1
|
Shabna S, Dhas SSJ, Biju C. Potential progress in SnO2 nanostructures for enhancing photocatalytic degradation of organic pollutants. CATAL COMMUN 2023. [DOI: 10.1016/j.catcom.2023.106642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
|
2
|
Park H, Alhammadi S, Minnam Reddy VR, Park C, Kim WK. Influence of the Al-Doped ZnO Sputter-Deposition Temperature on Cu(In,Ga)Se 2 Solar Cell Performance. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193326. [PMID: 36234454 PMCID: PMC9565514 DOI: 10.3390/nano12193326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 05/02/2023]
Abstract
Heterojunction Cu(In,Ga)Se2 (CIGS) solar cells comprise a substrate/Mo/CIGS/CdS/i-ZnO/ZnO:Al. Here, Al-doped zinc oxide (AZO) films were deposited by magnetron sputtering, and the substrate temperature was optimized for CIGS solar cells with two types of CIGS light absorbers with different material properties fabricated by three-stage co-evaporation and two-step metallization followed by sulfurization after selenization (SAS). The microstructure and optoelectronic properties of the AZO thin films fabricated at different substrate temperatures (150-550 °C) were analyzed along with their effects on the CIGS solar cell performance. X-ray diffraction results confirmed that all the deposited AZO films have a hexagonal wurtzite crystal structure regardless of substrate temperature. The optical and electrical properties of the AZO films improved significantly with increasing substrate temperature. Photovoltaic performances of the two types of CIGS solar cells were influenced by changes in the AZO substrate temperature. For the three-stage co-evaporated CIGS cell, as the sputter-deposition temperature of the AZO layer was raised from 150 °C to 550 °C, the efficiencies of CIGS devices decreased monotonically, which suggests the optimum AZO deposition temperature is 150 °C. In contrast, the cell efficiency of CIGS devices fabricated using the two-step SAS-processed CIGS absorbers improved with increasing the AZO deposition temperature from 150 to 350 °C. However, the rise in AZO deposition temperature to 550 °C decreased the cell efficiency, indicating that the optimum AZO deposition temperature was 350 °C. The findings of this study provide insights for the efficient fabrication of CIGS solar cells considering the correlation between CIGS absorber characteristics and AZO layer deposition temperature.
Collapse
Affiliation(s)
- Hyeonwook Park
- Korea Institute of Energy Technology (KENTECH), Naju 58330, Jeollanam-do, Korea
| | - Salh Alhammadi
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea
| | | | - Chinho Park
- Korea Institute of Energy Technology (KENTECH), Naju 58330, Jeollanam-do, Korea
- Correspondence: (C.P.); (W.K.K.)
| | - Woo Kyoung Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea
- Correspondence: (C.P.); (W.K.K.)
| |
Collapse
|
3
|
Sehar S, Rasool T, Syed HM, Mir MA, Naz I, Rehman A, Shah MS, Akhter MS, Mahmood Q, Younis A. Recent advances in biodecolorization and biodegradation of environmental threatening textile finishing dyes. 3 Biotech 2022; 12:186. [PMID: 35875175 PMCID: PMC9304469 DOI: 10.1007/s13205-022-03247-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/02/2022] [Indexed: 11/01/2022] Open
Abstract
Organic nature of dyes and their commercially made products are widely utilized in many industries including paper, cosmetics, pharmaceuticals, photography, petroleum as well as in textile manufacturing. The textile industry being the top most consumer of a large variety of dyes during various unit processes operation generates substantial amount of wastewater; hence, nominated as "Major Polluter of Potable Water". The direct discharge of such effluents into environment poses serious threats to the functioning of biotic communities of natural ecosystems. The detection of these synthetic dyes is considered as relatively easy, however, it is extremely difficult to completely eliminate them from wastewater and freshwater ecosystems. Aromatic chemical structure seems to be the main reason behind low biodegradability of these dyes. Currently, various physiochemical and biological methods are employed for their remediation. Among them, microbial degradation has attracted greater attention due to its sustainability, high efficiency, cost effectiveness, and eco-friendly nature. The current review presents recent advances in biodegradation of industrial dyes towards a sustainable and tangible technological innovative solutions as an alternative to existing conventional physicochemical treatment processes.
Collapse
Affiliation(s)
- Shama Sehar
- Department of Biology, College of Science, University of Bahrain, P.O. Box 32038, Sakhir, Kingdom of Bahrain
| | - Tabassum Rasool
- Department of Microbiology, Quaid-i-Azam University, Islamabad, 45320 Pakistan
| | - Hasnain M. Syed
- Department of Mathematics and Natural Sciences, Prince Mohammad Bin Fahd University, P.O. Box 1664, Al Khobar, 31952 Kingdom of Saudi Arabia
| | - M. Amin Mir
- Department of Mathematics and Natural Sciences, Prince Mohammad Bin Fahd University, P.O. Box 1664, Al Khobar, 31952 Kingdom of Saudi Arabia
| | - Iffat Naz
- Department of Biology, Deanship of Educational Services, Qassim University, Buraidah, 51452 Kingdom of Saudi Arabia
| | - Abdul Rehman
- Department of Microbiology, Kohat University of Science & Technology (KUST), Khyber Pakhtunkhwa, Kohat, 26000 Pakistan
| | - Mir Sadiq Shah
- Department of Zoology, University of Science and Technology, Bannu, 28100 Khyber Pakhtunkhwa Pakistan
| | - Mohammad Salim Akhter
- Department of Chemistry, College of Science, University of Bahrain, P.O. Box 32038, Sakhir, Kingdom of Bahrain
| | - Qaisar Mahmood
- Department of Biology, College of Science, University of Bahrain, P.O. Box 32038, Sakhir, Kingdom of Bahrain
| | - Adnan Younis
- Department of Physics, College of Science, University of Bahrain, P.O. Box 32038, Sakhir, Kingdom of Bahrain
| |
Collapse
|
4
|
Asgari S, Mohammadi Ziarani G, Badiei A, Setayeshmehr M, Kiani M, Pourjavadi A. Electrospun Ag-decorated reduced GO-graft-chitosan composite nanofibers with visible light photocatalytic activity for antibacterial performance. CHEMOSPHERE 2022; 299:134436. [PMID: 35358565 DOI: 10.1016/j.chemosphere.2022.134436] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/15/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
The treatment of water contaminated by bacteria is becoming a necessity. The nanomaterials possessing both intrinsic antibacterial properties and photocatalytic activity are excellent candidates for water disinfection. The powdered form of nanomaterials can be aggregated while embedding the nanomaterials into the NFs can overcome the limitation and enhance the photocatalytic activity and transition from UV-light to visiblelight. Here, graphene oxide (GO) was synthesized, grafted to chitosan, and decorated with silver nanoparticles (Ag NPs) to produce Ag-decorated reduced GO-graft-Chitosan (AGC) NPs. The blends of polyacrylonitrile (PAN) and AGC NPs were prepared in various concentrations of 0.5 wt%, 1.0 wt%, 5.0 wt%, and 10.0 wt% and used to fabricate the electrospun composite NFs. FTIR/ATR, UV-Vis, Raman, XRD, and SEM/EDAX analyses confirmed the successful preparation of the NPs and NFs. The cytotoxicity and antibacterial activity of the composite NFs were received in the order of composite NFs 10.0 wt%˃ 5.0 wt%˃ 1.0 wt%˃ 0.5 wt% in both conditions with/without light irradiation. Their cytotoxicity and antibacterial activity were more under light irradiation compared to the dark. The composite NFs (5.0 wt%) were distinguished as the optimum NFs with cell viability of 80% within 24 h and 60% within 48 h on L929 cells and inhibition zone diameter (IZD) of 12 mm for E. coli and 13 mm for S. aureus after 24 h under the light irradiation. The optimum composite NFs showed thermal stability up to 180 °C and tensile strength of 1.11 MPa with 21.71% elongation at break.
Collapse
Affiliation(s)
- Shadi Asgari
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, P.O. Box, 1993893973, Iran; School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Ghodsi Mohammadi Ziarani
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, P.O. Box, 1993893973, Iran.
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| | - Mohsen Setayeshmehr
- Department of Biomaterials, Tissue Engineering and Nanotechnology, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahsa Kiani
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Ali Pourjavadi
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
5
|
Biosynthesized Bimetallic (ZnOSnO2) Nanoparticles for Photocatalytic Degradation of Organic Dyes and Pharmaceutical Pollutants. Catalysts 2022. [DOI: 10.3390/catal12030334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The quest for eco-friendly synthetic routes that can be used for the development of multifunctional materials, in particular for water treatment, has reinforced the use of plant extracts as replacement solvents. In this study, bimetallic ZnOSnO2 nanoparticles of different ratios were synthesized using the Sutherlandia frutescens (S. frutescens) plant and tested for the degradation of methylene blue dye and the antibiotics sulfisoxazole and sulfamethoxazole. From the analysis, FTIR confirmed the formation of bimetallic nanoparticles in all ratios within the fingerprint region. SEM revealed homogenous and heterostructures of tubular and spherical structures, with the size distribution ranging from 5–60 nm, respectively. XRD confirmed the formation and the crystallinity of the bimetallic nanoparticles, UV-Vis confirmed the optical properties of the materials and the bandgap values were found between 3.08 and 3.3 eV. From the surface area analysis, type III isotherm and mesoporous structures were confirmed. The photocatalytic activity of these ratios was investigated against MB dye and the antibiotics SSX and SMX. The highest degradation of 88% for MB was obtained using the 50:50 loading ratio at 150 min with a fast kinetic rate of 0.0008 min−1. Furthermore, the holes were the species found to be responsible for the degradation of MB. The SSX and SMX antibiotics exhibited a 66% and 70% degradation, respectively. From this analysis, it can be noted that it is possible to synthesize environmentally safe materials that can be used to degrade various pollutants in our water streams.
Collapse
|
6
|
Al-Najar B, Younis A, Hazeem L, Sehar S, Rashdan S, Shaikh MN, Albuflasa H, Hankins NP. Thermally induced oxygen related defects in eco-friendly ZnFe 2O 4 nanoparticles for enhanced wastewater treatment efficiencies. CHEMOSPHERE 2022; 288:132525. [PMID: 34653481 DOI: 10.1016/j.chemosphere.2021.132525] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/30/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Herein, a simple but highly effective strategy of thermal annealing to modulate oxygen vacancies related defects in ZnFe2O4 (ZFO) nanoparticles for obtaining enhanced wastewater treatment efficiencies is reported. The as-prepared nanoparticles were thermally annealed at three different temperatures (500 °C, 600 °C and 700 °C) and their phase purity was confirmed by X-ray diffraction (XRD). All samples were found to exhibit pure phases of ZFO with different crystallite sizes ranging from 10 nm to 25 nm. The transmission electron microscope (TEM) images showed well dispersed nanoparticles and a strong correlation of grain size growth with annealing temperature was established. The optical absorption and emission characteristics were estimated through UV-visible and Photoluminescence (PL) spectroscopy. Raman spectroscopy and X-ray Photoelectron Spectroscopy (XPS) confirmed the variation of oxygen vacancies in the synthesized samples' lattice. The photocatalytic activities of all samples were investigated and the highest efficiencies were recorded for the ZFO samples annealed at 500 °C. Under high salinity condition, the organic dye degradation efficiency of the same sample remained the highest among all. The excellent dye degradation abilities in ZFO samples can be attributed to the abundance of oxygen vacancies in the crystal lattice that slow down the recombination rate during the photocatalysis process. Moreover, cytotoxicity tests revealed that all prepared ZFO samples showed insignificant cell structure effects on Picochlorum sp microalgae, as verified by Fourier-transform infrared (FTIR) spectroscopy. On the other hand, no significant changes were detected on the viable cell concentration and Chlorophyll a content. This work presents a systematic way to finely tune the crystal sizes and to modulate oxygen related defects in ZFO through a highly effective annealing approach to signify their potential in industrial wastewater and seawater treatment processes.
Collapse
Affiliation(s)
- Basma Al-Najar
- Department of Physics, College of Science, University of Bahrain, P.O. Box 32038, Sakhir Campus, Bahrain.
| | - Adnan Younis
- Department of Physics, College of Science, University of Bahrain, P.O. Box 32038, Sakhir Campus, Bahrain
| | - Layla Hazeem
- Department of Biology, College of Science, University of Bahrain, P.O. Box 32038, Sakhir Campus, Bahrain
| | - Shama Sehar
- Department of Biology, College of Science, University of Bahrain, P.O. Box 32038, Sakhir Campus, Bahrain
| | - Suad Rashdan
- Department of Chemistry, College of Science, University of Bahrain, P.O. Box 32038, Sakhir Campus, Bahrain
| | - M Nasiruzzaman Shaikh
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia
| | - Hanan Albuflasa
- Department of Physics, College of Science, University of Bahrain, P.O. Box 32038, Sakhir Campus, Bahrain
| | - Nicholas P Hankins
- Department of Engineering Science, The University of Oxford, Parks Road, OX3 1PJ, Oxford, UK
| |
Collapse
|
7
|
Ag-loaded and Pd-loaded ZnO nanofiber membranes: preparation via electrospinning and application in photocatalytic antibacterial and dye degradation. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-02056-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Sehar S, Hazeem LJ, Naz I, Rehman A, Sun W, Alhewairini SS, Thani ASB, Akhter MS, Younis A. Facile synthesis of zero valent sulfur nanoparticles for catalytic detoxification of hexavalent chromium, cytotoxicity against microalgae and ultraviolet protection properties. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-021-0868-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Zamani S, Salem S. Couple of graphene oxide and functionalized carbon nanotubes for dye degradation enhancement of anatase under visible light and solar irradiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10.1007/s11356-021-12931-9. [PMID: 33629167 DOI: 10.1007/s11356-021-12931-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Graphene oxide sheets (GO) were coupled with carbon nanotubes (CNTs) to enhance the photoactivity of anatase under visible and solar irradiation. The carbon nanotube surface was functionalized in the acidic reflux condition before coupling with GO and decoration of anatase by the sol-gel method. A modified kinetic model was appropriately applied to predict the breakthrough in the methylene blue degradation yield and determine the constant rate which was clearly affected by coupling architecture. The nanocomposite fabricated by the same proportions of GO and CNTs, 3.33%, exhibited the maximal degradation yield, 96.5%, in the dye solution with the initial concentration of 3.0 mg l-1. The characterizations based on X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, and field emission scanning electron microscopy (FESEM) revealed that the functionalized CNTs could create the appropriate space between the graphene sheets for uniformly interconnection of anatase via oxygen-containing groups onto the material surfaces. This enhancement in the degradation efficiency could be ascribed to the unique architecture, leading to a decrease in bandgap energy, 2.2 eV, which facilitated the electron-hole separation. Besides of breakthrough in the photoreaction rate, the adequate architecture led to an efficient reduction in the content of carbon-based materials. Also, the performance of mentioned nanocomposite under sunlight photons was effectively higher than that under UV irradiation. The hybrid nanocomposite provided a large number of active sites for photoreactions to facilitate the treatment of wastewater under solar irradiation.
Collapse
Affiliation(s)
- Saeedeh Zamani
- Faculty of Chemical Engineering, Urmia University of Technology, Urmia, Iran
| | - Shiva Salem
- Faculty of Chemical Engineering, Urmia University of Technology, Urmia, Iran.
| |
Collapse
|
10
|
Sehar S, Naz I, Rehman A, Sun W, Alhewairini SS, Zahid MN, Younis A. Shape‐controlled synthesis of cerium oxide nanoparticles for efficient dye photodegradation and antibacterial activities. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.6069] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shama Sehar
- Department of Biological and Environmental Sciences Charles Sturt University Sydney NSW 2127 Australia
| | - Iffat Naz
- Department of Biology, Deanship of Educational Services Qassim University Buraidah Qassim 51452 Kingdom of Saudi Arabia
| | - Abdul Rehman
- Department of Microbiology Kohat University of Science and Technology (KUST) Kohat Pakistan
| | - Wuyang Sun
- Department of Petrochemical Technology and Energy Engineering Zhejiang Ocean University Zhoushan 316022 China
| | - Saleh S. Alhewairini
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine Qassim University PO Box 6622 Buraidah Qassim 51452 Kingdom of Saudi Arabia
| | - Muhammad Nauman Zahid
- Department of Biology, College of Science University of Bahrain PO Box 32038 Sakhir Kingdom of Bahrain
| | - Adnan Younis
- Department of Physics, College of Science University of Bahrain PO Box 32038 Sakhir Kingdom of Bahrain
| |
Collapse
|
11
|
Pan T, Liu Y, Li Z, Fan J, Wang L, Liu J, Shou W. A Sm-doped Egeria-densa-like ZnO nanowires@PVDF nanofiber membrane for high-efficiency water clean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 737:139818. [PMID: 32526581 DOI: 10.1016/j.scitotenv.2020.139818] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
A biomimetic Egeria-densa-like hybrid composite nanofiber membrane was fabricated to degrade organic pollutants in water, with PVDF nanofibers as stems to provide support, and ZnO nanowires as leaves to provide active sites. The Sm-doped ZnO nanowires@PVDF nanofiber membranes were characterized by FE-SEM, X-ray photoelectron spectroscopy, Fourier transform infrared, X-ray diffraction, and UV-vis diffuse reflectance spectrometer. Compared with the pure ZnO nanowires@PVDF nanofiber membrane, the Sm-doped membrane showed higher photocatalytic performance. The excellent photocatalytic activity was attributed to the increased specific surface area and the decreased bandgap of ZnO nanowires after Sm doping, which inhibited the recombination rate of electrons and holes and improved the absorption of visible light. We found that the superoxide free radicals (O2-) played a critical role in photocatalytic degradation. The Sm-doped ZnO nanowires@PVDF nanofiber membrane exhibited good stability after 5 cycles of RhB degradation. We believe such Sm-doped hybrid membrane can work as an effective photocatalyst for wastewater treatment.
Collapse
Affiliation(s)
- Tiandi Pan
- State Key Laboratory of Separation Membranes and membrane Processes, School of Textile Science And Engineering, Tiangong University, Tianjin 300387, China
| | - Yong Liu
- State Key Laboratory of Separation Membranes and membrane Processes, School of Textile Science And Engineering, Tiangong University, Tianjin 300387, China.
| | - Zongjie Li
- State Key Laboratory of Separation Membranes and membrane Processes, School of Textile Science And Engineering, Tiangong University, Tianjin 300387, China
| | - Jie Fan
- State Key Laboratory of Separation Membranes and membrane Processes, School of Textile Science And Engineering, Tiangong University, Tianjin 300387, China
| | - Liang Wang
- State Key Laboratory of Separation Membranes and membrane Processes, School of Textile Science And Engineering, Tiangong University, Tianjin 300387, China
| | - Jian Liu
- School of Textiles, 495 Fenghua Road, Zhejiang Fashion Institute of Technology, Ningbo, Zhejiang Province 315000, China
| | - Wan Shou
- Computer Science and Artificial Intelligence Lab (CSAIL), Electrical Engineering and Computer Science Department, Massachusetts Institute of Technology Cambridge, MA 02139, USA
| |
Collapse
|
12
|
Gupta A, Khosla N, Govindasamy V, Saini A, Annapurna K, Dhakate SR. Trimetallic composite nanofibers for antibacterial and photocatalytic dye degradation of mixed dye water. APPLIED NANOSCIENCE 2020; 10:4191-4205. [PMID: 32864283 PMCID: PMC7446745 DOI: 10.1007/s13204-020-01540-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/13/2020] [Indexed: 12/25/2022]
Abstract
Membrane technology is an advanced approach to making a healthier and cleaner environment. Using such catalytic membrane technology to get clean, usable water by removal of dye impurities as well as pathogenic microbes is the main goal behind the research work. Here, we present the synthesis and efficacy study of polymethyl methacrylate (PMMA)-based Ag/ZnO/TiO2 trimetallic bifunctional nanofibers with antibacterial and photocatalytic activity. The nanofibers have been proven to be effective for the degradation of methylene blue (MB 93.4%), rhodamine B (Rh 34.6%), auramine-O (Au 65.0%) and fuchsin basic (FB 69.8%) dyes individually within 90 min in daylight. The study is further extended in abating a mixture of these dyes from contaminated water using composite nanofibers. Also, in the case of a mixture of these dyes (3 ppm each), nanofibers show dye degradation efficiency (DDE) of 90.9% (MB), 62.4% (Au) and 90.3% (FB and Rh) in 60 min. The role of Ag nanoparticles with a synergic photocatalytic effect on ZnO and TiO2 is also demonstrated. Also, PMMA/ZnO/TiO2 composite fiber membrane in synergy with silver particles shows better antibacterial activity against Gram-negative bacteria E. coli, making PMMA/Ag/ZnO/TiO2 fibers a promising candidate in water purification.
Collapse
Affiliation(s)
- Ashish Gupta
- Advanced Carbon Products and Metrology, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi, 110012 India
| | - Nayna Khosla
- Advanced Carbon Products and Metrology, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi, 110012 India
| | - V. Govindasamy
- Division of Microbiology, Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012 India
| | - Amit Saini
- Advanced Carbon Products and Metrology, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi, 110012 India
| | - K. Annapurna
- Division of Microbiology, Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012 India
| | - S. R. Dhakate
- Advanced Carbon Products and Metrology, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi, 110012 India
| |
Collapse
|
13
|
Al-doped zinc stannate films for photovoltaic applications. KOREAN J CHEM ENG 2020. [DOI: 10.1007/s11814-019-0468-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Uddin MT, Hoque ME, Chandra Bhoumick M. Facile one-pot synthesis of heterostructure SnO2/ZnO photocatalyst for enhanced photocatalytic degradation of organic dye. RSC Adv 2020; 10:23554-23565. [PMID: 35517351 PMCID: PMC9054812 DOI: 10.1039/d0ra03233f] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/14/2020] [Indexed: 12/11/2022] Open
Abstract
In this work, heterostructure SnO2/ZnO nanocomposite photocatalyst was prepared by a straightforward one step polyol method.
Collapse
Affiliation(s)
- Md. Tamez Uddin
- Department of Chemical Engineering and Polymer Science
- Shahjalal University of Science and Technology
- Bangladesh
| | - Md. Enamul Hoque
- Department of Chemical Engineering and Polymer Science
- Shahjalal University of Science and Technology
- Bangladesh
| | - Mitun Chandra Bhoumick
- Department of Chemical Engineering and Polymer Science
- Shahjalal University of Science and Technology
- Bangladesh
| |
Collapse
|
15
|
Effect of Thioacetamide Concentration on the Preparation of Single-Phase SnS and SnS2 Thin Films for Optoelectronic Applications. COATINGS 2019. [DOI: 10.3390/coatings9100632] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Eco-friendly tin sulfide (SnS) thin films were deposited by chemical solution process using varying concentrations of a sulfur precursor (thioacetamide, 0.50–0.75 M). Optimized thioacetamide concentrations of 0.6 and 0.7 M were obtained for the preparation of single-phase SnS and SnS2 films for photovoltaic absorbers and buffers, respectively. The as-deposited SnS and SnS2 thin films were uniform and pinhole-free without any major cracks and satisfactorily adhered to the substrate; they appeared in dark-brown and orange colors, respectively. Thin-film studies (compositional, structural, optical, and electrical) revealed that the as-prepared SnS and SnS2 films were polycrystalline in nature; exhibited orthorhombic and hexagonal crystal structures with (111) and (001) peaks as the preferred orientation; had optimal band gaps of 1.28 and 2.92 eV; and exhibited p- and n-type electrical conductivity, respectively. This study presents a step towards the growth of SnS and SnS2 binary compounds for a clean and economical power source.
Collapse
|
16
|
Heterostructured Co0.5Mn0.5Fe2O4-polyaniline nanofibers: highly efficient photocatalysis for photodegradation of methyl orange. KOREAN J CHEM ENG 2019. [DOI: 10.1007/s11814-019-0258-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
17
|
Optimization of Intrinsic ZnO Thickness in Cu(In,Ga)Se 2-Based Thin Film Solar Cells. MATERIALS 2019; 12:ma12091365. [PMID: 31035494 PMCID: PMC6539136 DOI: 10.3390/ma12091365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/21/2019] [Accepted: 04/22/2019] [Indexed: 11/17/2022]
Abstract
The typical structure of high efficiency Cu(InGa)Se2 (CIGS)-based thin film solar cells is substrate/Mo/CIGS/CdS/i-ZnO/ZnO:Al(AZO) where the sun light comes through the transparent conducting oxide (i.e., i-ZnO/AZO) side. In this study, the thickness of an intrinsic zinc oxide (i-ZnO) layer was optimized by considering the surface roughness of CIGS light absorbers. The i-ZnO layers with different thicknesses from 30 to 170 nm were deposited via sputtering. The optical properties, microstructures, and morphologies of the i-ZnO thin films with different thicknesses were characterized, and their effects on the CIGS solar cell device properties were explored. Two types of CIGS absorbers prepared by three-stage co-evaporation and two-step sulfurization after the selenization (SAS) processes showed a difference in the preferred crystal orientation, morphology, and surface roughness. During the subsequent post-processing for the fabrication of the glass/Mo/CIGS/CdS/i-ZnO/AZO device, the change in the i-ZnO thickness influenced the performance of the CIGS devices. For the three-stage co-evaporated CIGS cell, the increase in the thickness of the i-ZnO layer from 30 to 90 nm improved the shunt resistance (RSH), open circuit voltage, and fill factor (FF), as well as the conversion efficiency (10.1% to 11.8%). A further increas of the i-ZnO thickness to 170 nm, deteriorated the device performance parameters, which suggests that 90 nm is close to the optimum thickness of i-ZnO. Conversely, the device with a two-step SAS processed CIGS absorber showed smaller values of the overall RSH (130-371 Ω cm2) than that of the device with a three-stage co-evaporated CIGS absorber (530-1127 Ω cm2) ranging from 30 nm to 170 nm of i-ZnO thickness. Therefore, the value of the shunt resistance was monotonically increased with the i-ZnO thickness ranging from 30 to 170 nm, which improved the FF and conversion efficiency (6.96% to 8.87%).
Collapse
|