1
|
Herrera-Imbroda J, Flores-López M, Ruiz-Sastre P, Gómez-Sánchez-Lafuente C, Bordallo-Aragón A, Rodríguez de Fonseca F, Mayoral-Cleríes F. The Inflammatory Signals Associated with Psychosis: Impact of Comorbid Drug Abuse. Biomedicines 2023; 11:biomedicines11020454. [PMID: 36830990 PMCID: PMC9953424 DOI: 10.3390/biomedicines11020454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Psychosis and substance use disorders are two diagnostic categories whose association has been studied for decades. In addition, both psychosis spectrum disorders and drug abuse have recently been linked to multiple pro-inflammatory changes in the central nervous system. We have carried out a narrative review of the literature through a holistic approach. We used PubMed as our search engine. We included in the review all relevant studies looking at pro-inflammatory changes in psychotic disorders and substance use disorders. We found that there are multiple studies that relate various pro-inflammatory lipids and proteins with psychosis and substance use disorders, with an overlap between the two. The main findings involve inflammatory mediators such as cytokines, chemokines, endocannabinoids, eicosanoids, lysophospholipds and/or bacterial products. Many of these findings are present in different phases of psychosis and in substance use disorders such as cannabis, cocaine, methamphetamines, alcohol and nicotine. Psychosis and substance use disorders may have a common origin in an abnormal neurodevelopment caused, among other factors, by a neuroinflammatory process. A possible convergent pathway is that which interrelates the transcriptional factors NFκB and PPARγ. This may have future clinical implications.
Collapse
Affiliation(s)
- Jesús Herrera-Imbroda
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
- Facultad de Medicina, Universidad de Málaga, Andalucía Tech, Campus de Teatinos s/n, 29071 Málaga, Spain
- Departamento de Farmacología y Pediatría, Universidad de Málaga, Andalucía Tech, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - María Flores-López
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
- Facultad de Psicología, Universidad de Málaga, Andalucía Tech, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - Paloma Ruiz-Sastre
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
- Facultad de Medicina, Universidad de Málaga, Andalucía Tech, Campus de Teatinos s/n, 29071 Málaga, Spain
- Correspondence: (P.R.-S.); (C.G.-S.-L.)
| | - Carlos Gómez-Sánchez-Lafuente
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
- Facultad de Psicología, Universidad de Málaga, Andalucía Tech, Campus de Teatinos s/n, 29071 Málaga, Spain
- Correspondence: (P.R.-S.); (C.G.-S.-L.)
| | - Antonio Bordallo-Aragón
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Fermín Mayoral-Cleríes
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| |
Collapse
|
2
|
Yi X, Li M, He G, Du H, Li X, Cao D, Wang L, Wu X, Yang F, Chen X, He L, Ping Y, Zhou D. Genetic and functional analysis reveals TENM4 contributes to schizophrenia. iScience 2021; 24:103063. [PMID: 34568788 PMCID: PMC8449235 DOI: 10.1016/j.isci.2021.103063] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/23/2021] [Accepted: 08/26/2021] [Indexed: 12/09/2022] Open
Abstract
TENM4, encoding a member of the teneurin protein family, is a risk gene shared by many types of mental diseases and is implicated in neuronal plasticity and signaling. However, the role and the mechanisms of TENM4 in schizophrenia (SCZ) remain unclear. We identified possible pathogenic mutations in the TENM4 gene through target sequencing of TENM4 in 68 SCZ families. We further demonstrated that aberrant expression of Ten-m leads to lower learning ability, sleep reduction, and increased aggressiveness in animal models. RNA sequencing showed that aberrant expression of Ten-m was related to stimulus perception and metabolic process, and Gene Ontology enrichment terms were neurogenesis and ATPase activity. This study provides strong evidence that TENM4 contributes to SCZ, and its functional mutations might be responsible for the impaired neural circuits and behaviors observed in SCZ. Possible pathogenic rare missense mutations in TENM4 gene contribute to SCZ Aberrant expression of Ten-m leads to behavioral disturbances related to SCZ symptoms Ten-m affects stimulation, metabolic process, neurogenesis, and ATPase activity
Collapse
Affiliation(s)
- Xin Yi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Rd., Shanghai 200030, PR China
| | - Minzhe Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Rd., Shanghai 200030, PR China
| | - Guang He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Rd., Shanghai 200030, PR China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huihui Du
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Rd., Shanghai 200030, PR China
| | - Xingwang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Rd., Shanghai 200030, PR China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongmei Cao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Rd., Shanghai 200030, PR China
| | - Lu Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Rd., Shanghai 200030, PR China
| | - Xi Wu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Rd., Shanghai 200030, PR China
| | - Fengping Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Rd., Shanghai 200030, PR China
| | - Xu Chen
- Department of Neurology, Shanghai Eighth People's Hospital, Shanghai Sixth People's Hospital Xuhui Branch, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Rd., Shanghai 200030, PR China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Ping
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Rd., Shanghai 200030, PR China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Daizhan Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Rd., Shanghai 200030, PR China
| |
Collapse
|
3
|
Chen C, Cheng L, Grennan K, Pibiri F, Zhang C, Badner JA, Gershon ES, Liu C. Two gene co-expression modules differentiate psychotics and controls. Mol Psychiatry 2013; 18:1308-1314. [PMID: 23147385 PMCID: PMC4018461 DOI: 10.1038/mp.2012.146] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 08/29/2012] [Accepted: 09/04/2012] [Indexed: 12/03/2022]
Abstract
Schizophrenia (SCZ) and bipolar disorder (BD) are highly heritable psychiatric disorders. Associated genetic and gene expression changes have been identified, but many have not been replicated and have unknown functions. We identified groups of genes whose expressions varied together, that is co-expression modules, then tested them for association with SCZ. Using weighted gene co-expression network analysis, we show that two modules were differentially expressed in patients versus controls. One, upregulated in cerebral cortex, was enriched with neuron differentiation and neuron development genes, as well as disease genome-wide association study genetic signals; the second, altered in cerebral cortex and cerebellum, was enriched with genes involved in neuron protection functions. The findings were preserved in five expression data sets, including sets from three brain regions, from a different microarray platform, and from BD patients. From those observations, we propose neuron differentiation and development pathways may be involved in etiologies of both SCZ and BD, and neuron protection function participates in pathological process of the diseases.
Collapse
Affiliation(s)
- Chao Chen
- Psychiatry Department, the University of Illinois at Chicago, Chicago, IL, US 60607
| | - Lijun Cheng
- Psychiatry Department, the University of Illinois at Chicago, Chicago, IL, US 60607
| | - Kay Grennan
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL, US 60637
| | - Fabio Pibiri
- Department of Pediatrics, the University of Illinois at Chicago, Chicago, IL, US 60607
| | - Chunling Zhang
- Psychiatry Department, the University of Illinois at Chicago, Chicago, IL, US 60607
| | - Judith A. Badner
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL, US 60637
| | - Elliot S. Gershon
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL, US 60637
| | - Chunyu Liu
- Psychiatry Department, the University of Illinois at Chicago, Chicago, IL, US 60607
| |
Collapse
|
4
|
Abstract
OBJECTIVES Psychiatric disorders are among the most heritable common disorders, and for more than 20 years researchers have tried to unravel genetic susceptibility genes. This review briefly outlines the pros and cons of genetic approaches, important advances and possible future directions for readers not familiar with genetic studies. METHODS In this article the results of 20 years molecular genetics in psychiatry are shortly and critically summarized on the basis of important reviews and meta-analyses of the last decade, without describing and enumerating the different findings (see special reviews). RESULTS Conventional linkage and candidate association studies revealed numerous, but also inconsistent and sometimes contradictory results. The reasons are assumed to include the complexity of the disorder with interaction of several genes of small effects, lack of a valid phenotype, and invalid statistical and methodological issues. Recent systematic genome-wide association studies (GWAS) have reported association of some common variants for schizophrenia and bipolar disorder. However, the risk conferred by these variants is small and genome-wide significance is rare. Also structural variations might be important, and interesting data are arising from copy-number-variations (CNVs). CONCLUSIONS Although the new data from GWAS are promising, they still do not meet our initial expectations, identifying a "susceptibility gene". However, they opened new aspects concerning aetiology of psychoses, and the incorporation of new approaches, as epigenetics, or gene-environment interaction, is needed in future study designs.
Collapse
Affiliation(s)
- Brigitta Bondy
- Psychiatric Clinic of University Munich, Section Psychiatric Genetics and Neurochemistry, Munich, Germany.
| |
Collapse
|
5
|
Hert DG, Fredlake CP, Barron AE. DNA sequencing by microchip electrophoresis using mixtures of high- and low-molar mass poly(N,N-dimethylacrylamide) matrices. Electrophoresis 2008; 29:4663-8. [PMID: 19053157 PMCID: PMC3064962 DOI: 10.1002/elps.200800389] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Previous studies have reported that mixed molar mass polymer matrices show enhanced DNA sequencing fragment separation compared with matrices formulated from a single average molar mass. Here, we describe a systematic study to investigate the effects of varying the amounts of two different average molar mass polymers on the DNA sequencing ability of poly(N,N-dimethylacrylamide) (pDMA) sequencing matrices in microfluidic chips. Two polydisperse samples of pDMA, with weight-average molar masses of 3.5 MDa and 770 kDa, were mixed at various fractional concentrations while maintaining the overall polymer concentration at 5% w/v. We show that although the separation of short DNA fragments depends strongly on the overall solution concentration of the polymer, inclusion of the high-molar mass polymer is essential to achieve read lengths of interest (>400 bases) for many sequencing applications. Our results also show that one of the blended matrices, comprised of 3% 3.5 MDa pDMA and 2% 770 kDa pDMA, yields similar sequencing read lengths (>520 bases on average) to the high-molar mass matrix alone, while also providing a fivefold reduction in zero-shear viscosity. These results indicate that the long read lengths achieved in a viscous, high-molar mass polymer matrix are also possible to achieve in a tuned, blended matrix of high- and low-molar mass polymers with a much lower overall solution viscosity.
Collapse
Affiliation(s)
- Daniel G. Hert
- Department of Chemical and Biological Engineering, Northwestern University, Evanston IL 60208
| | - Christopher P. Fredlake
- Department of Chemical and Biological Engineering, Northwestern University, Evanston IL 60208
| | - Annelise E. Barron
- Department of Chemical and Biological Engineering, Northwestern University, Evanston IL 60208
- Department of Bioengineering, Stanford University, Stanford, CA 94305
| |
Collapse
|