1
|
Yamada M, Uchida M, Yamada T. Soy protein selectively accumulates formaldehyde. Sci Rep 2025; 15:9355. [PMID: 40102440 PMCID: PMC11920237 DOI: 10.1038/s41598-025-92743-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/03/2025] [Indexed: 03/20/2025] Open
Abstract
Soy protein (SP) is easily obtained from defatted soybeans that have had soybean oil removed. Therefore, the materials consisting of soy protein are not only environmentally benign but also sustainable materials. We prepared the SP - GPTMS composite materials by mixing the SP and a silane coupling reagent, 3-glycidoxypropyltrimethoxysilane (GPTMS), and demonstrated the accumulation of various aldehydes, such as formaldehyde (HAld), acetaldehyde (AcAld), butyl aldehyde (BuAld), and benzaldehyde (BnAld), by the SP - GPTMS composite materials. As a result, when the composite materials were incubated in an aqueous multi-component solution containing four aldehydes, these materials effectively accumulated the aldehydes. The accumulated amounts of the aldehydes were BnAld < BuAld < AcAld < HAld and the amount of HAld was three times higher than that of BnAld, which had the lowest accumulated amount. These results suggested that the SP - GPTMS composite materials indicated a molecular selectivity for HAld. In addition, the accumulated amounts of HAld further increased under acidic conditions. Furthermore, according to the IR measurements, the HAld-accumulated SP - GPTMS composite materials showed the formation of Schiff base bonds. Therefore, the molecular selectivity of HAld in the SP - GPTMS composite material was due to the high electrophilicity of HAld and the low steric hindrance.
Collapse
Affiliation(s)
- Masanori Yamada
- Department of Chemistry, Faculty of Science, Okayama University of Science, Ridaicho, Kita- ku, Okayama, 700-0005, Japan.
| | - Momoka Uchida
- Department of Chemistry, Faculty of Science, Okayama University of Science, Ridaicho, Kita- ku, Okayama, 700-0005, Japan
| | - Tetsuya Yamada
- Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Sapporo, 060- 8589, Hokkaido, Japan
| |
Collapse
|
2
|
Ma Q, Huo P, Wang K, Yuan Y, Bai S, Zhao C, Li W. Preparation of Perovskite-Type LaMnO 3 and Its Catalytic Degradation of Formaldehyde in Wastewater. Molecules 2024; 29:3822. [PMID: 39202902 PMCID: PMC11357681 DOI: 10.3390/molecules29163822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Formaldehyde (HCHO) is identified as the most toxic chemical among 45 organic compounds found in industrial wastewater, posing significant harm to both the environment and human health. In this study, a novel approach utilizing the Lanthanum-manganese complex oxide (LaMnO3)/peroxymonosulfate (PMS) system was proposed for the effective removal of HCHO from wastewater. Perovskite-Type LaMnO3 was prepared by sol-gel method. The chemical compositions and morphology of LaMnO3 samples were analyzed through thermogravimetric analysis (TG), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The effects of LaMnO3 dosage, PMS concentration, HCHO concentration, and initial pH on the HCHO removal rate were investigated. When the concentration of HCHO is less than 1.086 mg/mL (5 mL), the dosage of LaMnO3 is 0.06 g, and n(PMS)/n(HCHO) = 2.5, the removal rate of HCHO is more than 96% in the range of pH = 5-13 at 25 °C for 10 min. Compared with single-component MnO2, the perovskite structure of LaMnO3 is beneficial to the catalytic degradation of HCHO by PMS. It is an efficient Fenton-like oxidation process for treating wastewater containing HCHO. The LaMnO3 promoted the formation of SO4•- and HO•, which sequentially oxidized HCHO to HCOOH and CO2.
Collapse
Affiliation(s)
- Qingguo Ma
- Department of Chemistry and Chemical Engineering, Taiyuan Institute of Technology, Taiyuan 030008, China; (P.H.); (K.W.); (Y.Y.); (S.B.); (C.Z.); (W.L.)
| | | | | | | | | | | | | |
Collapse
|
3
|
Eldeeb TM, Aigbe UO, Ukhurebor KE, Onyancha RB, El-Nemr MA, Hassaan MA, Ragab S, Osibote OA, El Nemr A. Adsorption of methylene blue (MB) dye on ozone, purified and sonicated sawdust biochars. BIOMASS CONVERSION AND BIOREFINERY 2024; 14:9361-9383. [DOI: 10.1007/s13399-022-03015-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/17/2022] [Accepted: 06/28/2022] [Indexed: 01/12/2025]
Abstract
Abstract
The synthesized biochars derived from sawdust (SD) SD ozone (SDO) biochar, purified SD (PSD) biochar, and sonicated SD (SSD) biochar, which was employed in the confiscation of methylene blue (MB) dye ion, were characterized employing “Brunauer–Emmett–Teller (BET), scanning electron microscope (SEM), Fourier Transform Infrared (FTIR), and Thermal gravimetrical analysis (TGA).” The impact of various factors, such as pH, biochar dosage, and initial concentration, on MB dye sequestration, was tested in this study. It was found that the biosorption of MB dye to the various biochars was dependent on the solution pH, with optimum confiscation of MB observed at pH 12 for all biochars. Pseudo-second-order (PSO), Freundlich (FRH)- (SDO and SSD biochars), and Langmuir (LNR)- (PSD biochar) models were used to best describe the biosorption process of MB dye to various biochars. Based on the LNR model fitting to the experimental data, the optimum sorption capacities obtained using SDO, SSD, and PSD biochars were 200, 526, and 769 mg/g, respectively. Electrostatic interaction and hydrogen bonding played an important role in the interaction mechanism between the various biochars and MB dye. Hence, these studied SDO, PSD, and SSD biochars prepared from cheap, easily accessible, biodegradable, and non-hazardous agro-waste materials can be effectively used for the removal, treatment, and management of MB dye as well as other industrial effluents before their disposal into the environment.
Collapse
|
4
|
Abdou MM, Abbas DM, Ismail EA, Zahran A, Abu-Rayyan A, Bahtiti NH, Ragab AH, Alshwyeh HA, Hassan AA, Soliman AGA. Phenol-Formaldehyde/Pyrazole Composite: Synthesis, Characterization, and Evaluation of its Chromate Removal Efficiency. ACS OMEGA 2024; 9:10090-10098. [PMID: 38463304 PMCID: PMC10918667 DOI: 10.1021/acsomega.3c05432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/05/2023] [Accepted: 01/31/2024] [Indexed: 03/12/2024]
Abstract
In this study, we report the successful synthesis of a phenol-formaldehyde-pyrazole (PF-PYZ) compound through the surface functionalization of phenol-formaldehyde (PF) with pyrazole (PYZ). The resulting mixture was subjected to comprehensive characterization using a range of analytical techniques, including X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The newly synthesized PF-PYZ material effectively removes Cr(VI) ions. Notably, a substantial elimination efficiency of 96% was achieved after just 60 min of contact time. The strategic incorporation of pyrazole (PYZ) as the principal functionalizing agent contributed to this exceptional performance. Notably, the functionalized PYZ sites were strategically positioned on the surface of PF, rendering them readily accessible to metal ions. Through rigorous testing, the optimal sorption capacity of PF-PYZ for Cr(VI) ions was quantified at 0.872 mmol Cr(VI)/g, highlighting the material's superior adsorption capabilities. The practical utility of PF-PYZ was further established through a reusability test, which demonstrated that the chromate capacity remained remarkably stable at 0.724 mequiv Cr(VI)/g over 20 consecutive cycles. This resilience underscores the robustness of the resin, indicating its potential for repeated regeneration and reuse without a significant capacity loss. Our work presents a novel approach to functionalizing phenol-formaldehyde with pyrazole, creating PF-PYZ, a highly efficient material for removing Cr(VI) ions. The compound's facile synthesis, exceptional removal performance, and excellent reusability collectively underscore its promising potential for various water treatments, especially oil field and environmental remediation applications.
Collapse
Affiliation(s)
- Moaz M. Abdou
- Egyptian
Petroleum Research Institute, Nasr City, 11727 Cairo, Egypt
| | - Dalia M. Abbas
- Egyptian
Petroleum Research Institute, Nasr City, 11727 Cairo, Egypt
| | - Enas Arafa Ismail
- Egyptian
Petroleum Research Institute, Nasr City, 11727 Cairo, Egypt
| | - Ahmed Zahran
- Egyptian
Petroleum Research Institute, Nasr City, 11727 Cairo, Egypt
| | - Ahmed Abu-Rayyan
- Faculty
of Science, Applied Science Private University, Amman 11931, Jordan
| | - Nawal H. Bahtiti
- Faculty
of Science, Applied Science Private University, Amman 11931, Jordan
| | - Ahmed H. Ragab
- Chemistry
Department, College of Science, King Khalid
University, Abha 61413, Saudi Arabia
| | - Hussah A. Alshwyeh
- Department
of Biology, College of Science, Imam Abdulrahman
Bin Faisal University, 1982, Dammam 31441, Saudi Arabia
- Basic
& Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University, 1982, Dammam 31441, Saudi Arabia
| | - Abeer A. Hassan
- Chemistry
Department, College of Science, King Khalid
University, Abha 61413, Saudi Arabia
| | | |
Collapse
|
5
|
Khaleghi H, Jaafarzadeh N, Esmaeili H, Ramavandi B. Alginate@Fe 3O 4@Bentonite nanocomposite for formaldehyde removal from synthetic and real effluent: optimization by central composite design. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:29566-29580. [PMID: 36417060 DOI: 10.1007/s11356-022-24189-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
In this study, Alginate@ Fe3O4/Bentonite nanocomposite was utilized to eliminate formaldehyde from wastewater. Structural features of bentonite, bentonite@Fe3O4, and Alginate@Fe3O4@Bentonite were determined using FT-IR, PXRD, Mapping, EDX, TEM, SEM, VSM, and BET analyses. The central composite design method was employed to find the optimal conditions for formaldehyde removal using Alg@Fe3O4@Bent nanocomposite. The maximum formaldehyde uptake efficiency (94.56%) was obtained at formaldehyde concentration of 10.69 ppm, the nanocomposite dose of 1.28 g/L, and pH of 9.96 after 16.53 min. Also, Alginate@Fe3O4@Bentonite composite was used to eliminate formaldehyde from Razi petrochemical wastewater and was able to eliminate 91.24% of formaldehyde, 70% of COD, and 68.9% of BOD5. The isotherm and kinetic investigations demonstrated that the formaldehyde uptake process by the foresaid adsorbent follows the Langmuir isotherm and quasi-first-order kinetic models, respectively. Also, the maximum uptake capacity was obtained at 50.25 mg/g. Moreover, the formaldehyde uptake process by the aforementioned nanocomposite was exothermic and spontaneous. Furthermore, the formaldehyde adsorption efficiency decreased slightly after six reuse cycles (less than 10%), indicating that Alginate@Fe3O4@Bentonite nanocomposite has remarkable recyclability. Besides, the influence of interfering ions like nitrate, carbonate, chloride, phosphate, and sulfate was studied on the formaldehyde removal efficiency and the results displayed that all ions except nitrate ion have low interaction with formaldehyde (less than 3% reduction in removal efficiency).
Collapse
Affiliation(s)
- Hossein Khaleghi
- Department of Environment, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| | - Neamatollah Jaafarzadeh
- Department of Environment, Bushehr Branch, Islamic Azad University, Bushehr, Iran
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Esmaeili
- Department of Chemical Engineering, Bushehr Branch, Islamic Azad University, Bushehr, Iran.
| | - Bahman Ramavandi
- Department of Environment, Bushehr Branch, Islamic Azad University, Bushehr, Iran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
6
|
Alali AF, Almojil SF, Almohana AI, Anqi AE, Rajhi AA, Alamri S, Dhahad HA. Hydroxyapatite@Mn-Fe composite as a reusable sorbent for removal of Nile blue dye and Cr(VI) from polluted water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:18419-18437. [PMID: 36210408 DOI: 10.1007/s11356-022-22821-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/27/2022] [Indexed: 06/16/2023]
Abstract
In this study, hydroxyapatite@Mn-Fe composite was used as a novel adsorbent to eliminate Nile blue (NB) dye and hexavalent chromium ion (Cr(VI)) from aqueous media. Different analyses such as FTIR, Map, SEM, EDX, BET, and XRD were used to study the characteristics of the composite. The highest sorption efficiencies of Cr(VI) and NB at pH 2 and 10 were 97.63% and 98.83%, respectively, which are significant values. Equilibrium and kinetic studies of the sorption process showed that the Freundlich isotherm model and pseudo-second-order kinetic model can better describe the equilibrium and kinetic behavior of the sorption process. According to the Langmuir model, the maximum sorption capacities of NB dye and Cr(VI) ion using the hydroxyapatite@Mn-Fe composite were 0.259 and 0.938 mmol/g, respectively. Also, the results of the thermodynamic study showed that the sorption process is favorable (ΔS° = - 34.2 kJ/mol·K for Cr(VI) and - 144.6 kJ/mol·K for NB), spontaneous (ΔG° < 0), and exothermic (ΔH° = - 27.99 kJ/mol for Cr(VI) and - 64.2 kJ/mol for NB). Moreover, the desorption process of both contaminants using the hydroxyapatite@Mn-Fe composite showed that the H2SO4 solution with a concentration of 3 mol/L can remove both contaminants separately with the highest efficiency. Furthermore, the reusability study indicated that the composite can be used in five reuse cycles without significant decrease in its efficiency. Besides, the composite was able to eliminate color, turbidity, COD, and BOD5 from the textile wastewater with removal efficiencies of 93.06, 81.61, 76.05, and 71.88%, respectively. To the best of our knowledge, hydroxyapatite@Mn-Fe composite was synthesized and used for the first time to remove Cr(VI) ions and NB dye. In general, the aforementioned composite is recommended for industrial wastewater treatment.
Collapse
Affiliation(s)
- Abdulrhman Fahmi Alali
- Department of Civil Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh, 11421, Saudi Arabia
| | - Sattam Fahad Almojil
- Department of Civil Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh, 11421, Saudi Arabia
| | - Abdulaziz Ibrahim Almohana
- Department of Civil Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh, 11421, Saudi Arabia
| | - Ali E Anqi
- Department of Mechanical Engineering, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| | - Ali A Rajhi
- Department of Mechanical Engineering, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| | - Sagr Alamri
- Department of Mechanical Engineering, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| | - Hayder A Dhahad
- Mechanical Engineering Department, University of Technology, Baghdad, Iraq.
| |
Collapse
|
7
|
A Brief Review of Formaldehyde Removal through Activated Carbon Adsorption. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12105025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Formaldehyde is a highly toxic indoor pollutant that can adversely impact human health. Various technologies have been intensively evaluated to remove formaldehyde from an indoor atmospheres. Activated carbon (AC) has been used to adsorb formaldehyde from the indoor atmosphere, which has been commercially viable owing to its low operational costs. AC has a high adsorption affinity due to its high surface area. In addition, applications of AC may be diversified by the surface modification. Among the different surface modifications for AC, amination treatments of AC have been reported and evaluated. Specifically, the amine functional groups of the amine-treated AC have been found to play an important role in the adsorption of formaldehyde. Surface modifications of AC by impregnating and/or grafting the amine functional groups onto the AC surface have been reported in the literature. The impregnation of the amine-containing species on AC is mainly achieved by physical interaction or H-bond of the amines to the AC surface. Meanwhile, the grafting of the amine functional groups is mainly conducted through chemical reactions occurring between the amines and the AC surface. Herein, the carboxyl group, as a representative functional group for grafting on the surface of AC, plays a key role in the amination reactions. A qualitative comparison of amination chemicals for the surface modification of AC has also been discussed. Thermodynamics and kinetics for adsorption of formaldehyde on AC are firstly reviewed in this paper, and then the major factors affecting the adsorptive removal of formaldehyde over AC are highlighted and discussed in terms of humidity and temperature. In addition, new strategies for amination, as well as the physical modification option for AC application, are proposed and discussed in terms of safety and processability.
Collapse
|