Shen Lau
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Siew Kei Lau
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Leong Sing Soh
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Seang Uyin Hong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Xie Yuen Gok
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Shouliang Yi
- U.S. Department of Energy, National Energy Technology Laboratory, 626 Cochrans Mill Rd, Pittsburgh, PA 15236, USA;
| | - Wai Fen Yong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
3
|
Gallardo MR, Ang MBMY, Millare JC, Huang SH, Tsai HA, Lee KR. Vacuum-Assisted Interfacial Polymerization Technique for Enhanced Pervaporation Separation Performance of Thin-Film Composite Membranes. MEMBRANES 2022; 12:508. [PMID: 35629835 PMCID: PMC9144448 DOI: 10.3390/membranes12050508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 11/24/2022]
Abstract
In this work, thin-film composite polyamide membranes were fabricated using triethylenetetramine (TETA) and trimesoyl chloride (TMC) following the vacuum-assisted interfacial polymerization (VAIP) method for the pervaporation (PV) dehydration of aqueous isopropanol (IPA) solution. The physical and chemical properties as well as separation performance of the TFCVAIP membranes were compared with the membrane prepared using the traditional interfacial polymerization (TIP) technique (TFCTIP). Characterization results showed that the TFCVAIP membrane had a higher crosslinking degree, higher surface roughness, and denser structure than the TFCTIP membrane. As a result, the TFCVAIP membrane exhibited a higher separation performance in 70 wt.% aqueous IPA solution at 25 °C with permeation flux of 1504 ± 169 g∙m-2∙h-1, water concentration in permeate of 99.26 ± 0.53 wt%, and separation factor of 314 (five times higher than TFCTIP). Moreover, the optimization of IP parameters, such as variation of TETA and TMC concentrations as well as polymerization time for the TFCVAIP membrane, was carried out. The optimum condition in fabricating the TFCVAIP membrane was 0.05 wt.% TETA, 0.1 wt% TMC, and 60 s polymerization time.
Collapse
Affiliation(s)
- Marwin R. Gallardo
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan; (M.R.G.); (H.-A.T.)
| | - Micah Belle Marie Yap Ang
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan; (M.R.G.); (H.-A.T.)
| | - Jeremiah C. Millare
- School of Chemical, Biological and Materials Engineering and Sciences, Mapúa University, Manila 1002, Philippines;
| | - Shu-Hsien Huang
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan; (M.R.G.); (H.-A.T.)
- Department of Chemical and Materials Engineering, National Ilan University, Yilan 26047, Taiwan
| | - Hui-An Tsai
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan; (M.R.G.); (H.-A.T.)
| | - Kueir-Rarn Lee
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan; (M.R.G.); (H.-A.T.)
- Research Center for Circular Economy, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| |
Collapse
|
4
|
Development of Novel Membranes Based on Polyvinyl Alcohol Modified by Pluronic F127 for Pervaporation Dehydration of Isopropanol. SUSTAINABILITY 2022. [DOI: 10.3390/su14063561] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Membrane methods are environmentally friendly and can significantly improve the design and development of new energy consumption processes that are very important nowadays. However, their effective use requires advanced membrane materials. This study aims to improve the performance of pervaporation polyvinyl alcohol (PVA)-based membrane for isopropanol dehydration. To achieve this goal, two methods were applied: (1) bulk modification of PVA by Pluronic F127 and (2) development of supported PVA-based membrane using polyphenylene isophthalamide (PA) as a substrate with a various porosity. Developed membranes were characterized by Fourier-transform infrared spectroscopy, scanning electron microscopy (SEM), contact angle measurement, and swelling experiments. The concentration influence of PA casting solution (12–20 wt.%) on the performance of porous PA membranes (substrates) was investigated in ultrafiltration of pure water and bovine serum albumin (BSA) solution as well as by microscopic methods (SEM and atomic force microscopy). The developed dense and supported PVA-based membranes were tested in the pervaporation dehydration of isopropanol. Optimal transport characteristics were obtained for a supported membrane with a PVA-based selective layer containing 3 wt.% Pluronic F127 onto an ultrafiltration PA (17 wt.%) substrate: improved permeation flux 0.100–1.164 kg/(m2 h) and 98.8–84.6 wt.% water content in the permeate in pervaporation dehydration of isopropanol (12–80 wt.% water).
Collapse
|
5
|
Choi S, Chaudhari S, Shin H, Cho K, Lee D, Shon M, Nam S, Park Y. Polydopamine-modified halloysite nanotube-incorporated polyvinyl alcohol membrane for pervaporation of water-isopropanol mixture. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.09.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Wu Q, Xu R, Shao H, Zhong J, Ren X, Zhou Z. Preparation of heteroatom isomorphously substituted MEL zeolite membranes for pervaporation separation of dimethylformamide/water mixtures. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-021-0839-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Lee JY, Zhan JY, Ang MBMY, Yeh SC, Tsai HA, Jeng RJ. Improved performance of nanocomposite polyimide membranes for pervaporation fabricated by embedding spirobisindane structure-functionalized graphene oxide. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118470] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Raza W, Wang J, Yang J, Tsuru T. Progress in pervaporation membranes for dehydration of acetic acid. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118338] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Wang Y, Dai L, Qu K, Qin L, Zhuang L, Yang H, Xu Z. Novel Ag-AgBr decorated composite membrane for dye rejection and photodegradation under visible light. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-020-2011-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Al-Gharabli S, Al-Omari B, Kujawski W, Kujawa J. How Can the Desert Beetle and Biowaste Inspire Hybrid Separation Materials for Water Desalination? ACS APPLIED MATERIALS & INTERFACES 2021; 13:11268-11283. [PMID: 33645982 PMCID: PMC8031369 DOI: 10.1021/acsami.0c21649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
Highly effective, hybrid separation materials for water purification were generated following a bioinspired system available in nature. The desert beetle was the inspiration for the generation of separation materials. Using the hydrophobic poly(vinylidene fluoride) (PVDF) membrane as the basis, the membrane was first activated and then furnished with silane-based linkers, and the covalent anchoring of chitosan was successfully accomplished. The obtained surface architecture was a copy of the desert beetle's armor possessing a hydrophobic matrix with hydrophilic domains. The modification was done in the presence or the lack of catalyst (N,N-diisopropylethylamine) that made it possible to tune easily wettability, roughness, and material as well as adhesive features. The membrane morphology and surface chemistry were studied by applying a series of analytical techniques. As a result of chitosan attachment, substantial improvement in transport and separation was reported. Pristine PVDF was characterized by a water flux of 5.28 kg m-2 h-1 and an activation energy of 48.16 kJ mol-1. The water flux and activation energy for a hybrid membrane with chitosan were equal to 15.55 kg m-2 h-1 and 33.98 kJ mol-1, respectively. The hybrid materials possessed enhanced stability and water resistance that were maintained after 10 cycles of membrane distillation tests.
Collapse
Affiliation(s)
- Samer Al-Gharabli
- Pharmaceutical
and Chemical Engineering Department, German
Jordanian University, Amman 11180, Jordan
| | - Bana Al-Omari
- Pharmaceutical
and Chemical Engineering Department, German
Jordanian University, Amman 11180, Jordan
| | - Wojciech Kujawski
- Faculty
of Chemistry, Nicolaus Copernicus University
in Toruń, 7 Gagarina
Street, Toruń 87-100, Poland
| | - Joanna Kujawa
- Faculty
of Chemistry, Nicolaus Copernicus University
in Toruń, 7 Gagarina
Street, Toruń 87-100, Poland
| |
Collapse
|
11
|
Achari DD, Hegde SN, Pattanashetti NA, Kamble RR, Kariduraganavar MY. Development of zeolite-A incorporated PVA/CS nanofibrous composite membranes using the electrospinning technique for pervaporation dehydration of water/tert-butanol. NEW J CHEM 2021. [DOI: 10.1039/d0nj04963h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using the electrospinning technique, composite nanofibrous membranes were developed on a dense PVA layer from a solution of poly(vinyl alcohol) (PVA)/chitosan (CS)/zeolite-A.
Collapse
Affiliation(s)
- Divya D. Achari
- Department of Chemistry
- Karnatak University
- Dharwad 580 003
- India
| | - Sachin N. Hegde
- Department of Chemistry
- Karnatak University
- Dharwad 580 003
- India
| | | | | | | |
Collapse
|
12
|
Khajavian M, Salehi E, Vatanpour V. Nanofiltration of dye solution using chitosan/poly(vinyl alcohol)/ZIF-8 thin film composite adsorptive membranes with PVDF membrane beneath as support. Carbohydr Polym 2020; 247:116693. [DOI: 10.1016/j.carbpol.2020.116693] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/18/2020] [Accepted: 06/24/2020] [Indexed: 10/24/2022]
|
13
|
Carreño G, Marican A, Vijayakumar S, Valdés O, Cabrera-Barjas G, Castaño J, Durán-Lara EF. Sustained Release of Linezolid from Prepared Hydrogels with Polyvinyl Alcohol and Aliphatic Dicarboxylic Acids of Variable Chain Lengths. Pharmaceutics 2020; 12:pharmaceutics12100982. [PMID: 33080791 PMCID: PMC7589041 DOI: 10.3390/pharmaceutics12100982] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/08/2020] [Accepted: 10/15/2020] [Indexed: 12/31/2022] Open
Abstract
A series of hydrogels with a specific release profile of linezolid was successfully synthesized. The hydrogels were synthesized by cross-linking polyvinyl alcohol (PVA) and aliphatic dicarboxylic acids, which include succinic acid (SA), glutaric acid (GA), and adipic acid (AA). The three crosslinked hydrogels were prepared by esterification and characterized by equilibrium swelling ratio, infrared spectroscopy, thermogravimetric analysis, mechanical properties, and scanning electron microscopy. The release kinetics studies of the linezolid from prepared hydrogels were investigated by cumulative drug release and quantified by chromatographic techniques. Mathematical models were carried out to understand the behavior of the linezolid release. These data revealed that the sustained release of linezolid depends on the aliphatic dicarboxylic acid chain length, their polarity, as well as the hydrogel crosslinking degree and mechanical properties. The in vitro antibacterial assay of hydrogel formulations was assessed in an Enterococcus faecium bacterial strain, showing a significant activity over time. The antibacterial results were consistent with cumulative release assays. Thus, these results demonstrated that the aliphatic dicarboxylic acids used as crosslinkers in the PVA hydrogels were a determining factor in the antibiotic release profile.
Collapse
Affiliation(s)
- Gustavo Carreño
- Instituto de Química de Recursos Naturales, Universidad de Talca, Talca 3460000, Maule, Chile; (G.C.); (A.M.)
- Bio and NanoMaterials Lab, Drug Delivery and Controlled Release, Universidad de Talca, Talca 3460000, Maule, Chile
| | - Adolfo Marican
- Instituto de Química de Recursos Naturales, Universidad de Talca, Talca 3460000, Maule, Chile; (G.C.); (A.M.)
- Bio and NanoMaterials Lab, Drug Delivery and Controlled Release, Universidad de Talca, Talca 3460000, Maule, Chile
| | | | - Oscar Valdés
- Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca 3460000, Maule, Chile;
| | - Gustavo Cabrera-Barjas
- Unidad de Desarrollo Tecnológico, Universidad de Concepción, Av. Cordillera 2634, Parque Industrial Coronel, Coronel 4191996, Biobío, Chile;
| | - Johanna Castaño
- Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Lientur 1457, Concepción 4080871, Chile;
| | - Esteban F. Durán-Lara
- Bio and NanoMaterials Lab, Drug Delivery and Controlled Release, Universidad de Talca, Talca 3460000, Maule, Chile
- Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Maule, Chile
- Correspondence: ; Tel.: +56-71-220-0363
| |
Collapse
|
14
|
Hosseini H, Shahraky MK, Amani A, Landi FS. Electrospinning of polyvinyl alcohol/chitosan/hyaluronic acid nanofiber containing growth hormone and its release investigations. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5111] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Hossein Hosseini
- Bioprocess Engineering Research Group Institute of Industrial and Environmental Biotechnology (IIEB), National Institute for Genetic Engineering and Biotechnology (NIGEB) Tehran Iran
| | - M. Khodabandeh Shahraky
- Bioprocess Engineering Research Group Institute of Industrial and Environmental Biotechnology (IIEB), National Institute for Genetic Engineering and Biotechnology (NIGEB) Tehran Iran
| | - Amir Amani
- Natural Products and Medicinal Plants Research Center North Khorasan University of Medical Sciences Bojnurd Iran
- Medical Biomaterials Research Center (MBRC) Tehran University of Medical Sciences Tehran Iran
| | - Farzaneh S. Landi
- Department of Medical Nanotechnology School of Advanced Technologies in Medicine, Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
15
|
Zhang X, Li MP, Huang ZH, Zhang H, Liu WL, Xu XR, Ma XH, Xu ZL. Fast surface crosslinking ceramic hollow fiber pervaporation composite membrane with outstanding separation performance for isopropanol dehydration. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Ang MBMY, Gallardo MR, Dizon GVC, De Guzman MR, Tayo LL, Huang SH, Lai CL, Tsai HA, Hung WS, Hu CC, Chang Y, Lee KR. Graphene oxide functionalized with zwitterionic copolymers as selective layers in hybrid membranes with high pervaporation performance. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117188] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Influence of integrating graphene oxide quantum dots on the fine structure characterization and alcohol dehydration performance of pervaporation composite membrane. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.01.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
18
|
|
19
|
Afsar F, Saljoughi E, Mousavi SM. Poly (caprolactone)/poly (ethylene glycol) pervaporation blend membranes: Synthesis, characterization, and performance. POLYM ADVAN TECHNOL 2018. [DOI: 10.1002/pat.4358] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Faranak Afsar
- Chemical Engineering Department, Faculty of Engineering; Ferdowsi University of Mashhad; Mashhad Iran
| | - Ehsan Saljoughi
- Chemical Engineering Department, Faculty of Engineering; Ferdowsi University of Mashhad; Mashhad Iran
| | - Seyed Mahmoud Mousavi
- Chemical Engineering Department, Faculty of Engineering; Ferdowsi University of Mashhad; Mashhad Iran
| |
Collapse
|
20
|
Bio-inspired deposition of polydopamine on PVDF followed by interfacial cross-linking with trimesoyl chloride as means of preparing composite membranes for isopropanol dehydration. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.04.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Dmitrenko M, Penkova A, Kuzminova A, Missyul A, Ermakov S, Roizard D. Development and Characterization of New Pervaporation PVA Membranes for the Dehydration Using Bulk and Surface Modifications. Polymers (Basel) 2018; 10:E571. [PMID: 30966604 PMCID: PMC6403536 DOI: 10.3390/polym10060571] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/20/2018] [Accepted: 05/21/2018] [Indexed: 11/16/2022] Open
Abstract
In the present work, the novel dense and supported membranes based on polyvinyl alcohol (PVA) with improved transport properties were developed by bulk and surface modifications. Bulk modification included the blending of PVA with chitosan (CS) and the creation of a mixed-matrix membrane by introduction of fullerenol. This significantly altered the internal structure of PVA membrane, which led to an increase in permeability with high selectivity to water. Surface modification of the developed modified dense membranes, based on composites PVA-CS and PVA-fullerenol-CS, was performed through (i) making of a supported membrane with a thin selective composite layer and (ii) applying of the layer-by-layer assembly (LbL) method for coating of nano-sized polyelectrolyte (PEL) layers to increase the membrane productivity. The nature of polyelectrolyte type-(poly(allylamine hydrochloride) (PAH), poly(sodium 4-styrenesulfonate) (PSS), poly(acrylic acid) (PAA), CS), and number of PEL bilayers (2⁻10)-were studied. The structure of the composite membranes was investigated by FTIR, X-ray diffraction, and SEM. Transport properties were studied during the pervaporation separation of 80% isopropanol⁻20% water mixture. It was shown that supported membrane consisting of hybrid layer of PVA-fullerenol (5%)⁻chitosan (20%) with five polyelectrolyte bilayers (PSS, CS) deposited on it had the best transport properties.
Collapse
Affiliation(s)
- Maria Dmitrenko
- St. Petersburg State University, 7/9 Universitetskaya Nab., St. Petersburg 199034, Russia.
| | - Anastasia Penkova
- St. Petersburg State University, 7/9 Universitetskaya Nab., St. Petersburg 199034, Russia.
| | - Anna Kuzminova
- St. Petersburg State University, 7/9 Universitetskaya Nab., St. Petersburg 199034, Russia.
| | - Alexander Missyul
- ALBA Synchrotron Light Source, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Barcelona, Spain.
| | - Sergey Ermakov
- St. Petersburg State University, 7/9 Universitetskaya Nab., St. Petersburg 199034, Russia.
| | - Denis Roizard
- Laboratoire Réactions et Génie des Procédés, CNRS, Université de Lorraine, ENSIC, 1 rue Granville, 54000 Nancy, France.
| |
Collapse
|
22
|
Elizalde CNB, Al-Gharabli S, Kujawa J, Mavukkandy M, Hasan SW, Arafat HA. Fabrication of blend polyvinylidene fluoride/chitosan membranes for enhanced flux and fouling resistance. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2017.08.053] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Langari S, Saljoughi E, Mousavi SM. Chitosan/polyvinyl alcohol/amino functionalized multiwalled carbon nanotube pervaporation membranes: Synthesis, characterization, and performance. POLYM ADVAN TECHNOL 2017. [DOI: 10.1002/pat.4091] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Sepideh Langari
- Chemical Engineering Department, Faculty of Engineering; Ferdowsi University of Mashhad; Mashhad Iran
| | - Ehsan Saljoughi
- Chemical Engineering Department, Faculty of Engineering; Ferdowsi University of Mashhad; Mashhad Iran
| | - Seyed Mahmoud Mousavi
- Chemical Engineering Department, Faculty of Engineering; Ferdowsi University of Mashhad; Mashhad Iran
| |
Collapse
|
24
|
Holcapkova P, Hrabalikova M, Stoplova P, Sedlarik V. Core–shell PLA–PVA porous microparticles as carriers for bacteriocin nisin. J Microencapsul 2017. [DOI: 10.1080/02652048.2017.1324919] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Pavlina Holcapkova
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Zlin, Czech Republic
| | - Martina Hrabalikova
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Zlin, Czech Republic
| | - Petra Stoplova
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Zlin, Czech Republic
| | - Vladimir Sedlarik
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Zlin, Czech Republic
| |
Collapse
|
25
|
Separation of tetrahydrofuran using RSM optimized accelerator-sulfur-filler of rubber membranes: Systematic optimization and comprehensive mechanistic study. KOREAN J CHEM ENG 2017. [DOI: 10.1007/s11814-017-0021-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|