1
|
Bondrescu M, Dehelean L, Farcas S, Dragan PA, Podaru CA, Popa L, Andreescu N. Into a Deeper Understanding of CYP2D6's Role in Risperidone Monotherapy and the Potential Side Effects in Schizophrenia Spectrum Disorders. Int J Mol Sci 2024; 25:6350. [PMID: 38928058 PMCID: PMC11204263 DOI: 10.3390/ijms25126350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Schizophrenia spectrum disorders (SSD) are a group of diseases characterized by one or more abnormal features in perception, thought processing and behavior. Patients suffering from SSD are at risk of developing life-threatening complications. Pharmacogenetic studies have shown promising results on personalized treatment of psychosis. In the current study, 103 patients diagnosed with SSD treated with risperidone as antipsychotic monotherapy were enrolled. Socio-demographics and clinical data were recorded, and laboratory tests and genotyping standard procedure for cytochrome P450 (CYP) 2D6*4 were performed. Patients were evaluated by the Positive and Negative Syndrome Scale (PANSS) on admission and at discharge. Based on the reduction in the PANSS total score, subjects were divided into non-responders, partial responders and full responders. Only 11 subjects had a full response to risperidone (10.67%), 53 subjects (51.45%) had a partial response, and 39 participants (37.86%) were non-responders. Patients at first episode psychosis showed significantly higher levels of blood glucose and prolactin levels, while chronic patients showed significantly higher LDL levels. Adverse drug reactions (ADR) such as tremor and stiffness significantly correlated with genetic phenotypes (p = 0.0145). While CYP2D6 showed no impact on treatment response, ADR were significantly more frequent among poor and intermediate metabolizers.
Collapse
Affiliation(s)
- Mariana Bondrescu
- Department of Neurosciences-Psychiatry, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania;
- Timis County Emergency Clinical Hospital “Pius Brinzeu”, Liviu Rebreanu 156, 300723 Timisoara, Romania;
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania;
| | - Liana Dehelean
- Department of Neurosciences-Psychiatry, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania;
- Timis County Emergency Clinical Hospital “Pius Brinzeu”, Liviu Rebreanu 156, 300723 Timisoara, Romania;
| | - Simona Farcas
- Discipline of Medical Genetics, Department of Microscopic Morphology, Center of Genomic Medicine “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (S.F.); (N.A.)
| | - Patricia Alexandra Dragan
- Timis County Emergency Clinical Hospital “Pius Brinzeu”, Liviu Rebreanu 156, 300723 Timisoara, Romania;
| | | | - Laura Popa
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania;
| | - Nicoleta Andreescu
- Discipline of Medical Genetics, Department of Microscopic Morphology, Center of Genomic Medicine “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (S.F.); (N.A.)
| |
Collapse
|
2
|
Biswas M, Vanwong N, Sukasem C. Pharmacogenomics and non-genetic factors affecting drug response in autism spectrum disorder in Thai and other populations: current evidence and future implications. Front Pharmacol 2024; 14:1285967. [PMID: 38375208 PMCID: PMC10875059 DOI: 10.3389/fphar.2023.1285967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/26/2023] [Indexed: 02/21/2024] Open
Abstract
Autism spectrum disorder (ASD) may affect family and social life profoundly. Although there is no selective pharmacotherapy for ASD, the Food and Drug Administration (FDA) has recommended risperidone/aripiprazole to treat the associated symptoms of ASD, such as agitation/irritability. Strong associations of some pharmacokinetic/pharmacodynamic gene variants, e.g., CYP2D6 and DRD2, with risperidone-induced hyperprolactinemia have been found in children with ASD, but such strong genetic associations have not been found directly for aripiprazole in ASD. In addition to pharmacogenomic (PGx) factors, drug-drug interactions (DDIs) and possibly cumulative effects of DDIs and PGx may affect the safety or effectiveness of risperidone/aripiprazole, which should be assessed in future clinical studies in children with ASD. Reimbursement, knowledge, and education of healthcare professionals are the key obstacles preventing the successful implementation of ASD pharmacogenomics into routine clinical practice. The preparation of national and international PGx-based dosing guidelines for risperidone/aripiprazole based on robust evidence may advance precision medicine for ASD.
Collapse
Affiliation(s)
- Mohitosh Biswas
- Department of Pharmacy, University of Rajshahi, Rajshahi, Bangladesh
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Ramathibodi Hospital, Somdech Phra Debaratana Medical Center SDMC, Bangkok, Thailand
| | - Natchaya Vanwong
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
- Cardiovascular Precision Medicine Research Group, Special Task Force of Activating Research (STAR), Chulalongkorn University, Bangkok, Thailand
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Ramathibodi Hospital, Somdech Phra Debaratana Medical Center SDMC, Bangkok, Thailand
- Pharmacogenomics and Precision Medicine Clinic, Bumrungrad Genomic Medicine Institute (BGMI), Bumrungrad International Hospital, Bangkok, Thailand
- Faculty of Pharmaceutical Sciences, Burapha University, Mueang, Thailand
- Department of Pharmacology and Therapeutics, MRC Centre for Drug Safety Science, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
3
|
Merino D, Fernandez A, Gérard AO, Ben Othman N, Rocher F, Askenazy F, Verstuyft C, Drici MD, Thümmler S. Adverse Drug Reactions of Olanzapine, Clozapine and Loxapine in Children and Youth: A Systematic Pharmacogenetic Review. Pharmaceuticals (Basel) 2022; 15:ph15060749. [PMID: 35745668 PMCID: PMC9230864 DOI: 10.3390/ph15060749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 01/27/2023] Open
Abstract
Children and youth treated with antipsychotic drugs (APs) are particularly vulnerable to adverse drug reactions (ADRs) and prone to poor treatment response. In particular, interindividual variations in drug exposure can result from differential metabolism of APs by cytochromes, subject to genetic polymorphism. CYP1A2 is pivotal in the metabolism of the APs olanzapine, clozapine, and loxapine, whose safety profile warrants caution. We aimed to shed some light on the pharmacogenetic profiles possibly associated with these drugs’ ADRs and loss of efficacy in children and youth. We conducted a systematic review relying on four databases, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 recommendations and checklist, with a quality assessment. Our research yielded 32 publications. The most frequent ADRs were weight gain and metabolic syndrome (18; 56.3%), followed by lack of therapeutic effect (8; 25%) and neurological ADRs (7; 21.8%). The overall mean quality score was 11.3/24 (±2.7). In 11 studies (34.3%), genotyping focused on the study of cytochromes. Findings regarding possible associations were sometimes conflicting. Nonetheless, cases of major clinical improvement were fostered by genotyping. Yet, CYP1A2 remains poorly investigated. Further studies are required to improve the assessment of the risk–benefit balance of prescription for children and youth treated with olanzapine, clozapine, and/or loxapine.
Collapse
Affiliation(s)
- Diane Merino
- Department of Child and Adolescent Psychiatry, Children’s Hospitals of Nice CHU-Lenval, 06200 Nice, France; (D.M.); (A.F.); (F.A.)
- CoBTek Laboratory, Université Côte d’Azur, 06100 Nice, France
- Department of Pharmacology and Pharmacovigilance Center, University Hospital of Nice, 06000 Nice, France; (A.O.G.); (N.B.O.); (F.R.); (M.-D.D.)
| | - Arnaud Fernandez
- Department of Child and Adolescent Psychiatry, Children’s Hospitals of Nice CHU-Lenval, 06200 Nice, France; (D.M.); (A.F.); (F.A.)
- CoBTek Laboratory, Université Côte d’Azur, 06100 Nice, France
| | - Alexandre O. Gérard
- Department of Pharmacology and Pharmacovigilance Center, University Hospital of Nice, 06000 Nice, France; (A.O.G.); (N.B.O.); (F.R.); (M.-D.D.)
| | - Nouha Ben Othman
- Department of Pharmacology and Pharmacovigilance Center, University Hospital of Nice, 06000 Nice, France; (A.O.G.); (N.B.O.); (F.R.); (M.-D.D.)
| | - Fanny Rocher
- Department of Pharmacology and Pharmacovigilance Center, University Hospital of Nice, 06000 Nice, France; (A.O.G.); (N.B.O.); (F.R.); (M.-D.D.)
| | - Florence Askenazy
- Department of Child and Adolescent Psychiatry, Children’s Hospitals of Nice CHU-Lenval, 06200 Nice, France; (D.M.); (A.F.); (F.A.)
- CoBTek Laboratory, Université Côte d’Azur, 06100 Nice, France
| | - Céline Verstuyft
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie, Hôpital Bicêtre, Groupe Hospitalier Paris Saclay, AP–HP, 94270 Le Kremlin-Bicêtre, France;
- CESP/UMR-S1178, Inserm, Université Paris-Sud, 92290 Paris, France
| | - Milou-Daniel Drici
- Department of Pharmacology and Pharmacovigilance Center, University Hospital of Nice, 06000 Nice, France; (A.O.G.); (N.B.O.); (F.R.); (M.-D.D.)
| | - Susanne Thümmler
- Department of Child and Adolescent Psychiatry, Children’s Hospitals of Nice CHU-Lenval, 06200 Nice, France; (D.M.); (A.F.); (F.A.)
- CoBTek Laboratory, Université Côte d’Azur, 06100 Nice, France
- Correspondence:
| |
Collapse
|
4
|
Ivashchenko DV, Yudelevich DA, Buromskaya NI, Shimanov PV, Deitch RV, Akmalova KA, Kachanova AA, Dorina IV, Nastovich MI, Grishina EA, Savchenko LM, Shevchenko YS, Sychev DA. CYP2D6 phenotype and ABCB1 haplotypes are associated with antipsychotic safety in adolescents experiencing acute psychotic episodes. Drug Metab Pers Ther 2021; 0:dmdi-2021-0124. [PMID: 34388331 DOI: 10.1515/dmdi-2021-0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/28/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVES To identify possible associations of CYP2D6, CYP3A4/5, and ABCB1 gene polymorphisms with the efficacy and safety of antipsychotics in adolescents with acute psychotic episodes. METHODS We examined the associations of pharmacogenetic factors with the efficacy and safety of antipsychotics in 101 adolescents with acute psychotic episodes. The diagnosis on admission was "Brief psychotic disorder" (F23.0-23.9 by ICD-10). All patients were administered antipsychotics for 14 days. Treatment efficacy and safety were assessed using the PANSS, CGAS, CGI-S(I), UKU SERS, BARS, and SAS scales. Pharmacokinetic genotyping was performed for the CYP2D6*4, *10, ABCB1 1236C>T, 2677G>T, and 3435C>T genes. RESULTS CYP2D6 intermediate metabolisers had "Micturition disturbances" more often than extensive metabolisers (24.2 vs. 7.4%; p=0.026). "Wild" homozygote ABCB1 3435C>T CC was associated with more prominent akathisia. Haplotype analysis of three ABCB1 polymorphisms revealed that the "wild" alleles "C-G-C" (ABCB1 1236-2677-3435) were associated with higher risk of "Reduced salivation" (OR=2.95; 95% CI=1.35-6.45; p=0.0078). CONCLUSIONS CYP2D6 intermediate metabolism was associated with the risk of urinary difficulties under treatment with antipsychotics. We found that "wild" homozygotes ABCB1 1236C>T, 2677G>T, and 3435C>T were predictors of adverse drug effects caused by treatment with antipsychotics.
Collapse
Affiliation(s)
- Dmitriy V Ivashchenko
- Molecular and Personalized Medicine Research Institute, Russian Medical Academy of Continuous Professional Education, Moscow, Russia
- Department of Psychiatry, PIUV - Branch of Russian Medical Academy of Continuous Professional Education, Penza, Russia
| | - Daria A Yudelevich
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Nina I Buromskaya
- Scientific-Practical Children's and Adolescents Mental Health Center n.a. G.E. Sukhareva, Moscow, Russia
| | - Pavel V Shimanov
- Scientific-Practical Children's and Adolescents Mental Health Center n.a. G.E. Sukhareva, Moscow, Russia
| | - Roman V Deitch
- Scientific-Practical Children's and Adolescents Mental Health Center n.a. G.E. Sukhareva, Moscow, Russia
| | - Kristina A Akmalova
- Molecular and Personalized Medicine Research Institute, Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - Anastasia A Kachanova
- Molecular and Personalized Medicine Research Institute, Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - Irina V Dorina
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Marina I Nastovich
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Elena A Grishina
- Scientific-Practical Children's and Adolescents Mental Health Center n.a. G.E. Sukhareva, Moscow, Russia
| | - Lyudmila M Savchenko
- Molecular and Personalized Medicine Research Institute, Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - Yuriy S Shevchenko
- Department of Addictions Medicine, Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - Dmitriy A Sychev
- Child Psychiatry and Psychotherapy Department, Russian Medical Academy of Continuous Professional Education, Moscow, Russia
- Department of Clinical Pharmacology and Therapeutics, Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| |
Collapse
|
5
|
Ivashchenko DV, Yudelevich DA, Buromskaya NI, Shimanov PV, Deitch RV, Akmalova KA, Kachanova AA, Dorina IV, Nastovich MI, Grishina EA, Savchenko LM, Shevchenko YS, Sychev DA. CYP2D6 phenotype and ABCB1 haplotypes are associated with antipsychotic safety in adolescents experiencing acute psychotic episodes. Drug Metab Pers Ther 2021; 37:47-53. [PMID: 35385893 DOI: 10.1515/dmpt-2021-0124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/28/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES To identify possible associations of CYP2D6, CYP3A4/5, and ABCB1 gene polymorphisms with the efficacy and safety of antipsychotics in adolescents with acute psychotic episodes. METHODS We examined the associations of pharmacogenetic factors with the efficacy and safety of antipsychotics in 101 adolescents with acute psychotic episodes. The diagnosis on admission was "Brief psychotic disorder" (F23.0-23.9 by ICD-10). All patients were administered antipsychotics for 14 days. Treatment efficacy and safety were assessed using the PANSS, CGAS, CGI-S(I), UKU SERS, BARS, and SAS scales. Pharmacokinetic genotyping was performed for the CYP2D6*4, *10, ABCB1 1236C>T, 2677G>T, and 3435C>T genes. RESULTS CYP2D6 intermediate metabolisers had "Micturition disturbances" more often than extensive metabolisers (24.2 vs. 7.4%; p=0.026). "Wild" homozygote ABCB1 3435C>T CC was associated with more prominent akathisia. Haplotype analysis of three ABCB1 polymorphisms revealed that the "wild" alleles "C-G-C" (ABCB1 1236-2677-3435) were associated with higher risk of "Reduced salivation" (OR=2.95; 95% CI=1.35-6.45; p=0.0078). CONCLUSIONS CYP2D6 intermediate metabolism was associated with the risk of urinary difficulties under treatment with antipsychotics. We found that "wild" homozygotes ABCB1 1236C>T, 2677G>T, and 3435C>T were predictors of adverse drug effects caused by treatment with antipsychotics.
Collapse
Affiliation(s)
- Dmitriy V Ivashchenko
- Molecular and Personalized Medicine Research Institute, Russian Medical Academy of Continuous Professional Education, Moscow, Russia.,Department of Psychiatry, PIUV - Branch of Russian Medical Academy of Continuous Professional Education, Penza, Russia
| | - Daria A Yudelevich
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Nina I Buromskaya
- Scientific-Practical Children's and Adolescents Mental Health Center n.a. G.E. Sukhareva, Moscow, Russia
| | - Pavel V Shimanov
- Scientific-Practical Children's and Adolescents Mental Health Center n.a. G.E. Sukhareva, Moscow, Russia
| | - Roman V Deitch
- Scientific-Practical Children's and Adolescents Mental Health Center n.a. G.E. Sukhareva, Moscow, Russia
| | - Kristina A Akmalova
- Molecular and Personalized Medicine Research Institute, Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - Anastasia A Kachanova
- Molecular and Personalized Medicine Research Institute, Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - Irina V Dorina
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Marina I Nastovich
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Elena A Grishina
- Scientific-Practical Children's and Adolescents Mental Health Center n.a. G.E. Sukhareva, Moscow, Russia
| | - Lyudmila M Savchenko
- Molecular and Personalized Medicine Research Institute, Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - Yuriy S Shevchenko
- Department of Addictions Medicine, Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - Dmitriy A Sychev
- Child Psychiatry and Psychotherapy Department, Russian Medical Academy of Continuous Professional Education, Moscow, Russia.,Department of Clinical Pharmacology and Therapeutics, Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| |
Collapse
|
6
|
Rossow KM, Oshikoya KA, Aka IT, Maxwell-Horn AC, Roden DM, Van Driest SL. Evidence for Pharmacogenomic Effects on Risperidone Outcomes in Pediatrics. J Dev Behav Pediatr 2021; 42:205-212. [PMID: 33759847 PMCID: PMC7995603 DOI: 10.1097/dbp.0000000000000883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 09/14/2020] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To determine the association between genetic variants reported to affect risperidone and adverse events (AEs) in children and adolescents. METHODS Individuals aged 18 years or younger with ≥4 weeks of risperidone exposure in a deidentified DNA biobank were included. The primary outcome was AE frequency as a function of genotype. Individuals were classified according to metabolizer status for CYP2D6, CYP3A4, and CYP3A5; wild type, heterozygote, or homozygote for specific single nucleotide variants for DRD2, DRD3, HTR2A, and HTR2C; and wild type versus nonwild type for multiple uncommon variants in ABCG2, ABCB1, and HTR2C. Tests of association of each classification to AEs were performed using a Fisher exact test and logistic regression, and statistically significant classifications were included in a final logistic regression. RESULTS The final cohort included 257 individuals. AEs were more common in CYP2D6 poor/intermediate metabolizers (PMs/IMs) than normal/rapid/ultrarapid metabolizers (NMs/RMs/UMs) in univariate and multivariate analysis. HTR2A-rs6311 heterozygotes and homozygotes had fewer AEs than wild types in logistic regression but not in univariate analysis. In the final multivariable model adjusting for age, race, sex, and risperidone dose, AEs were associated with CYP2D6 (adjusted odds ratio [AOR] 2.6, 95% CI 1.1-5.5, for PMs/IMs vs. NMs/RMs/UMs) and HTR2A-rs6311 (AOR 0.6, 95% CI 0.4-0.9, for each variant allele), both consistent with previous studies. CONCLUSION Children and adolescents who are CYP2D6 PMs/IMs may have an increased risk for risperidone AEs. Of the genes and variants studied, only CYP2D6 has consistent association and sufficient data for clinical use, whereas HTR2A-rs6311 has limited data and requires further study.
Collapse
Affiliation(s)
| | | | | | | | - Dan M Roden
- Departments of Pediatrics
- Medicine, and
- Pharmacology, Vanderbilt University School of Medicine, Nashville, TN
| | | |
Collapse
|
7
|
Maruf AA, Stein K, Arnold PD, Aitchison KJ, Müller DJ, Bousman C. CYP2D6 and Antipsychotic Treatment Outcomes in Children and Youth: A Systematic Review. J Child Adolesc Psychopharmacol 2021; 31:33-45. [PMID: 33074724 DOI: 10.1089/cap.2020.0093] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Objective: To systematically review the impact of CYP2D6 genetic variation on antipsychotic pharmacokinetics, efficacy, and adverse drug reactions among children and youth. Method: The published literature was systematically searched in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses recommendations and critically evaluated using standardized tools and consensus criteria. Results: A total of 20 eligible studies comprising 1078 children and youth were evaluated. The included studies were of fair to moderate quality and included mostly males, individuals of European ancestry, and those treated with risperidone. CYP2D6 poor metabolizers (PMs) were consistently shown to have increased concentrations of risperidone relative to normal metabolizers (NMs). PMs were also consistently shown to have a greater propensity to experience antipsychotic (primarily risperidone) associated adverse drug reactions relative to NMs. However, robust evidence for an association between CYP2D6 and efficacy was less apparent. Conclusion and Clinical Significance: The current knowledge base suggests that CYP2D6 genetic variation has an appreciable impact on antipsychotic pharmacokinetics and the propensity for adverse drug reactions, particularly among children receiving risperidone treatment. However, several limitations with the current literature (e.g., sample sizes, study design, sample heterogeneity) should be addressed in future studies. Assuming that future studies support the link between CYP2D6 genetic variation and antipsychotic outcomes, we would anticipate an increase in the implementation of CYP2D6-guided antipsychotic drug selection and dose optimization in child and adolescent psychiatric services.
Collapse
Affiliation(s)
- Abdullah Al Maruf
- The Mathison Centre for Mental Health Research and Education, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada.,Department of Psychiatry, University of Calgary, Calgary, Canada.,Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada
| | - Kiera Stein
- Department of Medical Genetics, University of Calgary, Calgary, Canada
| | - Paul D Arnold
- The Mathison Centre for Mental Health Research and Education, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada.,Department of Psychiatry, University of Calgary, Calgary, Canada.,Department of Medical Genetics, University of Calgary, Calgary, Canada
| | - Katherine J Aitchison
- Departments of Psychiatry and Medical Genetics, University of Alberta, Edmonton, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Daniel J Müller
- Pharmacogenetics Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada.,Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Chad Bousman
- The Mathison Centre for Mental Health Research and Education, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada.,Department of Psychiatry, University of Calgary, Calgary, Canada.,Department of Medical Genetics, University of Calgary, Calgary, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| |
Collapse
|
8
|
Arranz MJ, Salazar J, Hernández MH. Pharmacogenetics of antipsychotics: Clinical utility and implementation. Behav Brain Res 2020; 401:113058. [PMID: 33316324 DOI: 10.1016/j.bbr.2020.113058] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/23/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
Decades of research have produced extensive evidence of the contribution of genetic factors to the efficacy and toxicity of antipsychotics. Numerous genetic variants in genes controlling drug availability or involved in antipsychotic processes have been linked to treatment variability. The complex mechanism of action and multitarget profile of most antipsychotic drugs hinder the identification of pharmacogenetic markers of clinical value. Nevertheless, the validity of associations between variants in CYP1A2, CYP2D6, CYP2C19, ABCB1, DRD2, DRD3, HTR2A, HTR2C, BDNF, COMT, MC4R genes and antipsychotic response has been confirmed in independent candidate gene studies. Genome wide pharmacogenomic studies have proven the role of the glutamatergic pathway in mediating antipsychotic activity and have reported novel associations with antipsychotic response. However, only a limited number of the findings, mainly functional variants of CYP metabolic enzymes, have been shown to be of clinical utility and translated into useful pharmacogenetic markers. Based on the currently available information, actionable pharmacogenetics should be reduced to antipsychotics' dose adjustment according to the genetically predicted metabolic status (CYPs' profile) of the patient. Growing evidence suggests that such interventions will reduce antipsychotics' side-effects and increase treatment safety. Despite this evidence, the use of pharmacogenetics in psychiatric wards is minimal. Hopefully, further evidence on the clinical and economic benefits, the development of clinical protocols based on pharmacogenetic information, and improved and cheaper genetic testing will increase the implementation of pharmacogenetic guided prescription in clinical settings.
Collapse
Affiliation(s)
- Maria J Arranz
- Fundació Docència i Recerca Mútua Terrassa, Spain; Centro de investigación en Red de Salud Mental, CIBERSAM, Madrid, Spain; PHAGEX Research Group, Universitat Ramon LLull, Spain.
| | - Juliana Salazar
- Translational Medical Oncology Laboratory, Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Barcelona, Spain; U705, ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Barcelona, Spain; PHAGEX Research Group, Universitat Ramon LLull, Spain
| | - Marta H Hernández
- PHAGEX Research Group, Universitat Ramon LLull, Spain; School of Health Sciences Blanquerna. University Ramon Llull, Barcelona, Spain
| |
Collapse
|