1
|
Daoust F, Dallaire F, Tavera H, Ember K, Guiot MC, Petrecca K, Leblond F. Preliminary study demonstrating cancer cells detection at the margins of whole glioblastoma specimens with Raman spectroscopy imaging. Sci Rep 2025; 15:6453. [PMID: 39987144 PMCID: PMC11846850 DOI: 10.1038/s41598-025-87109-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 01/16/2025] [Indexed: 02/24/2025] Open
Abstract
Intraoperative Raman spectroscopy uses near-infrared laser light to gain molecular information without causing damage. It can be used in vivo or ex vivo without exogenous contrast agents. Clinically, the technique was primarily used with machine learning for in situ tumor detection with fiberoptics probes analyzing tissue at sub-millimeter scales one point at the time. Here we report the development of a whole-specimen spectroscopic imaging system designed to detect cancer cells at the margins of surgical specimens. The system has a field of view covering a square area of side one centimeter with a pixel size of a quarter of a millimeter . First, a tumor detection model was developed from data acquired using a point-probe in 24 glioblastoma patients that had a detection sensitivity of 90% and a specificity of 95%. That model was then used to produce cancer prediction maps of nine glioblastoma specimens from five patients with validation based on histopathology analyses. The results preliminarily demonstrate the instrument was able to detect tissue areas associated with cancer cells from the Raman peaks associated with the amino acids phenylalanine and tryptophan as well as the relative concentration of lipids and proteins linked with deformations of the CH2 and CH3 bonds.
Collapse
Affiliation(s)
- François Daoust
- Polytechnique Montréal, Montreal, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Canada
| | - Frédérick Dallaire
- Polytechnique Montréal, Montreal, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Canada
| | - Hugo Tavera
- Polytechnique Montréal, Montreal, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Canada
| | - Katherine Ember
- Polytechnique Montréal, Montreal, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Canada
| | - Marie-Christine Guiot
- Division of Neuropathology, Department of Pathology, Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| | - Kevin Petrecca
- Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| | - Frederic Leblond
- Polytechnique Montréal, Montreal, Canada.
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Canada.
- Institut du Cancer de Montréal, Montreal, Canada.
| |
Collapse
|
2
|
Guo CC, Yang QY, Xi SY, Zhou J, Zhou ZH, Cao X, Liao YX, Li BXY, Dai XR, Wong M, Li YJ, Yu XH, Chen ZP. Phase I Clinical Study of a Multi-Kinase Inhibitor TG02 Capsule for the Treatment of Recurrent High-Grade Gliomas with Failed Temozolomide Treatment in Chinese Patients. Chemotherapy 2024; 70:74-84. [PMID: 39557019 DOI: 10.1159/000542365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/27/2024] [Indexed: 11/20/2024]
Abstract
INTRODUCTION We report the safety, tolerability, pharmacokinetic characteristics and preliminary efficacy of a multi-kinase inhibitor (TG02 capsule) as a new therapy for patients with recurrent high-grade gliomas in China. METHODS This is a single-center, dose-escalation, open-label phase I study, which enrolled patients with recurrent high-grade gliomas who failed to temozolomide. Patients were assigned sequentially into different dose groups and received TG02 every 4 weeks. The dose was increased in a traditional 3 + 3 design. Primary endpoints were the dose-limited toxicity (DLT) and the maximum tolerated dose (MTD). RESULTS Twelve patients (8 glioblastomas, 4 diffuse astrocytoma) were enrolled between May 2019 and November 2021. Three patients received 100 mg and 9 received 150 mg TG02 twice a week. The plasma concentration of TG02 reached the maximum at 2 h after administration, and the elimination half-life was about 7 h. No DLT occurred and MTD was not defined in this study. Eleven patients had one or more investigator-assessed treatment-related adverse events (TRAEs). The most frequent TRAEs were vomiting (91.7%) and diarrhea (75.0%), and 50% of the patients had grade 3 or 4 adverse events. There were no treatment-related deaths. The median progression-free survival and overall survival were 1.77 (95% confidence interval [CI]: 0.82-4.24) and 9.63 (95% CI: 2.66-not estimated) months, respectively. CONCLUSIONS TG02 capsule 150 mg twice a week is safe and tolerable in Chinese patients with recurrent high-grade gliomas. Patients who failed to temozolomide showed obvious tumor reduction when switching to TG02 capsule. The efficacy of recurrent gliomas warrants further investigation.
Collapse
Affiliation(s)
- Cheng-Cheng Guo
- Department of Neurosurgery/Neuro-Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Qun-Ying Yang
- Department of Neurosurgery/Neuro-Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Shao-Yan Xi
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jian Zhou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zhi-Huan Zhou
- Department of Neurosurgery/Neuro-Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Xi Cao
- Department of Neurosurgery/Neuro-Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Yi-Xiang Liao
- Department of Neurosurgery/Neuro-Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | | | - Xiang-Rong Dai
- Lee's Pharmaceutical Holdings Limited, Hong Kong, Hong Kong, China
| | - Michael Wong
- Lee's Pharmaceutical Holdings Limited, Hong Kong, Hong Kong, China
| | - Yu-Jie Li
- Lee's Pharmaceutical Holdings Limited, Hong Kong, Hong Kong, China
| | - Xiao-Hui Yu
- Guangzhou Hankewei Pharmaceutical Technology Co. Ltd, Guangzhou, China
| | - Zhong-Ping Chen
- Department of Neurosurgery/Neuro-Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| |
Collapse
|
3
|
Ottenhausen M, Renovanz M, Bartz I, Poplawski A, Kalasauskas D, Krenzlin H, Keric N, Ringel F. Use of complementary therapies and supportive measures of patients with intracranial gliomas-a prospective evaluation in an outpatient clinic. J Neurooncol 2024; 168:507-513. [PMID: 38709354 PMCID: PMC11186898 DOI: 10.1007/s11060-024-04696-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024]
Abstract
PURPOSE Patients with intracranial gliomas frequently seek for complementary and alternative medicine (CAM), in addition to guideline-directed therapy. In this study, we therefore assessed patients' information needs regarding treatment and support, and evaluated their attitudes toward experimental trials and alternative therapies. METHODS A prospective, cross-sectional, descriptive survey was conducted in our center. We developed an interview focusing on how patients obtain further information about therapy and the use of alternative/complementary therapies. RESULTS A total of 102 patients participated in the survey. 50% (n = 51) of patients reported that they had not attempted any additional therapies. When patients attempted self-therapy, it was most commonly in the areas of nutrition (25%, n = 26) and dietary supplements (17%, n = 17). Alternative or complementary therapies were used by 14% (n = 14) of the patients. Younger age (Odds ratio (OR) 0.96 (95% Confidence interval (CI) 0.92-0.99, p = 0.012) and tumor entity (OR 5.01 (95% CI 1.66-15.11, p = 0.004) for grade 4 vs. 3 tumors and OR 7.22 (95% CI 1.99-26.28) for grade 4 vs. other tumors p = 0.003) were significantly associated with a greater interest in CAM. CONCLUSIONS Interest in complementary and alternative medicine, as well as nutrition and dietary supplements is high (51%) among glioma patients, and significantly higher among younger patients and those with a worse diagnosis (WHO grade 4). A comprehensive approach to information, including paramedical topics, is needed to provide optimal patient counseling and care for glioma patients.
Collapse
Affiliation(s)
- Malte Ottenhausen
- Department of Neurosurgery, University Medical Center Mainz, Mainz, Germany.
| | - Mirjam Renovanz
- Department of Neurology & Interdisciplinary Neuro-Oncology, Hertie Institute for Clinical Brain Research, Eberhard-Karls-University of Tübingen, Tübingen, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Eberhard Karls University, Tübingen, Germany
- Department of Neurosurgery, University Hospital Tübingen, Tübingen, Germany
| | - Isabell Bartz
- Department of Neurosurgery, University Medical Center Mainz, Mainz, Germany
| | - Alicia Poplawski
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany
| | - Darius Kalasauskas
- Department of Neurosurgery, University Medical Center Mainz, Mainz, Germany
| | - Harald Krenzlin
- Department of Neurosurgery, University Medical Center Mainz, Mainz, Germany
| | - Naureen Keric
- Department of Neurosurgery, University Medical Center Mainz, Mainz, Germany
| | - Florian Ringel
- Department of Neurosurgery, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
4
|
Maharati A, Moghbeli M. Role of microRNA-505 during tumor progression and metastasis. Pathol Res Pract 2024; 258:155344. [PMID: 38744001 DOI: 10.1016/j.prp.2024.155344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/23/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
Late diagnosis of cancer in advanced stages due to the lack of screening methods is considered as the main cause of poor prognosis and high mortality rate among these patients. Therefore, it is necessary to investigate the molecular tumor biology in order to introduce biomarkers that can be used in cancer screening programs and early diagnosis. MicroRNAs (miRNAs) have key roles in regulation of the cellular pathophysiological processes. Due to the high stability of miRNAs in body fluids, they are widely used as the non-invasive tumor markers. According to the numerous reports about miR-505 deregulation in a wide range of cancers, we investigated the role of miR-505 during tumor progression. It was shown that miR-505 mainly has the tumor suppressor functions through the regulation of signaling pathways, chromatin remodeling, and cellular metabolism. This review has an effective role in introducing miR-505 as a suitable marker for the early cancer diagnosis.
Collapse
Affiliation(s)
- Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Sadowski K, Jażdżewska A, Kozłowski J, Zacny A, Lorenc T, Olejarz W. Revolutionizing Glioblastoma Treatment: A Comprehensive Overview of Modern Therapeutic Approaches. Int J Mol Sci 2024; 25:5774. [PMID: 38891962 PMCID: PMC11172387 DOI: 10.3390/ijms25115774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Glioblastoma is the most common malignant primary brain tumor in the adult population, with an average survival of 12.1 to 14.6 months. The standard treatment, combining surgery, radiotherapy, and chemotherapy, is not as efficient as we would like. However, the current possibilities are no longer limited to the standard therapies due to rapid advancements in biotechnology. New methods enable a more precise approach by targeting individual cells and antigens to overcome cancer. For the treatment of glioblastoma, these are gamma knife therapy, proton beam therapy, tumor-treating fields, EGFR and VEGF inhibitors, multiple RTKs inhibitors, and PI3K pathway inhibitors. In addition, the increasing understanding of the role of the immune system in tumorigenesis and the ability to identify tumor-specific antigens helped to develop immunotherapies targeting GBM and immune cells, including CAR-T, CAR-NK cells, dendritic cells, and immune checkpoint inhibitors. Each of the described methods has its advantages and disadvantages and faces problems, such as the inefficient crossing of the blood-brain barrier, various neurological and systemic side effects, and the escape mechanism of the tumor. This work aims to present the current modern treatments of glioblastoma.
Collapse
Affiliation(s)
- Karol Sadowski
- The Department of Histology and Embryology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland; (K.S.)
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-091 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Adrianna Jażdżewska
- The Department of Anatomy and Neurobiology, Medical University of Gdansk, Dębinki 1, 80-211 Gdansk, Poland;
| | - Jan Kozłowski
- The Department of Histology and Embryology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland; (K.S.)
| | - Aleksandra Zacny
- The Department of Histology and Embryology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland; (K.S.)
| | - Tomasz Lorenc
- Department of Radiology I, The Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781 Warsaw, Poland
| | - Wioletta Olejarz
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-091 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, 02-091 Warsaw, Poland
| |
Collapse
|
6
|
Feng L, Zhu S, Ma J, Huang J, Hou X, Qiu Q, Zhang T, Wan M, Li J. Small molecule drug discovery for glioblastoma treatment based on bioinformatics and cheminformatics approaches. Front Pharmacol 2024; 15:1389440. [PMID: 38681202 PMCID: PMC11047437 DOI: 10.3389/fphar.2024.1389440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/25/2024] [Indexed: 05/01/2024] Open
Abstract
Background: Glioblastoma (GBM) is a common and highly aggressive brain tumor with a poor prognosis for patients. It is urgently needed to identify potential small molecule drugs that specifically target key genes associated with GBM development and prognosis. Methods: Differentially expressed genes (DEGs) between GBM and normal tissues were obtained by data mining the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. Gene function annotation was performed to investigate the potential functions of the DEGs. A protein-protein interaction (PPI) network was constructed to explore hub genes associated with GBM. Bioinformatics analysis was used to screen the potential therapeutic and prognostic genes. Finally, potential small molecule drugs were predicted using the DGIdb database and verified using chemical informatics methods including absorption, distribution, metabolism, excretion, toxicity (ADMET), and molecular docking studies. Results: A total of 429 DEGs were identified, of which 19 hub genes were obtained through PPI analysis. The hub genes were confirmed as potential therapeutic targets by functional enrichment and mRNA expression. Survival analysis and protein expression confirmed centromere protein A (CENPA) as a prognostic target in GBM. Four small molecule drugs were predicted for the treatment of GBM. Conclusion: Our study suggests some promising potential therapeutic targets and small molecule drugs for the treatment of GBM, providing new ideas for further research and targeted drug development.
Collapse
Affiliation(s)
- Liya Feng
- Department of Basic Medical Sciences, College of Medicine, Longdong University, Qingyang, China
| | - Sha Zhu
- Gansu Province Medical Genetics Center, Gansu Provincial Maternal and Child Health Hospital, Lanzhou, China
| | - Jian Ma
- Key Lab of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jing Huang
- Department of Basic Medical Sciences, College of Medicine, Longdong University, Qingyang, China
| | - Xiaoyan Hou
- Department of Basic Medical Sciences, College of Medicine, Longdong University, Qingyang, China
| | - Qian Qiu
- Department of Basic Medical Sciences, College of Medicine, Longdong University, Qingyang, China
| | - Tingting Zhang
- Department of Basic Medical Sciences, College of Medicine, Longdong University, Qingyang, China
| | - Meixia Wan
- Department of Basic Medical Sciences, College of Medicine, Longdong University, Qingyang, China
| | - Juan Li
- Department of Basic Medical Sciences, College of Medicine, Longdong University, Qingyang, China
| |
Collapse
|
7
|
Martucci M, Russo R, Giordano C, Schiarelli C, D’Apolito G, Tuzza L, Lisi F, Ferrara G, Schimperna F, Vassalli S, Calandrelli R, Gaudino S. Advanced Magnetic Resonance Imaging in the Evaluation of Treated Glioblastoma: A Pictorial Essay. Cancers (Basel) 2023; 15:3790. [PMID: 37568606 PMCID: PMC10417432 DOI: 10.3390/cancers15153790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
MRI plays a key role in the evaluation of post-treatment changes, both in the immediate post-operative period and during follow-up. There are many different treatment's lines and many different neuroradiological findings according to the treatment chosen and the clinical timepoint at which MRI is performed. Structural MRI is often insufficient to correctly interpret and define treatment-related changes. For that, advanced MRI modalities, including perfusion and permeability imaging, diffusion tensor imaging, and magnetic resonance spectroscopy, are increasingly utilized in clinical practice to characterize treatment effects more comprehensively. This article aims to provide an overview of the role of advanced MRI modalities in the evaluation of treated glioblastomas. For a didactic purpose, we choose to divide the treatment history in three main timepoints: post-surgery, during Stupp (first-line treatment) and at recurrence (second-line treatment). For each, a brief introduction, a temporal subdivision (when useful) or a specific drug-related paragraph were provided. Finally, the current trends and application of radiomics and artificial intelligence (AI) in the evaluation of treated GB have been outlined.
Collapse
Affiliation(s)
- Matia Martucci
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy; (R.R.); (C.G.); (C.S.); (G.D.); (R.C.); (S.G.)
| | - Rosellina Russo
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy; (R.R.); (C.G.); (C.S.); (G.D.); (R.C.); (S.G.)
| | - Carolina Giordano
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy; (R.R.); (C.G.); (C.S.); (G.D.); (R.C.); (S.G.)
| | - Chiara Schiarelli
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy; (R.R.); (C.G.); (C.S.); (G.D.); (R.C.); (S.G.)
| | - Gabriella D’Apolito
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy; (R.R.); (C.G.); (C.S.); (G.D.); (R.C.); (S.G.)
| | - Laura Tuzza
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.T.); (F.L.); (G.F.); (F.S.); (S.V.)
| | - Francesca Lisi
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.T.); (F.L.); (G.F.); (F.S.); (S.V.)
| | - Giuseppe Ferrara
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.T.); (F.L.); (G.F.); (F.S.); (S.V.)
| | - Francesco Schimperna
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.T.); (F.L.); (G.F.); (F.S.); (S.V.)
| | - Stefania Vassalli
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.T.); (F.L.); (G.F.); (F.S.); (S.V.)
| | - Rosalinda Calandrelli
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy; (R.R.); (C.G.); (C.S.); (G.D.); (R.C.); (S.G.)
| | - Simona Gaudino
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy; (R.R.); (C.G.); (C.S.); (G.D.); (R.C.); (S.G.)
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.T.); (F.L.); (G.F.); (F.S.); (S.V.)
| |
Collapse
|
8
|
Fu M, Zhou Z, Huang X, Chen Z, Zhang L, Zhang J, Hua W, Mao Y. Use of Bevacizumab in recurrent glioblastoma: a scoping review and evidence map. BMC Cancer 2023; 23:544. [PMID: 37316802 PMCID: PMC10265794 DOI: 10.1186/s12885-023-11043-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most malignant primary tumor in the brain, with poor prognosis and limited effective therapies. Although Bevacizumab (BEV) has shown promise in extending progression-free survival (PFS) treating GBM, there is no evidence for its ability to prolong overall survival (OS). Given the uncertainty surrounding BEV treatment strategies, we aimed to provide an evidence map associated with BEV therapy for recurrent GBM (rGBM). METHODS PubMed, Embase, and the Cochrane Library were searched for the period from January 1, 1970, to March 1, 2022, for studies reporting the prognoses of patients with rGBM receiving BEV. The primary endpoints were overall survival (OS) and quality of life (QoL). The secondary endpoints were PFS, steroid use reduction, and risk of adverse effects. A scoping review and an evidence map were conducted to explore the optimal BEV treatment (including combination regimen, dosage, and window of opportunity). RESULTS Patients with rGBM could gain benefits in PFS, palliative, and cognitive advantages from BEV treatment, although the OS benefits could not be verified with high-quality evidence. Furthermore, BEV combined therapy (especially with lomustine and radiotherapy) showed higher efficacy than BEV monotherapy in the survival of patients with rGBM. Specific molecular alterations (IDH mutation status) and clinical features (large tumor burden and double-positive sign) could predict better responses to BEV administration. A low dosage of BEV showed equal efficacy to the recommended dose, but the optimal opportunity window for BEV administration remains unclear. CONCLUSIONS Although OS benefits from BEV-containing regimens could not be verified in this scoping review, the PFS benefits and side effects control supported BEV application in rGBM. Combining BEV with novel treatments like tumor-treating field (TTF) and administration at first recurrence may optimize the therapeutic efficacy. rGBM with a low apparent diffusion coefficient (ADCL), large tumor burden, or IDH mutation is more likely to benefit from BEV treatment. High-quality studies are warranted to explore the combination modality and identify BEV-response subpopulations to maximize benefits.
Collapse
Affiliation(s)
- Minjie Fu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, #12 Middle Urumqi Road, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Zhirui Zhou
- Radiation Oncology Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao Huang
- Department of General Surgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhenchao Chen
- Department of General Surgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Licheng Zhang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, #12 Middle Urumqi Road, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Jinsen Zhang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, #12 Middle Urumqi Road, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Wei Hua
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, #12 Middle Urumqi Road, Shanghai, China.
- National Center for Neurological Disorders, Shanghai, China.
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China.
- Neurosurgical Institute of Fudan University, Shanghai, China.
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, #12 Middle Urumqi Road, Shanghai, China.
- National Center for Neurological Disorders, Shanghai, China.
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China.
- Neurosurgical Institute of Fudan University, Shanghai, China.
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.
| |
Collapse
|
9
|
Woodring RN, Gurysh EG, Bachelder EM, Ainslie KM. Drug Delivery Systems for Localized Cancer Combination Therapy. ACS APPLIED BIO MATERIALS 2023; 6:934-950. [PMID: 36791273 PMCID: PMC10373430 DOI: 10.1021/acsabm.2c00973] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
With over 2 million cancer cases and over 600,000 cancer-associated deaths predicted in the U.S. for 2022, this life-debilitating disease continuously impacts the lives of people across the nation every day. Therapeutic treatment options for cancer have historically involved chemotherapies to eradicate tumors with cytotoxic mechanisms which can negatively affect the efficacy versus toxicity ratio of treatment. With a need for more directed and therapeutically active options, targeted small-molecule inhibitors and immunotherapies have since emerged to mitigate treatment-associated toxicities. However, aggressive tumors can employ a wide range of defense mechanisms to evade monotherapy treatment altogether, resulting in the recurrence of therapeutically resistant tumors. Therefore, many clinical routines have included combination therapy in which anticancer agents are combined to provide a synergistic attack on tumors. Even with this approach, maximizing the efficacy of cancer treatment is contingent upon the dose of drug that reaches the site of the tumor, so often therapy is administered at the site of a tumor via localized delivery platforms. Commonly used platforms for localized drug delivery include polymeric wafers, nanofibrous scaffolds, and hydrogels where drug combinations can be loaded and delivered synchronously. Attaining synergistic activity from these localized systems is dependent on proper material selection and fabrication methods. Herein, we describe these important considerations for enhancing the efficacy of cancer combination therapy through biodegradable, localized delivery systems.
Collapse
Affiliation(s)
- Ryan N. Woodring
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Elizabeth G. Gurysh
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Eric M. Bachelder
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kristy M. Ainslie
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
10
|
Liu W, Li Z. Diagnostic performance of perfusion-weighted imaging combined with serum MMP-2 and -9 levels in tumor recurrence after postoperative concomitant chemoradiotherapy of glioblastoma. JOURNAL OF CLINICAL ULTRASOUND : JCU 2023; 51:563-570. [PMID: 36435971 DOI: 10.1002/jcu.23402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVE To evaluate diagnostic accuracy of dynamic susceptibility contrast- perfusion weighted imaging (DSC-PWI) combined with serum MMP-2 and -9 levels in differentiating recurrent glioblastoma (GBM). METHODS We enrolled a total of 220 GBM patients, including recurrent cases (n = 150) and non-recurrent cases (n = 70) after postoperative concomitant chemoradiotherapy. All patients performed preoperative and follow-up DSC-PWI, and two parameters [normalized cerebral blood volume (nCBV) and cerebral blood flow (nCBF)] were obtained. Preoperative serum levels of MMP-2 and MMP-9 were detected using ELISA. The diagnostic performance was evaluated by analyzing receiver operating characteristic (ROC) and area under the curve (AUC). RESULTS At baseline, the recurrence patients had higher nCBF and nCBV than the non-recurrence patients, accompanying by the increased MMP-2 and MMP-9 levels in serum. Serum MMP-2 level were positively associated with MMP-9 in recurrent patients. In patients classified as recurrence, both MMP-9 and MMP-2 in serum had a significant correlation with nCBV and nCBF. A sensitivity and specificity of nCBF for recurrence vs. non-recurrence were 94.29% and 63.33%, respectively. nCBV also could provide high discrimination between recurrence and non-recurrence patients (sensitivity: 84.29%, specificity: 62.67%, AUC: 0.821). In ROC analyses, both MMP-2 and MMP-9 distinguished recurrence from non-recurrence with AUC values of 0.883 and 0.900, respectively. Finally, the combination of DSC-PWI parameters (nCBF and nCBV) and serum MMP-2 and -9 levels showed much better discrimination capacity between recurrence and non-recurrence patients with a sensitivity of 92.86%, specificity of 79.33% and AUC of 0.899. CONCLUSION The combination of DSC-PWI parameters together with serum MMP-2 and -9 levels offered an attractive approach to noninvasively distinguish recurrence after postoperative radiotherapy of GBM.
Collapse
Affiliation(s)
- Wen Liu
- Image Teaching and Researching Office, Langfang Health Vocational College, Langfang, China
| | - Zhaoxiang Li
- Image Teaching and Researching Office, Langfang Health Vocational College, Langfang, China
| |
Collapse
|
11
|
Beyond Imaging and Genetic Signature in Glioblastoma: Radiogenomic Holistic Approach in Neuro-Oncology. Biomedicines 2022; 10:biomedicines10123205. [PMID: 36551961 PMCID: PMC9775324 DOI: 10.3390/biomedicines10123205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GBM) is a malignant brain tumor exhibiting rapid and infiltrative growth, with less than 10% of patients surviving over 5 years, despite aggressive and multimodal treatments. The poor prognosis and the lack of effective pharmacological treatments are imputable to a remarkable histological and molecular heterogeneity of GBM, which has led, to date, to the failure of precision oncology and targeted therapies. Identification of molecular biomarkers is a paradigm for comprehensive and tailored treatments; nevertheless, biopsy sampling has proved to be invasive and limited. Radiogenomics is an emerging translational field of research aiming to study the correlation between radiographic signature and underlying gene expression. Although a research field still under development, not yet incorporated into routine clinical practice, it promises to be a useful non-invasive tool for future personalized/adaptive neuro-oncology. This review provides an up-to-date summary of the recent advancements in the use of magnetic resonance imaging (MRI) radiogenomics for the assessment of molecular markers of interest in GBM regarding prognosis and response to treatments, for monitoring recurrence, also providing insights into the potential efficacy of such an approach for survival prognostication. Despite a high sensitivity and specificity in almost all studies, accuracy, reproducibility and clinical value of radiomic features are the Achilles heel of this newborn tool. Looking into the future, investigators' efforts should be directed towards standardization and a disciplined approach to data collection, algorithms, and statistical analysis.
Collapse
|
12
|
González V, Brell M, Fuster J, Moratinos L, Alegre D, López S, Ibáñez J. Analyzing the role of reoperation in recurrent glioblastoma: a 15-year retrospective study in a single institution. World J Surg Oncol 2022; 20:384. [PMID: 36464682 PMCID: PMC9721080 DOI: 10.1186/s12957-022-02852-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/28/2022] [Indexed: 12/07/2022] Open
Abstract
BACKGROUND Multiple treatment options at glioblastoma progression exist, including reintervention, reirradiation, additional systemic therapy, and novel strategies. No alternative has been proven to be superior in terms of postprogression survival (PPS). A second surgery has shown conflicting evidence in the literature regarding its prognostic impact, possibly affected by selection bias, and might benefit a sparse subset of patients with recurrent glioblastoma. The present study aims to determine the prognostic influence of salvage procedures in a cohort of patients treated in the same institution over 15 years. METHODS Three hundred and fifty patients with confirmed primary glioblastoma diagnosed and treated between 2005 and 2019 were selected. To examine the role of reoperation, we intended to create comparable groups, previously excluding all diagnostic biopsies and patients who were not actively treated after the first surgery or at disease progression. Uni- and multivariate Cox proportional hazards regression models were employed, considering reintervention as a time-fixed or time-dependent covariate. The endpoints of the study were overall survival (OS) and PPS. RESULTS At progression, 33 patients received a second surgery and 84 were treated with chemotherapy only. Clinical variables were similar among groups. OS, but not PPS, was superior in the reintervention group. Treatment modality had no impact in our multivariate Cox regression models considering OS or PPS as the endpoint. CONCLUSIONS The association of reoperation with improved prognosis in recurrent glioblastoma is unclear and may be influenced by selection bias. Regardless of our selective indications and high gross total resection rates in second procedures, we could not observe a survival advantage.
Collapse
Affiliation(s)
- Víctor González
- grid.411164.70000 0004 1796 5984Neurosurgical Department, Hospital Son Espases, Carretera de Valldemossa, 79, 07120 Palma, Illes Balears Spain
| | - Marta Brell
- grid.411164.70000 0004 1796 5984Neurosurgical Department, Hospital Son Espases, Carretera de Valldemossa, 79, 07120 Palma, Illes Balears Spain
| | - José Fuster
- grid.411164.70000 0004 1796 5984Oncology Department, Hospital Son Espases, Carretera de Valldemossa, 79, 07120 Palma, Illes Balears Spain
| | - Lesmes Moratinos
- grid.411164.70000 0004 1796 5984Neurosurgical Department, Hospital Son Espases, Carretera de Valldemossa, 79, 07120 Palma, Illes Balears Spain
| | - Daniel Alegre
- grid.411164.70000 0004 1796 5984Neurosurgical Department, Hospital Son Espases, Carretera de Valldemossa, 79, 07120 Palma, Illes Balears Spain
| | - Sofía López
- grid.411164.70000 0004 1796 5984Neurosurgical Department, Hospital Son Espases, Carretera de Valldemossa, 79, 07120 Palma, Illes Balears Spain
| | - Javier Ibáñez
- grid.411164.70000 0004 1796 5984Neurosurgical Department, Hospital Son Espases, Carretera de Valldemossa, 79, 07120 Palma, Illes Balears Spain
| |
Collapse
|
13
|
Ciammella P, Cozzi S, Botti A, Giaccherini L, Sghedoni R, Orlandi M, Napoli M, Pascarella R, Pisanello A, Russo M, Cavallieri F, Ruggieri MP, Cavuto S, Savoldi L, Iotti C, Iori M. Safety of Inhomogeneous Dose Distribution IMRT for High-Grade Glioma Reirradiation: A Prospective Phase I/II Trial (GLIORAD TRIAL). Cancers (Basel) 2022; 14:cancers14194604. [PMID: 36230525 PMCID: PMC9562035 DOI: 10.3390/cancers14194604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Glioblastoma multiforme (GBM) is the most frequent primary malignant brain tumor, and despite advances in imaging techniques and treatment options, the outcome remains poor and recurrence is inevitable. Salvage therapy presents a challenge, and re-irradiation can be a therapeutic option in recurrent GBM. The decision-making process for re-irradiation is a challenge for radiation oncologists due to the expected toxicity of a second course of radiotherapy and the limited radiation tolerance of normal tissue; nevertheless, it is being increasingly used, as several studies have demonstrated its feasibility. The current study aimed to investigate the safety of moderate–high-voxel-based dose escalation radiotherapy in recurrent GBM patients after conventional concurrent chemoradiation. Twelve patients were enrolled in this prospective single-center study. Retreatment consisted of re-irradiation with a total dose range of 30–50 Gy over 5 days using the IMRT (arc VMAT) technique using dose painting planning. The treatment was well tolerated. No toxicities greater than 3 were recorded; only one patient had severe G3 acute toxicity, characterized by muscle weakness and fatigue. Median overall survival (OS2) and progression-free survival (PFS2) from the time of re-irradiation were 10.4 months and 5.7 months, respectively. Our phase I study demonstrated an acceptable tolerance profile of this approach, and the future prospective phase II study will analyze the efficacy in terms of PFS and OS. Abstract Glioblastoma multiforme (GBM) is the most aggressive astrocytic primary brain tumor, and concurrent temozolomide (TMZ) and radiotherapy (RT) followed by maintenance of adjuvant TMZ is the current standard of care. Despite advances in imaging techniques and multi-modal treatment options, the median overall survival (OS) remains poor. As an alternative to surgery, re-irradiation (re-RT) can be a therapeutic option in recurrent GBM. Re-irradiation for brain tumors is increasingly used today, and several studies have demonstrated its feasibility. Besides differing techniques, the published data include a wide range of doses, emphasizing that no standard approach exists. The current study aimed to investigate the safety of moderate–high-voxel-based dose escalation in recurrent GBM. From 2016 to 2019, 12 patients met the inclusion criteria and were enrolled in this prospective single-center study. Retreatment consisted of re-irradiation with a total dose of 30 Gy (up to 50 Gy) over 5 days using the IMRT (arc VMAT) technique. A dose painting by numbers (DPBN)/dose escalation plan were performed, and a continuous relation between the voxel intensity of the functional image set and the risk of recurrence in that voxel were used to define target and dose distribution. Re-irradiation was well tolerated in all treated patients. No toxicities greater than G3 were recorded; only one patient had severe G3 acute toxicity, characterized by muscle weakness and fatigue. Median overall survival (OS2) and progression-free survival (PFS2) from the time of re-irradiation were 10.4 months and 5.7 months, respectively; 3-, 6-, and 12-month OS2 were 92%, 75%, and 42%, respectively; and 3-, 6-, and 12-month PFS2 were 83%, 42%, and 8%, respectively. Our work demonstrated a tolerable tolerance profile of this approach, and the future prospective phase II study will analyze the efficacy in terms of PFS and OS.
Collapse
Affiliation(s)
- Patrizia Ciammella
- Radiation Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Salvatore Cozzi
- Radiation Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
- Correspondence: ; Tel.: +39-3297317608
| | - Andrea Botti
- Medical Physics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Lucia Giaccherini
- Radiation Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Roberto Sghedoni
- Medical Physics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Matteo Orlandi
- Medical Physics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Manuela Napoli
- Neuroradiology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Rosario Pascarella
- Neuroradiology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Anna Pisanello
- Neurology Unit, Neuromotor and Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Marco Russo
- Neurology Unit, Neuromotor and Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Francesco Cavallieri
- Neurology Unit, Neuromotor and Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Maria Paola Ruggieri
- Radiation Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Silvio Cavuto
- Clinical Trials and Statistics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Luisa Savoldi
- Clinical Trials and Statistics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Cinzia Iotti
- Radiation Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Mauro Iori
- Medical Physics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| |
Collapse
|
14
|
Krajewski S, Furtak J, Zawadka-Kunikowska M, Kachelski M, Birski M, Harat M. Rehabilitation Outcomes for Patients with Motor Deficits after Initial and Repeat Brain Tumor Surgery. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10871. [PMID: 36078585 PMCID: PMC9518489 DOI: 10.3390/ijerph191710871] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 05/31/2023]
Abstract
Repeat surgery is often required to treat brain tumor recurrences. Here, we compared the functional state and rehabilitation of patients undergoing initial and repeat surgery for brain tumors to establish their individual risks that might impact management. In total, 835 patients underwent operations, and 139 (16.6%) required rehabilitation during the inpatient stay. The Karnofsky performance status, Barthel index, and the modified Rankin scale were used to assess functional status, and the gait index was used to assess gait efficiency. Motor skills, postoperative complications, and length of hospital stay were recorded. Patients were classified into two groups: first surgery (n = 103) and repeat surgery (n = 30). Eighteen percent of patients required reoperations, and these patients required prolonged postoperative rehabilitation as often as those operated on for the first time. Rehabilitation was more often complicated in the repeat surgery group (p = 0.047), and the complications were more severe and persistent. Reoperated patients had significantly worse motor function and independence in activities of daily living before surgery and at discharge, but the deterioration after surgery affected patients in the first surgery group to a greater extent according to all metrics (p < 0.001). The length of hospital stay was similar in both groups. These results will be useful for tailoring postoperative rehabilitation during a hospital stay on the neurosurgical ward as well as planning discharge requirements after leaving the hospital.
Collapse
Affiliation(s)
- Stanisław Krajewski
- Department of Physiotherapy, University of Bydgoszcz, Unii Lubelskiej 4, 85-059 Bydgoszcz, Poland
- Department of Neurosurgery, 10th Military Research Hospital and Polyclinic, 85-681 Bydgoszcz, Poland
| | - Jacek Furtak
- Department of Neurosurgery, 10th Military Research Hospital and Polyclinic, 85-681 Bydgoszcz, Poland
- Department of Neurooncology and Radiosurgery, Franciszek Łukaszczyk Oncology Center, 85-796 Bydgoszcz, Poland
| | - Monika Zawadka-Kunikowska
- Department of Human Physiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karłowicza 24, 85-092 Bydgoszcz, Poland
| | - Michał Kachelski
- Department of Neurosurgery, 10th Military Research Hospital and Polyclinic, 85-681 Bydgoszcz, Poland
| | - Marcin Birski
- Department of Neurosurgery, 10th Military Research Hospital and Polyclinic, 85-681 Bydgoszcz, Poland
| | - Marek Harat
- Department of Neurosurgery, 10th Military Research Hospital and Polyclinic, 85-681 Bydgoszcz, Poland
- Department of Neurosurgery and Neurology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, M. Sklodowskiej-Curie 9, 85-094 Bydgoszcz, Poland
| |
Collapse
|
15
|
Di Nunno V, Franceschi E, Tosoni A, Gatto L, Bartolini S, Brandes AA. Tumor-Associated Microenvironment of Adult Gliomas: A Review. Front Oncol 2022; 12:891543. [PMID: 35875065 PMCID: PMC9301282 DOI: 10.3389/fonc.2022.891543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
The glioma-associated tumor microenvironment involves a multitude of different cells ranging from immune cells to endothelial, glial, and neuronal cells surrounding the primary tumor. The interactions between these cells and glioblastoma (GBM) have been deeply investigated while very little data are available on patients with lower-grade gliomas. In these tumors, it has been demonstrated that the composition of the microenvironment differs according to the isocitrate dehydrogenase status (mutated/wild type), the presence/absence of codeletion, and the expression of specific alterations including H3K27 and/or other gene mutations. In addition, mechanisms by which the tumor microenvironment sustains the growth and proliferation of glioma cells are still partially unknown. Nonetheless, a better knowledge of the tumor-associated microenvironment can be a key issue in the optic of novel therapeutic drug development.
Collapse
Affiliation(s)
- Vincenzo Di Nunno
- Department of Oncology, Azienda Unità Sanitaria Locale (AUSL) Bologna, Bologna, Italy
| | - Enrico Franceschi
- Nervous System Medical Oncology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- *Correspondence: Enrico Franceschi,
| | - Alicia Tosoni
- Nervous System Medical Oncology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Lidia Gatto
- Department of Oncology, Azienda Unità Sanitaria Locale (AUSL) Bologna, Bologna, Italy
| | - Stefania Bartolini
- Nervous System Medical Oncology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Alba Ariela Brandes
- Nervous System Medical Oncology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| |
Collapse
|
16
|
The Therapeutic Potential of Aprepitant in Glioblastoma Cancer Cells through Redox Modification. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8540403. [PMID: 35281606 PMCID: PMC8913111 DOI: 10.1155/2022/8540403] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/20/2021] [Accepted: 02/22/2022] [Indexed: 12/12/2022]
Abstract
Although there is no doubt regarding the involvement of oxidative stress in the development of glioblastoma, many questions remained unanswered about signaling cascades that regulate the redox status. Given the importance of the substance P (SP)/neurokinin 1 receptor (NK1R) system in different cancers, it was of particular interest to evaluate whether the stimulation of this cascade in glioblastoma-derived U87 cells is associated with the induction of oxidative stress. Our results showed that SP-mediated activation of NK1R not only increased the intracellular levels of malondialdehyde (MDA) and reactive oxygen species (ROS) but also reduced the concentration of thiol in U87 cells. We also found that upon SP addition, there was a significant reduction in the cells' total antioxidant capacity (TAC), revealing that the SP/NK1R axis may be involved in the regulation of oxidative stress in glioblastoma cells. The significant role of SP/NK1R in triggering oxidative stress in glioblastoma has become more evident when we found that the abrogation of the axis using aprepitant reduced cell survival, probably through exerting antioxidant effects. The results showed that both MDA and ROS concentrations were significantly reduced in the presence of aprepitant, and the number of antioxidant components of the redox system increased. Overall, these findings suggest that aprepitant might exert its anticancer effect on U87 cells through shifting the balance of oxidant and antioxidant components of the redox system.
Collapse
|
17
|
Gatto L, Franceschi E, Di Nunno V, Maggio I, Lodi R, Brandes AA. Engineered CAR-T and novel CAR-based therapies to fight the immune evasion of glioblastoma: gutta cavat lapidem. Expert Rev Anticancer Ther 2021; 21:1333-1353. [PMID: 34734551 DOI: 10.1080/14737140.2021.1997599] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The field of cancer immunotherapy has achieved great advancements through the application of genetically engineered T cells with chimeric antigen receptors (CAR), that have shown exciting success in eradicating hematologic malignancies and have proved to be safe with promising early signs of antitumoral activity in the treatment of glioblastoma (GBM). AREAS COVERED We discuss the use of CAR T cells in GBM, focusing on limitations and obstacles to advancement, mostly related to toxicities, hostile tumor microenvironment, limited CAR T cells infiltration and persistence, target antigen loss/heterogeneity and inadequate trafficking. Furthermore, we introduce the refined strategies aimed at strengthening CAR T activity and offer insights in to novel immunotherapeutic approaches, such as the potential use of CAR NK or CAR M to optimize anti-tumor effects for GBM management. EXPERT OPINION With the progressive wide use of CAR T cell therapy, significant challenges in treating solid tumors, including central nervous system (CNS) tumors, are emerging, highlighting early disease relapse and cancer cell resistance issues, owing to hostile immunosuppressive microenvironment and tumor antigen heterogeneity. In addition to CAR T cells, there is great interest in utilizing other types of CAR-based therapies, such as CAR natural killer (CAR NK) or CAR macrophages (CAR M) cells for CNS tumors.
Collapse
Affiliation(s)
- Lidia Gatto
- Medical Oncology Department, Azienda USL, Bologna, Italy
| | - Enrico Franceschi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Oncologia Medica del Sistema Nervoso, Bologna, Italy
| | | | - Ilaria Maggio
- Medical Oncology Department, Azienda USL, Bologna, Italy
| | - Raffaele Lodi
- IrcssIstituto di Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alba Ariela Brandes
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Oncologia Medica del Sistema Nervoso, Bologna, Italy
| |
Collapse
|
18
|
Di Nunno V, Franceschi E, Tosoni A, Gatto L, Lodi R, Bartolini S, Brandes AA. Glioblastoma: Emerging Treatments and Novel Trial Designs. Cancers (Basel) 2021; 13:cancers13153750. [PMID: 34359651 PMCID: PMC8345198 DOI: 10.3390/cancers13153750] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Nowadays, very few systemic agents have shown clinical activity in patients with glioblastoma, making the research of novel therapeutic approaches a critical issue. Fortunately, the availability of novel compounds is increasing thanks to better biological knowledge of the disease. In this review we want to investigate more promising ongoing clinical trials in both primary and recurrent GBM. Furthermore, a great interest of the present work is focused on novel trial design strategies. Abstract Management of glioblastoma is a clinical challenge since very few systemic treatments have shown clinical efficacy in recurrent disease. Thanks to an increased knowledge of the biological and molecular mechanisms related to disease progression and growth, promising novel treatment strategies are emerging. The expanding availability of innovative compounds requires the design of a new generation of clinical trials, testing experimental compounds in a short time and tailoring the sample cohort based on molecular and clinical behaviors. In this review, we focused our attention on the assessment of promising novel treatment approaches, discussing novel trial design and possible future fields of development in this setting.
Collapse
Affiliation(s)
- Vincenzo Di Nunno
- Department of Oncology, AUSL Bologna, Via Altura 3, 40139 Bologna, Italy; (E.F.); (A.T.); (L.G.); (S.B.); (A.A.B.)
- Correspondence: ; Tel.: +39-0516225697
| | - Enrico Franceschi
- Department of Oncology, AUSL Bologna, Via Altura 3, 40139 Bologna, Italy; (E.F.); (A.T.); (L.G.); (S.B.); (A.A.B.)
| | - Alicia Tosoni
- Department of Oncology, AUSL Bologna, Via Altura 3, 40139 Bologna, Italy; (E.F.); (A.T.); (L.G.); (S.B.); (A.A.B.)
| | - Lidia Gatto
- Department of Oncology, AUSL Bologna, Via Altura 3, 40139 Bologna, Italy; (E.F.); (A.T.); (L.G.); (S.B.); (A.A.B.)
| | - Raffaele Lodi
- Istituto delle Scienze Neurologiche di Bologna, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 40139 Bologna, Italy;
| | - Stefania Bartolini
- Department of Oncology, AUSL Bologna, Via Altura 3, 40139 Bologna, Italy; (E.F.); (A.T.); (L.G.); (S.B.); (A.A.B.)
| | - Alba Ariela Brandes
- Department of Oncology, AUSL Bologna, Via Altura 3, 40139 Bologna, Italy; (E.F.); (A.T.); (L.G.); (S.B.); (A.A.B.)
| |
Collapse
|
19
|
Park JH, de Lomana ALG, Marzese DM, Juarez T, Feroze A, Hothi P, Cobbs C, Patel AP, Kesari S, Huang S, Baliga NS. A Systems Approach to Brain Tumor Treatment. Cancers (Basel) 2021; 13:3152. [PMID: 34202449 PMCID: PMC8269017 DOI: 10.3390/cancers13133152] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/11/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022] Open
Abstract
Brain tumors are among the most lethal tumors. Glioblastoma, the most frequent primary brain tumor in adults, has a median survival time of approximately 15 months after diagnosis or a five-year survival rate of 10%; the recurrence rate is nearly 90%. Unfortunately, this prognosis has not improved for several decades. The lack of progress in the treatment of brain tumors has been attributed to their high rate of primary therapy resistance. Challenges such as pronounced inter-patient variability, intratumoral heterogeneity, and drug delivery across the blood-brain barrier hinder progress. A comprehensive, multiscale understanding of the disease, from the molecular to the whole tumor level, is needed to address the intratumor heterogeneity resulting from the coexistence of a diversity of neoplastic and non-neoplastic cell types in the tumor tissue. By contrast, inter-patient variability must be addressed by subtyping brain tumors to stratify patients and identify the best-matched drug(s) and therapies for a particular patient or cohort of patients. Accomplishing these diverse tasks will require a new framework, one involving a systems perspective in assessing the immense complexity of brain tumors. This would in turn entail a shift in how clinical medicine interfaces with the rapidly advancing high-throughput (HTP) technologies that have enabled the omics-scale profiling of molecular features of brain tumors from the single-cell to the tissue level. However, several gaps must be closed before such a framework can fulfill the promise of precision and personalized medicine for brain tumors. Ultimately, the goal is to integrate seamlessly multiscale systems analyses of patient tumors and clinical medicine. Accomplishing this goal would facilitate the rational design of therapeutic strategies matched to the characteristics of patients and their tumors. Here, we discuss some of the technologies, methodologies, and computational tools that will facilitate the realization of this vision to practice.
Collapse
Affiliation(s)
- James H. Park
- Institute for Systems Biology, Seattle, WA 98109, USA; (J.H.P.); (S.H.)
| | | | - Diego M. Marzese
- Balearic Islands Health Research Institute (IdISBa), 07010 Palma, Spain;
| | - Tiffany Juarez
- St. John’s Cancer Institute, Santa Monica, CA 90401, USA; (T.J.); (S.K.)
| | - Abdullah Feroze
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA; (A.F.); (A.P.P.)
| | - Parvinder Hothi
- Swedish Neuroscience Institute, Seattle, WA 98122, USA; (P.H.); (C.C.)
- Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Seattle, WA 98122, USA
| | - Charles Cobbs
- Swedish Neuroscience Institute, Seattle, WA 98122, USA; (P.H.); (C.C.)
- Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Seattle, WA 98122, USA
| | - Anoop P. Patel
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA; (A.F.); (A.P.P.)
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Brotman-Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA
| | - Santosh Kesari
- St. John’s Cancer Institute, Santa Monica, CA 90401, USA; (T.J.); (S.K.)
| | - Sui Huang
- Institute for Systems Biology, Seattle, WA 98109, USA; (J.H.P.); (S.H.)
| | - Nitin S. Baliga
- Institute for Systems Biology, Seattle, WA 98109, USA; (J.H.P.); (S.H.)
- Departments of Microbiology, Biology, and Molecular Engineering Sciences, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
20
|
Qiu X, Tan G, Wen H, Lian L, Xiao S. Forkhead box O1 targeting replication factor C subunit 2 expression promotes glioma temozolomide resistance and survival. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:692. [PMID: 33987390 PMCID: PMC8105996 DOI: 10.21037/atm-21-1523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Additional mechanisms of temozolomide (TMZ) resistance in gliomas remain uncertain. The aim of this study was to identify another DNA repair mechanism involving forkhead box O1 (FoxO1) and replicator C2 (RFC2) in gliomas. Methods We established glioma cells against TMZ, U87R, by exposure to TMZ. Proliferation rate Cell counting kit-8 (CCK8) was used, and epithelial-mesenchymal transition (EMT)-related markers were detected by western blot. The association between FoxO1 and RFC2 was analyzed by heat maps and scatter plot, and Real-time reverse transcription polymerase chain reaction (qRT-PCR) and Western blot were used to detect the effect of FoxO1 on the expression of RFC2. The regulation effect of FoxO1 on RFC2 expression was analyzed by luciferase reporter gene assay. Knockdown of FoxO1/RFC2 was achieved via short hairpin RNA (shRNA), the effect of knockdown on the proliferation was determined by CCK8 assay and colony formation assay, and apoptosis was examined by flow cytometry and immunoblotting. Results The TMZ-resistant glioma cell line, U87R, was established. The FoxO1 and RFC2 proteins increased significantly in U87R. The expression of FoxO1 and RFC2 were positively related in glioma tissues. We found that FoxO1 contributes to TMZ resistance and cell survival via regulating the expression of RFC2. Moreover, FoxO1 functions as a transcriptional activator to RFC2 by binding to the promoter of RFC2. Furthermore, knockdown of FoxO1/RFC2 suppressed cell proliferation, TMZ resistance, and induced apoptosis in U87R. Conclusions The FoxO1/RFC2 signaling pathway promotes glioma cell proliferation and TMZ resistance, suggesting that the FoxO1/RFC2 pathway may be a potential target for TMZ-resistant glioma therapy.
Collapse
Affiliation(s)
- Xingsheng Qiu
- Department of Radiation Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guifeng Tan
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hao Wen
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lian Lian
- Department of Oncology, Suzhou Xiangcheng People's Hospital, Suzhou, China
| | - Songhua Xiao
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
21
|
Yamaguchi S, Motegi H, Ishi Y, Okamoto M, Sawaya R, Kobayashi H, Terasaka S, Houkin K. Clinical Outcome of Cytoreductive Surgery Prior to Bevacizumab for Patients with Recurrent Glioblastoma: A Single-center Retrospective Analysis. Neurol Med Chir (Tokyo) 2021; 61:245-252. [PMID: 33658457 PMCID: PMC8048115 DOI: 10.2176/nmc.oa.2020-0308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Bevacizumab (BEV) is a key anti-angiogenic agent used in the treatment for recurrent glioblastoma multiforme (GBM). The aim of this study was to investigate whether cytoreductive surgery prior to treatment with BEV contributes to prolongation of survival for patients with recurrent GBM. We retrospectively analyzed the treatment outcomes of 124 patients with recurrent GBM who were initially treated with the Stupp protocol between 2006 and 2019. Given that BEV has only been available in Japan since 2013, we grouped the patients into two groups according to the time of first recurrence: the pre-BEV group (N = 51) included patients who had recurrence before BEV approval, and the BEV group (N = 73) included patients with recurrence after BEV approval. The overall survival after first recurrence (OS-R) was analyzed according to the treatment strategy. Among 124 patients, 27 patients (19.4%) received cytoreductive surgery. There were nine cases in the pre-BEV group and 18 cases in the BEV group. Although the mean extent of resection for both groups was almost equal, OS-R was significantly different. The median OS-R was 8.1 m in the pre-BEV group and 16.3 m in the BEV group (P = 0.007). Multivariate analysis revealed that the unavailability of BEV postoperatively (P = 0.03) and decreasing performance status by surgery (P = 0.01) were significant poor prognostic factors for survival after surgery. With the advent of BEV, cytoreductive surgery might provide superior survival benefit at the time of GBM recurrence, especially in cases where surgery can be performed without deteriorating the patient's condition.
Collapse
Affiliation(s)
- Shigeru Yamaguchi
- Department of Neurosurgery, Faculty of Medicine, Hokkaido University
| | - Hiroaki Motegi
- Department of Neurosurgery, Faculty of Medicine, Hokkaido University
| | - Yukitomo Ishi
- Department of Neurosurgery, Faculty of Medicine, Hokkaido University
| | - Michinari Okamoto
- Department of Neurosurgery, Faculty of Medicine, Hokkaido University
| | - Ryosuke Sawaya
- Department of Neurosurgery, Faculty of Medicine, Hokkaido University
| | | | | | - Kiyohiro Houkin
- Department of Neurosurgery, Faculty of Medicine, Hokkaido University
| |
Collapse
|
22
|
Goenka A, Tiek D, Song X, Huang T, Hu B, Cheng SY. The Many Facets of Therapy Resistance and Tumor Recurrence in Glioblastoma. Cells 2021; 10:cells10030484. [PMID: 33668200 PMCID: PMC7995978 DOI: 10.3390/cells10030484] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/19/2021] [Accepted: 02/19/2021] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GBM) is the most lethal type of primary brain cancer. Standard care using chemo- and radio-therapy modestly increases the overall survival of patients; however, recurrence is inevitable, due to treatment resistance and lack of response to targeted therapies. GBM therapy resistance has been attributed to several extrinsic and intrinsic factors which affect the dynamics of tumor evolution and physiology thus creating clinical challenges. Tumor-intrinsic factors such as tumor heterogeneity, hypermutation, altered metabolomics and oncologically activated alternative splicing pathways change the tumor landscape to facilitate therapy failure and tumor progression. Moreover, tumor-extrinsic factors such as hypoxia and an immune-suppressive tumor microenvironment (TME) are the chief causes of immunotherapy failure in GBM. Amid the success of immunotherapy in other cancers, GBM has occurred as a model of resistance, thus focusing current efforts on not only alleviating the immunotolerance but also evading the escape mechanisms of tumor cells to therapy, caused by inter- and intra-tumoral heterogeneity. Here we review the various mechanisms of therapy resistance in GBM, caused by the continuously evolving tumor dynamics as well as the complex TME, which cumulatively contribute to GBM malignancy and therapy failure; in an attempt to understand and identify effective therapies for recurrent GBM.
Collapse
Affiliation(s)
| | | | | | | | | | - Shi-Yuan Cheng
- Correspondence: ; Tel.: +1-312-503-3043; Fax: +1-312-503-5603
| |
Collapse
|
23
|
Di Nunno V, Franceschi E, Tosoni A, Di Battista M, Gatto L, Lamperini C, Minichillo S, Mura A, Bartolini S, Brandes AA. Treatment of recurrent glioblastoma: state-of-the-art and future perspectives. Expert Rev Anticancer Ther 2020; 20:785-795. [PMID: 32799576 DOI: 10.1080/14737140.2020.1807949] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Almost all patients affected by glioblastoma experience recurrence of the disease. AREAS COVERED Management of recurrent glioblastoma is a clinical challenge, and several elements should be taken into consideration when making treatment choice. Loco-regional treatments may be the best treatment approach in selected cases while systemic therapies or supportive care alone are necessary for other patients. Unfortunately, few drugs have shown clinical in this setting. This lack of effective treatments has made recurrent glioblastoma a disease orphan of an effective approach. EXPERT OPINION Results of recent clinical trials offer interesting perspectives and may controvert this axiom.
Collapse
Affiliation(s)
- Vincenzo Di Nunno
- Department of Medical Oncology - Azienda USL di Bologna , Bologna, Italy
| | - Enrico Franceschi
- Department of Medical Oncology - Azienda USL di Bologna , Bologna, Italy
| | - Alicia Tosoni
- Department of Medical Oncology - Azienda USL di Bologna , Bologna, Italy
| | - Monica Di Battista
- Department of Medical Oncology - Azienda USL di Bologna , Bologna, Italy
| | - Lidia Gatto
- Department of Medical Oncology - Azienda USL di Bologna , Bologna, Italy
| | - Cinzia Lamperini
- Department of Medical Oncology - Azienda USL di Bologna , Bologna, Italy
| | - Santino Minichillo
- Department of Medical Oncology - Azienda USL di Bologna , Bologna, Italy
| | - Antonella Mura
- Department of Medical Oncology - Azienda USL di Bologna , Bologna, Italy
| | - Stefania Bartolini
- Department of Medical Oncology - Azienda USL di Bologna , Bologna, Italy
| | - Alba A Brandes
- Department of Medical Oncology - Azienda USL di Bologna , Bologna, Italy
| |
Collapse
|
24
|
Waghule T, Rapalli VK, Singhvi G, Gorantla S, Khosa A, Dubey SK, Saha RN. Design of temozolomide-loaded proliposomes and lipid crystal nanoparticles with industrial feasible approaches: comparative assessment of drug loading, entrapment efficiency, and stability at plasma pH. J Liposome Res 2020; 31:158-168. [PMID: 32290733 DOI: 10.1080/08982104.2020.1748648] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Temozolomide is a drug approved for treating glioblastomas, which has 100% oral bioavailability but gets degraded at physiological pH thus having very short half-life and only 20-30% brain bioavailability. Due to its amphiphilic nature, reported nanoformulations exhibits poor drug loading. The objective of this work was to formulate lipid-based drug delivery systems to enhance the brain bioavailability by prolonging the drug release and circulation time of the drug to overcome the limitations of the existing therapies and possible reduction of side effects. The size of the nanocarriers obtained was less than 300 nm and the PDI obtained was less than 0.3. The designed formulation showed higher entrapment efficiency as compared to the other reported nanocarriers of temozolomide. The designed formulations showed prolonged drug release from 12 to 20 h compared to 6 h for the pure drug. About 95% of the pure drug was degraded at plasma pH at the end of 12 h, whereas only 68% and 77% was degraded when entrapped inside the lipid crystal nanoparticles and proliposomes respectively. Further, pharmacokinetic and animal studies can confirm the potential of these for improvement of brain bioavailability.
Collapse
Affiliation(s)
- Tejashree Waghule
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, India
| | - Vamshi Krishna Rapalli
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, India
| | - Gautam Singhvi
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, India
| | - Srividya Gorantla
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, India
| | - Archana Khosa
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, India.,IDRS Labs Pvt. Ltd, Bommasandra Industrial area, Bangalore, India
| | - Sunil Kumar Dubey
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, India
| | - Ranendra Narayan Saha
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, India.,Birla Institute of Technology and Science, Pilani, Dubai Campus, UAE
| |
Collapse
|
25
|
Di Nunno V, Franceschi E, Gatto L, Bartolini S, Brandes AA. Predictive markers of immune response in glioblastoma: hopes and facts. Future Oncol 2020; 16:1053-1063. [PMID: 32270715 DOI: 10.2217/fon-2020-0047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Immune-checkpoint inhibitors (ICI) represent a concrete hope for patients with advanced solid tumors. Indeed, patients responding to these agents may experience a long-lasting response. Recently, results of interventional clinical trials investigated the role of ICIs in patients with glioblastoma. Results of these studies suggested that only a small percentage of these patients could benefit from these agents. Research of predictive markers assumes a critical importance to adequately select patients likely to benefit from ICIs. Molecular and clinical variables associated to tumors and patients have been evaluated as potential predictive markers. Main aim of the current work is to summarize and critically evaluate current knowledge in this field.
Collapse
Affiliation(s)
- Vincenzo Di Nunno
- Department of Medical Oncology, Azienda USL/IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Enrico Franceschi
- Department of Medical Oncology, Azienda USL/IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Lidia Gatto
- Department of Medical Oncology, Azienda USL/IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Stefania Bartolini
- Department of Medical Oncology, Azienda USL/IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Alba Ariela Brandes
- Department of Medical Oncology, Azienda USL/IRCCS Institute of Neurological Sciences, Bologna, Italy
| |
Collapse
|
26
|
Recurrent glioblastomas: Should we operate a second and even a third time? INTERDISCIPLINARY NEUROSURGERY 2019. [DOI: 10.1016/j.inat.2019.100551] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
27
|
Marino A, Camponovo A, Degl'Innocenti A, Bartolucci M, Tapeinos C, Martinelli C, De Pasquale D, Santoro F, Mollo V, Arai S, Suzuki M, Harada Y, Petretto A, Ciofani G. Multifunctional temozolomide-loaded lipid superparamagnetic nanovectors: dual targeting and disintegration of glioblastoma spheroids by synergic chemotherapy and hyperthermia treatment. NANOSCALE 2019; 11:21227-21248. [PMID: 31663592 PMCID: PMC6867905 DOI: 10.1039/c9nr07976a] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Aiming at finding new solutions for fighting glioblastoma multiforme, one of the most aggressive and lethal human cancer, here an in vitro validation of multifunctional nanovectors for drug delivery and hyperthermia therapy is proposed. Hybrid magnetic lipid nanoparticles have been fully characterized and tested on a multi-cellular complex model resembling the tumor microenvironment. Investigations of cancer therapy based on a physical approach (namely hyperthermia) and on a pharmaceutical approach (by exploiting the chemotherapeutic drug temozolomide) have been extensively carried out, by evaluating its antiproliferative and pro-apoptotic effects on 3D models of glioblastoma multiforme. A systematic study of transcytosis and endocytosis mechanisms has been moreover performed with multiple complimentary investigations, besides a detailed description of local temperature increments following hyperthermia application. Finally, an in-depth proteomic analysis corroborated the obtained findings, which can be summarized in the preparation of a versatile, multifunctional, and effective nanoplatform able to overcome the blood-brain barrier and to induce powerful anti-cancer effects on in vitro complex models.
Collapse
Affiliation(s)
- Attilio Marino
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy.
| | - Alice Camponovo
- Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Andrea Degl'Innocenti
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy.
| | - Martina Bartolucci
- IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy
| | - Christos Tapeinos
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy.
| | - Chiara Martinelli
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy.
| | - Daniele De Pasquale
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy. and Scuola Superiore Sant'Anna, The Biorobotics Institute, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Francesca Santoro
- Istituto Italiano di Tecnologia, Center for Advanced Biomaterials for Health Care, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Valentina Mollo
- Istituto Italiano di Tecnologia, Center for Advanced Biomaterials for Health Care, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Satoshi Arai
- Kanazawa University, Nano Life Science Institute (WPI-NanoLSI), Kakuma-Machi, 920-1192 Kanazawa, Japan and Waseda University, Research Institute for Science and Engineering, 3-4-1 Ohkubo, Shinjuku-ku, 169-8555 Tokyo, Japan
| | - Madoka Suzuki
- Osaka University, Institute for Protein Research, 3-2 Yamadaoka, Suita-Shi, 565-0871 Osaka, Japan and PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, 332-0012 Saitama, Japan
| | - Yoshie Harada
- Osaka University, Institute for Protein Research, 3-2 Yamadaoka, Suita-Shi, 565-0871 Osaka, Japan
| | - Andrea Petretto
- IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy
| | - Gianni Ciofani
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy. and Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
28
|
Upregulation of the NLRC4 inflammasome contributes to poor prognosis in glioma patients. Sci Rep 2019; 9:7895. [PMID: 31133717 PMCID: PMC6536517 DOI: 10.1038/s41598-019-44261-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 05/08/2019] [Indexed: 02/06/2023] Open
Abstract
Inflammation in tumor microenvironments is implicated in the pathogenesis of tumor development. In particular, inflammasomes, which modulate innate immune functions, are linked to tumor growth and anticancer responses. However, the role of the NLRC4 inflammasome in gliomas remains unclear. Here, we investigated whether the upregulation of the NLRC4 inflammasome is associated with the clinical prognosis of gliomas. We analyzed the protein expression and localization of NLRC4 in glioma tissues from 11 patients by immunohistochemistry. We examined the interaction between the expression of NLRC4 and clinical prognosis via a Kaplan-Meier survival analysis. The level of NLRC4 protein was increased in brain tissues, specifically, in astrocytes, from glioma patients. NLRC4 expression was associated with a poor prognosis in glioma patients, and the upregulation of NLRC4 in astrocytomas was associated with poor survival. Furthermore, hierarchical clustering of data from the Cancer Genome Atlas dataset showed that NLRC4 was highly expressed in gliomas relative to that in a normal healthy group. Our results suggest that the upregulation of the NLRC4 inflammasome contributes to a poor prognosis for gliomas and presents a potential therapeutic target and diagnostic marker.
Collapse
|
29
|
Zhao YH, Wang ZF, Pan ZY, Péus D, Delgado-Fernandez J, Pallud J, Li ZQ. A Meta-Analysis of Survival Outcomes Following Reoperation in Recurrent Glioblastoma: Time to Consider the Timing of Reoperation. Front Neurol 2019; 10:286. [PMID: 30984099 PMCID: PMC6448034 DOI: 10.3389/fneur.2019.00286] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/05/2019] [Indexed: 12/16/2022] Open
Abstract
Background: Glioblastoma multiforme (GBM) inevitably recurs, but no standard regimen has been established for recurrent patients. Reoperation at recurrence alleviates mass effects, and the survival benefit has been reported in many studies. However, in most studies, the effect of reoperation timing on survival benefit was ignored. The aim of this meta-analysis was to investigate whether reoperation provided similar survival benefits in recurrent GBM patients when it was analyzed as a fixed or time-dependent covariate. Methods: A systematic literature search of PubMed, EMBASE, and Cochrane databases was performed to identify original articles that evaluated the associations between reoperation and prognosis in recurrent GBM patients. Results: Twenty-one articles involving 8,630 patients were included. When reoperation was considered as a fixed covariate, it was associated with better overall survival (OS) and post-progression survival (PPS) (OS: HR = 0.66, 95% CI 0.61-0.71, p < 0.001, I2 = 0%; PPS: HR = 0.70, 95% CI 0.57–0.88, p < 0.01, I2 = 70.2%). However, such a survival benefit was not observed when reoperation was considered as a time-dependent covariate (OS: HR = 2.19, 95% CI 1.47–3.27, p < 0.001; PPS: HR = 0.95, 95% CI 0.82–1.10, p = 0.51, I2 = 0%). The estimate bias caused by ignoring the time-dependent nature of reoperation was further demonstrated by the re-analysis of survival data in three included studies. Conclusions: The timing of reoperation may have an impact on the survival outcome in recurrent GBM patients, and survival benefits of reoperation in recurrent GBM may be overestimated when analyzed as fixed covariates. Proper analysis methodology should be used in future work to confirm the clinical benefits of reoperation.
Collapse
Affiliation(s)
- Yu-Hang Zhao
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Ze-Fen Wang
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Zhi-Yong Pan
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Dominik Péus
- Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
| | | | - Johan Pallud
- Department of Neurosurgery, Sainte-Anne Hospital, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Zhi-Qiang Li
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
30
|
Cheng AC, Hsu YC, Tsai CC. The effects of cucurbitacin E on GADD45β-trigger G2/M arrest and JNK-independent pathway in brain cancer cells. J Cell Mol Med 2019; 23:3512-3519. [PMID: 30912292 PMCID: PMC6484297 DOI: 10.1111/jcmm.14250] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/17/2019] [Accepted: 01/31/2019] [Indexed: 01/15/2023] Open
Abstract
Cucurbitacin E (CuE), an active compound of the cucurbitacin family, possesses a variety of pharmacological functions and chemotherapy potential. Cucurbitacin E exhibits inhibitory effects in several types of cancer; however, its anticancer effects on brain cancer remain obscure and require further interpretation. In this study, efforts were initiated to inspect whether CuE can contribute to anti-proliferation in human brain malignant glioma GBM 8401 cells and glioblastoma-astrocytoma U-87-MG cells. An MTT assay measured CuE's inhibitory effect on the growth of glioblastomas (GBMs). A flow cytometry approach was used for the assessment of DNA content and cell cycle analysis. DNA damage 45β (GADD45β) gene expression and CDC2/cyclin-B1 disassociation were investigated by quantitative real-time PCR and Western blot analysis. Based on our results, CuE showed growth-inhibiting effects on GBM 8401 and U-87-MG cells. Moreover, GADD45β caused the accumulation of CuE-treated G2/M-phase cells. The disassociation of the CDC2/cyclin-B1 complex demonstrated the known effects of CuE against GBM 8401 and U-87-MG cancer cells. Additionally, CuE may also exert antitumour activities in established brain cancer cells. In conclusion, CuE inhibited cell proliferation and induced mitosis delay in cancer cells, suggesting its potential applicability as an antitumour agent.
Collapse
Affiliation(s)
- An-Chin Cheng
- Department of Nutrition and Health Sciences, College of Health Sciences, Chang Jung Christian University, Tainan, Taiwan
| | - Yi-Chiang Hsu
- Department of Medical Sciences Industry, College of Health Sciences, Chang Jung Christian University, Tainan, Taiwan
| | - Chiang-Chin Tsai
- Department of General Surgery, Tainan Sin Lau Hospital, The Presbyterian Church in Taiwan, Tainan, Taiwan.,Department of Health Care Administration, College of Health Sciences, Chang Jung Christian University, Tainan, Taiwan
| |
Collapse
|
31
|
Lombardi G, De Salvo GL, Brandes AA, Eoli M, Rudà R, Faedi M, Lolli I, Pace A, Daniele B, Pasqualetti F, Rizzato S, Bellu L, Pambuku A, Farina M, Magni G, Indraccolo S, Gardiman MP, Soffietti R, Zagonel V. Regorafenib compared with lomustine in patients with relapsed glioblastoma (REGOMA): a multicentre, open-label, randomised, controlled, phase 2 trial. Lancet Oncol 2019; 20:110-119. [DOI: 10.1016/s1470-2045(18)30675-2] [Citation(s) in RCA: 265] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 12/17/2022]
|
32
|
Prelaj A, Rebuzzi SE, Grassi M, Salvati M, D'Elia A, Buttarelli F, Ferrara C, Tomao S, Bianco V. Non-conventional fotemustine schedule as second-line treatment in recurrent malignant gliomas: Survival across disease and treatment subgroup analysis and review of the literature. Mol Clin Oncol 2018; 10:58-66. [PMID: 30655978 PMCID: PMC6313958 DOI: 10.3892/mco.2018.1746] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/26/2018] [Indexed: 02/03/2023] Open
Abstract
Fotemustine (FTM) is a treatment option in recurrent malignant gliomas (MGs) after first-line Stupp treatment. The efficacy and the safety of fractionated FTM schedule proposed by Addeo et al was analysed in the present study in recurrent MGs patients. A retrospective analysis on 40 recurrent MGs patients and second-line fractionated FTM chemotherapy was performed. Response evaluation was assessed using RANO criteria and safety was assessed using CTCAE v.4.03. Subgroup analyses based on MGMT methylation, resurgery and reirradiation were performed. A review of the literature was also performed. The results revealed 5 partial responses (13%) and 19 stable diseases (47%) with a disease-control rate of 60%. Median progression-free survival (PFS) was 4 months, with a PFS of 33% at 6 months and 13% at 1 year. The median overall survival (OS) was 9 months and OS at 6 months was of 55% and at 1 year of 30%. Methylated patients experienced longer mPFS (6 vs. 3 months; p=0.004) and mOS (10 vs. 4 months; p<0.0001) compared with unmethylated patients. Patients treated with reirradiation experienced longer mPFS (5 vs. 3.5 months; p=0.48) and mOS (10 vs. 5 months; p=0.11). No survival benefit with resurgery was observed. Furthermore, the fractioned schedule was well tolerated, only 15% of patients developed severe myelotoxicities. Considering the present findings, fractionated FTM schedule is an efficient second-line option for MGs associated with an acceptable myelotoxicity profile. Additionally, MGMT methylation is associated with improved survival outcomes. However, this study highlights the requirement for further prospective randomized studies on resurgery and reirradiation.
Collapse
Affiliation(s)
- Arsela Prelaj
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, 'Sapienza' University of Rome, Policlinico Umberto I, I-00161 Rome, Italy
| | - Sara Elena Rebuzzi
- Department of Medical Oncology, Ospedale Policlinico San Martino IST, University of Genoa, I-16132 Genoa, Italy
| | - Massimiliano Grassi
- Department of Medical Oncology, Ospedale Policlinico San Martino IST, University of Genoa, I-16132 Genoa, Italy
| | - Maurizio Salvati
- Neurosurgery Department, IRCCS NEUROMED INM, Neurochirurgia, I-86077 Pozzilli, Italy
| | - Alessandro D'Elia
- Neurosurgery Department, IRCCS NEUROMED INM, Neurochirurgia, I-86077 Pozzilli, Italy
| | - Francesca Buttarelli
- Department of Neurology and Psychiatry 'Sapienza' University of Rome, Policlinico Umberto I, I-00161 Rome, Italy
| | - Carla Ferrara
- Department of Public Health and Infectious Diseases, 'Sapienza' University of Rome, I-00185 Rome, Italy
| | - Silverio Tomao
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, 'Sapienza' University of Rome, Policlinico Umberto I, I-00161 Rome, Italy
| | - Vincenzo Bianco
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, 'Sapienza' University of Rome, Policlinico Umberto I, I-00161 Rome, Italy
| |
Collapse
|
33
|
Prelaj A, Rebuzzi SE, Grassi M, Giròn Berrìos JR, Pecorari S, Fusto C, Ferrara C, Salvati M, Stati V, Tomao S, Bianco V. Multimodal treatment for local recurrent malignant gliomas: Resurgery and/or reirradiation followed by chemotherapy. Mol Clin Oncol 2018; 10:49-57. [PMID: 30655977 PMCID: PMC6313879 DOI: 10.3892/mco.2018.1745] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/05/2018] [Indexed: 01/26/2023] Open
Abstract
The therapeutic management of recurrent malignant gliomas (MGs) is not determined. Therefore, the efficacy of a multimodal approach and a combination systemic therapy was investigated. A retrospective analysis of 26 MGs patients at first relapse treated with multimodal therapy (chemotherapy plus surgery and/or reirradiation) or chemotherapy alone was performed. Second-line chemotherapy consisted of fotemustine (FTM) in combination with bevacizumab (BEV) (cFTM/BEV) or followed by third-line BEV (sFTM/BEV). Subgroup analyses were performed. Multimodal therapy provided a higher overall response rate (ORR) (73 vs. 47%), disease control rate (DCR) (82 vs. 67%), median progression-free survival (mPFS) (11 vs. 7 months; P=0.08) and median overall survival (mOS) (13 vs. 8 months; P=0.04) compared with chemotherapy. Concomitant FTM/BEV resulted in higher ORR (84 vs. 36%), DCR (92 vs. 57%), mPFS (10 vs. 5 months; P=0.22) and mOS (11 vs. 5.2 months; P=0.15) compared with sFTM/BEV. Methylated patients did not experience additional survival benefits with multimodality treatment but had higher mPFS (10 vs 7.1 months; P=0.33) and mOS (11 vs. 8 months; P=0.33) with cFTM/BEV. Unmethylated patients experienced the greatest survival benefit with the multimodal approach (mPFS: 10 vs. 5 months; mOS 11 vs 6 months; both P=0.02) and cFTM/BEV (mPFS: 5 vs. 2 months; mOS 6 vs. 3.2 months; both P=0.01). In conclusion, in recurrent MGs, multimodal therapy and cFTM/BEV provide survival and response benefits. Methylated patients benefit from a cFTM/BEV but not from a multimodal approach. Notably, unmethylated patients had the highest survival benefit with the two strategies.
Collapse
Affiliation(s)
- Arsela Prelaj
- Department of Medical Oncology Unit A, Policlinico Umberto I, 'Sapienza' University of Rome, I-00161 Rome, Italy
| | - Sara Elena Rebuzzi
- Department of Medical Oncology, Ospedale Policlinico San Martino IST, I-16132 Genoa, Italy
| | - Massimiliano Grassi
- Department of Medical Oncology, Ospedale Policlinico San Martino IST, I-16132 Genoa, Italy
| | - Julio Rodrigo Giròn Berrìos
- Department of Medical Oncology Unit A, Policlinico Umberto I, 'Sapienza' University of Rome, I-00161 Rome, Italy
| | - Silvia Pecorari
- Department of Medical Oncology Unit A, Policlinico Umberto I, 'Sapienza' University of Rome, I-00161 Rome, Italy
| | - Carmela Fusto
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, 'Sapienza' University of Rome, Policlinico Umberto I, I-00161 Rome, Italy
| | - Carla Ferrara
- Department of Public Health and Infectious Diseases, 'Sapienza' University of Rome, I-00185 Rome, Italy
| | - Maurizio Salvati
- Department of Neurosurgery, IRCCS Neuromed, I-86077 Pozzilli, Italy
| | - Valeria Stati
- Department of Medico-Surgical Sciences and Biotechnologies, 'Sapienza' University of Rome, I-00185 Rome, Italy
| | - Silverio Tomao
- Department of Medical Oncology Unit A, Policlinico Umberto I, 'Sapienza' University of Rome, I-00161 Rome, Italy.,Department of Radiological Sciences, Oncology and Pathology, 'Sapienza' University of Rome, I-04100 Latina, Italy
| | - Vincenzo Bianco
- Department of Medical Oncology Unit A, Policlinico Umberto I, 'Sapienza' University of Rome, I-00161 Rome, Italy
| |
Collapse
|
34
|
Loriguet L, Morisse MC, Dremaux J, Collet L, Attencourt C, Coutte A, Boone M, Sevestre H, Galmiche A, Gubler B, Chauffert B, Trudel S. Combining genomic analyses with tumour-derived slice cultures for the characterization of an EGFR-activating kinase mutation in a case of glioblastoma. BMC Cancer 2018; 18:964. [PMID: 30305059 PMCID: PMC6180520 DOI: 10.1186/s12885-018-4873-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 09/28/2018] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Epidermal growth factor receptor (EGFR) gene alterations and amplification are frequently reported in cases of glioblastoma (GBM). However, EGFR-activating mutations that confer proven sensitivity to tyrosine kinase inhibitors (TKIs) in lung cancer have not yet been reported in GBM. CASE PRESENTATION Using next-generation sequencing, array comparative genomic hybridization and droplet digital PCR, we identified the p.L861Q EGFR mutation in a case of GBM for the first time. The mutation was associated with gene amplification. L861Q may be a clinically valuable mutation because it is known to sensitize non-small-cell lung cancers to treatment with the second-generation EGFR TKI afatinib in particular. Furthermore, we used slice culture of the patient's GBM explant to evaluate the tumour's sensitivity to various EGFR-targeting drugs. Our results suggested that the tumour was not intrinsically sensitive to these drugs. CONCLUSIONS Our results highlight (i) the value of comprehensive genomic analyses for identifying patient-specific, targetable alterations, and (ii) the need to combine genomic analyses with functional assays, such as tumour-derived slice cultures.
Collapse
Affiliation(s)
- Lea Loriguet
- EA4666, LNPC, Université de Picardie Jules Verne, Amiens, France
- Service d’Oncologie médicale, Centre Hospitalier Universitaire Amiens-Picardie, Amiens, France
| | - Mony Chenda Morisse
- EA4666, LNPC, Université de Picardie Jules Verne, Amiens, France
- Service d’Oncologie médicale, Centre Hospitalier Universitaire Amiens-Picardie, Amiens, France
| | - Julie Dremaux
- EA4666, LNPC, Université de Picardie Jules Verne, Amiens, France
- Laboratoire d’Oncobiologie moléculaire, Centre Hospitalier Universitaire Amiens-Picardie, Amiens, France
| | - Louison Collet
- EA4666, LNPC, Université de Picardie Jules Verne, Amiens, France
| | - Christophe Attencourt
- Service d’Anatomie et de cytologie pathologiques, Centre Hospitalier Universitaire Amiens-Picardie, Amiens, France
| | - Alexandre Coutte
- Service d’Oncologie radiothérapique, Centre Hospitalier Universitaire Amiens-Picardie, Amiens, France
| | - Mathieu Boone
- Service d’Oncologie médicale, Centre Hospitalier Universitaire Amiens-Picardie, Amiens, France
| | - Henri Sevestre
- Service d’Anatomie et de cytologie pathologiques, Centre Hospitalier Universitaire Amiens-Picardie, Amiens, France
| | - Antoine Galmiche
- EA4666, LNPC, Université de Picardie Jules Verne, Amiens, France
- Laboratoire de Biochimie, Centre Hospitalier Universitaire Amiens-Picardie, Amiens, France
| | - Brigitte Gubler
- EA4666, LNPC, Université de Picardie Jules Verne, Amiens, France
- Laboratoire d’Oncobiologie moléculaire, Centre Hospitalier Universitaire Amiens-Picardie, Amiens, France
| | - Bruno Chauffert
- EA4666, LNPC, Université de Picardie Jules Verne, Amiens, France
- Service d’Oncologie médicale, Centre Hospitalier Universitaire Amiens-Picardie, Amiens, France
| | - Stephanie Trudel
- EA4666, LNPC, Université de Picardie Jules Verne, Amiens, France
- Laboratoire d’Oncobiologie moléculaire, Centre Hospitalier Universitaire Amiens-Picardie, Amiens, France
| |
Collapse
|
35
|
Brandes AA, Gil-Gil M, Saran F, Carpentier AF, Nowak AK, Mason W, Zagonel V, Dubois F, Finocchiaro G, Fountzilas G, Cernea DM, Chinot O, Anghel R, Ghiringhelli F, Beauchesne P, Lombardi G, Franceschi E, Makrutzki M, Mpofu C, Urban HJ, Pichler J. A Randomized Phase II Trial (TAMIGA) Evaluating the Efficacy and Safety of Continuous Bevacizumab Through Multiple Lines of Treatment for Recurrent Glioblastoma. Oncologist 2018; 24:521-528. [PMID: 30266892 DOI: 10.1634/theoncologist.2018-0290] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/24/2018] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND We assessed the efficacy and safety of bevacizumab (BEV) through multiple lines in patients with recurrent glioblastoma who had progressed after first-line treatment with radiotherapy, temozolomide, and BEV. PATIENTS AND METHODS TAMIGA (NCT01860638) was a phase II, randomized, double-blind, placebo-controlled, multicenter trial in adult patients with glioblastoma. Following surgery, patients with newly diagnosed glioblastoma received first-line treatment consisting of radiotherapy plus temozolomide and BEV, followed by six cycles of temozolomide and BEV, then BEV monotherapy until disease progression (PD1). Randomization occurred at PD1 (second line), and patients received lomustine (CCNU) plus BEV (CCNU + BEV) or CCNU plus placebo (CCNU + placebo) until further disease progression (PD2). At PD2 (third line), patients continued BEV or placebo with chemotherapy (investigator's choice). The primary endpoint was survival from randomization. Secondary endpoints were progression-free survival in the second and third lines (PFS2 and PFS3) and safety. RESULTS Of the 296 patients enrolled, 123 were randomized at PD1 (CCNU + BEV, n = 61; CCNU + placebo, n = 62). The study was terminated prematurely because of the high drop-out rate during first-line treatment, implying underpowered inferential testing. The proportion of patients receiving corticosteroids at randomization was similar (BEV 33%, placebo 31%). For the CCNU + BEV and CCNU + placebo groups, respectively, median survival from randomization was 6.4 versus 5.5 months (stratified hazard ratio [HR], 1.04; 95% confidence interval [CI], 0.69-1.59), median PFS2 was 2.3 versus 1.8 months (stratified HR, 0.70; 95% CI, 0.48-1.00), median PFS3 was 2.0 versus 2.2 months (stratified HR, 0.70; 95% CI, 0.37-1.33), and median time from randomization to a deterioration in health-related quality of life was 1.4 versus 1.3 months (stratified HR, 0.76; 95% CI, 0.52-1.12). The incidence of treatment-related grade 3 to 4 adverse events was 19% (CCNU + BEV) versus 15% (CCNU + placebo). CONCLUSION There was no survival benefit and no detriment observed with continuing BEV through multiple lines in patients with recurrent glioblastoma. IMPLICATIONS FOR PRACTICE Previous research suggested that there may be value in continuing bevacizumab (BEV) beyond progression through multiple lines of therapy. No survival benefit was observed with the use of BEV through multiple lines in patients with glioblastoma who had progressed after first-line treatment (radiotherapy + temozolomide + BEV). No new safety concerns arose from the use of BEV through multiple lines of therapy.
Collapse
Affiliation(s)
| | - Miguel Gil-Gil
- Institut Catala d'Oncologia, L'Hospitalet, Institut d'Investigació Biomédica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Frank Saran
- Royal Marsden National Health Service Foundation Trust, Sutton, United Kingdom
| | - Antoine F Carpentier
- Paris 7 University, Assistance publique - Hôpitaux de Paris (AP-HP), Paris, France
| | - Anna K Nowak
- School of Medicine, University of Western Australia, Crawley, Australia
| | - Warren Mason
- Cancer Clinical Research Unit, Princess Margaret Cancer Centre, Toronto, Canada
| | - Vittorina Zagonel
- Department of Clinical and Experimental Oncology, Medical Oncology Unit 1, Veneto Institute of Oncology-IRCCS, Padua, Italy
| | - François Dubois
- Centre Hospitalier Régional et Universitaire de Lille, Lille, France
| | | | | | | | - Oliver Chinot
- Aix-Marseille University, Assistance publique - Hôpitaux de Marseille (AP-HM), CHU Timone, Marseille, France
| | - Rodica Anghel
- Alexandru Trestioreanu Bucharest Institute of Oncology, Bucharest, Romania
- Carol Davila University of Medicine and Pharmacy Bucharest, Bucharest, Romania
| | | | | | - Giuseppe Lombardi
- Department of Clinical and Experimental Oncology, Medical Oncology Unit 1, Veneto Institute of Oncology-IRCCS, Padua, Italy
| | | | | | | | | | - Josef Pichler
- Institut für Innere Medizin mit Neuroonkologie, Linz, Austria
| |
Collapse
|
36
|
Eijgelaar RS, Bruynzeel AME, Lagerwaard FJ, Müller DMJ, Teunissen FR, Barkhof F, van Herk M, De Witt Hamer PC, Witte MG. Earliest radiological progression in glioblastoma by multidisciplinary consensus review. J Neurooncol 2018; 139:591-598. [PMID: 29777418 PMCID: PMC6132963 DOI: 10.1007/s11060-018-2896-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/02/2018] [Indexed: 01/13/2023]
Abstract
BACKGROUND Detection of glioblastoma progression is important for clinical decision-making on cessation or initiation of therapy, for enrollment in clinical trials, and for response measurement in time and location. The RANO-criteria are considered standard for the timing of progression. To evaluate local treatment, we aim to find the most accurate progression location. We determined the differences in progression free survival (PFS) and in tumor volumes at progression (Vprog) by three definitions of progression. METHODS In a consecutive cohort of 73 patients with newly-diagnosed glioblastoma between 1/1/2012 and 31/12/2013, progression was established according to three definitions. We determined (1) earliest radiological progression (ERP) by retrospective multidisciplinary consensus review using all available imaging and follow-up, (2) clinical practice progression (CPP) from multidisciplinary tumor board conclusions, and (3) progression by the RANO-criteria. RESULTS ERP was established in 63 (86%), CPP in 64 (88%), RANO progression in 42 (58%). Of the 63 patients who had died, 37 (59%) did with prior RANO-progression, compared to 57 (90%) for both ERP and CPP. The median overall survival was 15.3 months. The median PFS was 8.8 months for ERP, 9.5 months for CPP, and 11.8 months for RANO. The PFS by ERP was shorter than CPP (HR 0.57, 95% CI 0.38-0.84, p = 0.004) and RANO-progression (HR 0.29, 95% CI 0.19-0.43, p < 0.001). The Vprog were significantly smaller for ERP (median 8.8 mL), than for CPP (17 mL) and RANO (22 mL). CONCLUSION PFS and Vprog vary considerably between progression definitions. Earliest radiological progression by retrospective consensus review should be considered to accurately localize progression and to address confounding of lead time bias in clinical trial enrollment.
Collapse
Affiliation(s)
- Roelant S Eijgelaar
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Anna M E Bruynzeel
- Department of Radiation Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Frank J Lagerwaard
- Department of Radiation Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Domenique M J Müller
- Neurosurgical Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Freek R Teunissen
- Neurosurgical Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
- Institutes of Neurology & Healthcare Engineering, University College London, London, UK
| | - Marcel van Herk
- Division of Cancer Sciences, Faculty of Biology, Medicine & Health, University of Manchester and Christie NHS Trust, Manchester, UK
| | - Philip C De Witt Hamer
- Neurosurgical Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Marnix G Witte
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
37
|
Shergalis A, Bankhead A, Luesakul U, Muangsin N, Neamati N. Current Challenges and Opportunities in Treating Glioblastoma. Pharmacol Rev 2018; 70:412-445. [PMID: 29669750 PMCID: PMC5907910 DOI: 10.1124/pr.117.014944] [Citation(s) in RCA: 558] [Impact Index Per Article: 79.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma multiforme (GBM), the most common and aggressive primary brain tumor, has a high mortality rate despite extensive efforts to develop new treatments. GBM exhibits both intra- and intertumor heterogeneity, lending to resistance and eventual tumor recurrence. Large-scale genomic and proteomic analysis of GBM tumors has uncovered potential drug targets. Effective and "druggable" targets must be validated to embark on a robust medicinal chemistry campaign culminating in the discovery of clinical candidates. Here, we review recent developments in GBM drug discovery and delivery. To identify GBM drug targets, we performed extensive bioinformatics analysis using data from The Cancer Genome Atlas project. We discovered 20 genes, BOC, CLEC4GP1, ELOVL6, EREG, ESR2, FDCSP, FURIN, FUT8-AS1, GZMB, IRX3, LITAF, NDEL1, NKX3-1, PODNL1, PTPRN, QSOX1, SEMA4F, TH, VEGFC, and C20orf166AS1 that are overexpressed in a subpopulation of GBM patients and correlate with poor survival outcomes. Importantly, nine of these genes exhibit higher expression in GBM versus low-grade glioma and may be involved in disease progression. In this review, we discuss these proteins in the context of GBM disease progression. We also conducted computational multi-parameter optimization to assess the blood-brain barrier (BBB) permeability of small molecules in clinical trials for GBM treatment. Drug delivery in the context of GBM is particularly challenging because the BBB hinders small molecule transport. Therefore, we discuss novel drug delivery methods, including nanoparticles and prodrugs. Given the aggressive nature of GBM and the complexity of targeting the central nervous system, effective treatment options are a major unmet medical need. Identification and validation of biomarkers and drug targets associated with GBM disease progression present an exciting opportunity to improve treatment of this devastating disease.
Collapse
Affiliation(s)
- Andrea Shergalis
- Department of Medicinal Chemistry, College of Pharmacy, North Campus Research Complex, Ann Arbor, Michigan (A.S., U.L., N.N.); Biostatistics Department and School of Public Health, University of Michigan, Ann Arbor, Michigan (A.B.); and Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand (U.L., N.M.)
| | - Armand Bankhead
- Department of Medicinal Chemistry, College of Pharmacy, North Campus Research Complex, Ann Arbor, Michigan (A.S., U.L., N.N.); Biostatistics Department and School of Public Health, University of Michigan, Ann Arbor, Michigan (A.B.); and Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand (U.L., N.M.)
| | - Urarika Luesakul
- Department of Medicinal Chemistry, College of Pharmacy, North Campus Research Complex, Ann Arbor, Michigan (A.S., U.L., N.N.); Biostatistics Department and School of Public Health, University of Michigan, Ann Arbor, Michigan (A.B.); and Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand (U.L., N.M.)
| | - Nongnuj Muangsin
- Department of Medicinal Chemistry, College of Pharmacy, North Campus Research Complex, Ann Arbor, Michigan (A.S., U.L., N.N.); Biostatistics Department and School of Public Health, University of Michigan, Ann Arbor, Michigan (A.B.); and Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand (U.L., N.M.)
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, North Campus Research Complex, Ann Arbor, Michigan (A.S., U.L., N.N.); Biostatistics Department and School of Public Health, University of Michigan, Ann Arbor, Michigan (A.B.); and Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand (U.L., N.M.)
| |
Collapse
|
38
|
Oushy S, Hellwinkel JE, Wang M, Nguyen GJ, Gunaydin D, Harland TA, Anchordoquy TJ, Graner MW. Glioblastoma multiforme-derived extracellular vesicles drive normal astrocytes towards a tumour-enhancing phenotype. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2016.0477. [PMID: 29158308 DOI: 10.1098/rstb.2016.0477] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2017] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a devastating tumour with abysmal prognoses. We desperately need novel approaches to understand GBM biology and therapeutic vulnerabilities. Extracellular vesicles (EVs) are membrane-enclosed nanospheres released locally and systemically by all cells, including tumours, with tremendous potential for intercellular communication. Tumour EVs manipulate their local environments as well as distal targets; EVs may be a mechanism for tumourigenesis in the recurrent GBM setting. We hypothesized that GBM EVs drive molecular changes in normal human astrocytes (NHAs), yielding phenotypically tumour-promoting, or even tumourigenic, entities. We incubated NHAs with GBM EVs and examined the astrocytes for changes in cell migration, cytokine release and tumour cell growth promotion via the conditioned media. We measured alterations in intracellular signalling and transformation capacity (astrocyte growth in soft agar). GBM EV-treated NHAs displayed increased migratory capacity, along with enhanced cytokine production which promoted tumour cell growth. GBM EV-treated NHAs developed tumour-like signalling patterns and exhibited colony formation in soft agar, reminiscent of tumour cells themselves. GBM EVs modify the local environment to benefit the tumour itself, co-opting neighbouring astrocytes to promote tumour growth, and perhaps even driving astrocytes to a tumourigenic phenotype. Such biological activities could have profound impacts in the recurrent GBM setting.This article is part of the discussion meeting issue 'Extracellular vesicles and the tumour microenvironment'.
Collapse
Affiliation(s)
- Soliman Oushy
- University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA.,Department of Neurosurgery, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Justin E Hellwinkel
- University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA.,Department of Neurosurgery, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mary Wang
- Department of Neurosurgery, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ger J Nguyen
- Department of Neurosurgery, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Dicle Gunaydin
- Department of Neurosurgery, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Tessa A Harland
- University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA.,Department of Neurosurgery, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Thomas J Anchordoquy
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michael W Graner
- Department of Neurosurgery, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
39
|
Pellerino A, Franchino F, Soffietti R, Rudà R. Overview on current treatment standards in high-grade gliomas. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2018; 62:225-238. [PMID: 29696949 DOI: 10.23736/s1824-4785.18.03096-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
High-grade gliomas (HGGs) are the most common primary tumors of the central nervous system, which include anaplastic gliomas (grade III) and glioblastomas (GBM, grade IV). Surgery is the mainstay of treatment in HGGs in order to achieve a histological and molecular characterization, as well as relieve neurological symptoms and improve seizure control. Combinations of some molecular factors, such as IDH 1-2 mutations, 1p/19q codeletion and MGMT methylation status, allow to classify different subtypes of gliomas and identify patients with different outcome. The SOC in HGGs consists in a combination of radiotherapy and chemotherapy with alkylating agents. Despite this therapeutic approach, tumor recurrence occurs in HGGs, and new surgical debulking, reirradiation or second-line chemotherapy are needed. Considering the poor results in terms of survival, several clinical trials have explored the efficacy and tolerability of antiangiogenic agents, targeted therapies against epidermal growth factor receptor (EGFR) and different immunotherapeutic approaches in recurrent and newly-diagnosed GBM, including immune checkpoint inhibitors (ICIs), and cell- or peptide-based vaccination with unsatisfactory results in term of disease control. In this review we describe the major updates in molecular biology of HGGs according to 2016 WHO Classification, the current management in newly-diagnosed and recurrent GBM and grade III gliomas, and the results of the most relevant clinical trials on targeted agents and immunotherapy.
Collapse
Affiliation(s)
- Alessia Pellerino
- Department of Neuro-Oncology, University and City of Health and Science Hospital, Turin, Italy -
| | - Federica Franchino
- Department of Neuro-Oncology, University and City of Health and Science Hospital, Turin, Italy
| | - Riccardo Soffietti
- Department of Neuro-Oncology, University and City of Health and Science Hospital, Turin, Italy
| | - Roberta Rudà
- Department of Neuro-Oncology, University and City of Health and Science Hospital, Turin, Italy
| |
Collapse
|
40
|
Majkowska-Pilip A, Rius M, Bruchertseifer F, Apostolidis C, Weis M, Bonelli M, Laurenza M, Królicki L, Morgenstern A. In vitro evaluation of 225 Ac-DOTA-substance P for targeted alpha therapy of glioblastoma multiforme. Chem Biol Drug Des 2018; 92:1344-1356. [PMID: 29611298 DOI: 10.1111/cbdd.13199] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 02/21/2018] [Accepted: 03/07/2018] [Indexed: 12/25/2022]
Abstract
Glioblastoma multiforme (GBM) is the most malignant form of brain tumors with dismal prognosis despite treatment by surgery combined with radiotherapy and chemotherapy. The neuropeptide Substance P (SP) is the physiological ligand of the neurokinin-1 receptor, which is highly expressed in glioblastoma cells. Thus, SP represents a potential ligand for targeted alpha therapy. In this study, a protocol for the synthesis of SP labeled with the alpha emitter 225 Ac was developed and binding affinity properties were determined. The effects of 225 Ac-DOTA-SP were investigated on human glioblastoma cell lines (T98G, U87MG, U138MG) as well as GBM stem cells. A significant dose-dependent reduction in cell viability was detected up to 6 days after treatment. Also, colony-forming capacity was inhibited at the lower doses tested. In comparison, treatment with the conventional agent temozolomide showed higher cell viability and colony-forming capacity. 225 Ac-DOTA-SP treatment caused induction of late apoptosis pathways. Cells were arrested to G2/M-phase upon treatment. Increasing doses and treatment time caused additional S-phase arrest. Similar results were obtained using human glioblastoma stem cells, known to show radioresistance. Our data suggest that 225 Ac-DOTA-SP is a promising compound for treatment of GBM.
Collapse
Affiliation(s)
- Agnieszka Majkowska-Pilip
- Directorate for Nuclear Safety and Security, Joint Research Centre, European Commission, Karlsruhe, Germany.,Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Warsaw, Poland
| | - Maria Rius
- Directorate for Nuclear Safety and Security, Joint Research Centre, European Commission, Karlsruhe, Germany
| | - Frank Bruchertseifer
- Directorate for Nuclear Safety and Security, Joint Research Centre, European Commission, Karlsruhe, Germany
| | - Christos Apostolidis
- Directorate for Nuclear Safety and Security, Joint Research Centre, European Commission, Karlsruhe, Germany
| | - Mirjam Weis
- Directorate for Nuclear Safety and Security, Joint Research Centre, European Commission, Karlsruhe, Germany
| | - Milton Bonelli
- Department of Physiology and Pharmacology, University of Rome "Sapienza", Rome, Italy
| | - Marta Laurenza
- Department of Physiology and Pharmacology, University of Rome "Sapienza", Rome, Italy
| | - Leszek Królicki
- Department of Nuclear Medicine, Medical University Warsaw, Warsaw, Poland
| | - Alfred Morgenstern
- Directorate for Nuclear Safety and Security, Joint Research Centre, European Commission, Karlsruhe, Germany
| |
Collapse
|
41
|
Guadagno E, Presta I, Maisano D, Donato A, Pirrone CK, Cardillo G, Corrado SD, Mignogna C, Mancuso T, Donato G, Del Basso De Caro M, Malara N. Role of Macrophages in Brain Tumor Growth and Progression. Int J Mol Sci 2018; 19:ijms19041005. [PMID: 29584702 PMCID: PMC5979398 DOI: 10.3390/ijms19041005] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 03/10/2018] [Accepted: 03/23/2018] [Indexed: 12/16/2022] Open
Abstract
The role of macrophages in the growth and the progression of tumors has been extensively studied in recent years. A large body of data demonstrates that macrophage polarization plays an essential role in the growth and progression of brain tumors, such as gliomas, meningiomas, and medulloblastomas. The brain neoplasm cells have the ability to influence the polarization state of the tumor associated macrophages. In turn, innate immunity cells have a decisive role through regulation of the acquired immune response, but also through humoral cross-talking with cancer cells in the tumor microenvironment. Neoangiogenesis, which is an essential element in glial tumor progression, is even regulated by the tumor associated macrophages, whose activity is linked to other factors, such as hypoxia. In addition, macrophages play a decisive role in establishing the entry into the bloodstream of cancer cells. As is well known, the latter phenomenon is also present in brain tumors, even if they only rarely metastasize. Looking ahead in the future, we can imagine that characterizing the relationships between tumor and tumor associated macrophage, as well as the study of circulating tumor cells, could give us useful tools in prognostic evaluation and therapy. More generally, the study of innate immunity in brain tumors can boost the development of new forms of immunotherapy.
Collapse
Affiliation(s)
- Elia Guadagno
- Department of Advanced Biomedical Sciences-Pathology Section, University of Naples "Federico II"-via Pansini 5, 80131 Naples, Italy.
| | - Ivan Presta
- Department of Health Sciences, University of Catanzaro "Magna Græcia"-viale Europa, 88100 Catanzaro, Italy.
| | - Domenico Maisano
- Department of Health Sciences, University of Catanzaro "Magna Græcia"-viale Europa, 88100 Catanzaro, Italy.
| | - Annalidia Donato
- Department of Medical and Surgical Sciences-University of Catanzaro "Magna Graecia"-viale Europa, 88100 Catanzaro, Italy.
| | - Caterina Krizia Pirrone
- Department of Health Sciences, University of Catanzaro "Magna Græcia"-viale Europa, 88100 Catanzaro, Italy.
| | - Gabriella Cardillo
- Department of Health Sciences, University of Catanzaro "Magna Græcia"-viale Europa, 88100 Catanzaro, Italy.
| | - Simona Domenica Corrado
- Department of Health Sciences, University of Catanzaro "Magna Græcia"-viale Europa, 88100 Catanzaro, Italy.
| | - Chiara Mignogna
- Department of Health Sciences, University of Catanzaro "Magna Græcia"-viale Europa, 88100 Catanzaro, Italy.
| | - Teresa Mancuso
- Department of Medical and Surgical Sciences-University of Catanzaro "Magna Graecia"-viale Europa, 88100 Catanzaro, Italy.
| | - Giuseppe Donato
- Department of Health Sciences, University of Catanzaro "Magna Græcia"-viale Europa, 88100 Catanzaro, Italy.
| | - Marialaura Del Basso De Caro
- Department of Advanced Biomedical Sciences-Pathology Section, University of Naples "Federico II"-via Pansini 5, 80131 Naples, Italy.
| | - Natalia Malara
- Department of Clinical and Experimental Medicine-University of Catanzaro "Magna Graecia"-viale Europa, 88100 Catanzaro, Italy.
| |
Collapse
|
42
|
Coleman N, Ameratunga M, Lopez J. Development of Molecularly Targeted Agents and Immunotherapies in Glioblastoma: A Personalized Approach. Clin Med Insights Oncol 2018; 12:1179554918759079. [PMID: 29511362 PMCID: PMC5833160 DOI: 10.1177/1179554918759079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/10/2017] [Indexed: 02/06/2023] Open
Abstract
Over the past decade, precision cancer medicine has driven major advances in the management of advanced solid tumours with the identification and targeting of putative driver aberrations transforming the clinical outcomes across multiple cancer types. Despite pivotal advances in the characterization of genomic landscape of glioblastoma, targeted agents have shown minimal efficacy in clinical trials to date, and patient survival remains poor. Immunotherapy strategies similarly have had limited success. Multiple deficiencies still exist in our knowledge of this complex disease, and further research is urgently required to overcome these critical issues. This review traces the path undertaken by the different therapeutics assessed in glioblastoma and the impact of precision medicine in this disease. We highlight challenges for precision medicine in glioblastoma, focusing on the issues of tumour heterogeneity, pharmacokinetic-pharmacodynamic optimization and outline the modern hypothesis-testing strategies being undertaken to address these key challenges.
Collapse
Affiliation(s)
- Niamh Coleman
- Drug Development Unit, The Royal Marsden Hospital, London, UK
| | | | - Juanita Lopez
- Drug Development Unit, The Royal Marsden Hospital, London, UK
| |
Collapse
|
43
|
Blumenthal DT, Kanner AA, Aizenstein O, Cagnano E, Greenberg A, Hershkovitz D, Ram Z, Bokstein F. Surgery for Recurrent High-Grade Glioma After Treatment with Bevacizumab. World Neurosurg 2018; 110:e727-e737. [DOI: 10.1016/j.wneu.2017.11.105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/16/2017] [Accepted: 11/18/2017] [Indexed: 01/04/2023]
|
44
|
Zygogianni A, Protopapa M, Kougioumtzopoulou A, Simopoulou F, Nikoloudi S, Kouloulias V. From imaging to biology of glioblastoma: new clinical oncology perspectives to the problem of local recurrence. Clin Transl Oncol 2018; 20:989-1003. [PMID: 29335830 DOI: 10.1007/s12094-018-1831-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 01/04/2018] [Indexed: 12/13/2022]
Abstract
GBM is one of the most common and aggressive brain tumors. Surgery and adjuvant chemoradiation have succeeded in providing a survival benefit. Although most patients will eventually experience local recurrence, the means to fight recurrence are limited and prognosis remains poor. In a disease where local control remains the major challenge, few trials have addressed the efficacy of local treatments, either surgery or radiation therapy. The present article reviews recent advances in the biology, imaging and biomarker science of GBM as well as the current treatment status of GBM, providing new perspectives to the problem of local recurrence.
Collapse
Affiliation(s)
- A Zygogianni
- Radiotherapy Unit, 1st Department of Radiology, Medical School, Aretaieion University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - M Protopapa
- Radiotherapy Unit, 1st Department of Radiology, Medical School, Aretaieion University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - A Kougioumtzopoulou
- Radiotherapy Unit, 2nd Department of Radiology, Medical School, ATTIKON University Hospital, National and Kapodistrian University of Athens, Rimini 1, 12462, Chaidari, Greece
| | - F Simopoulou
- Radiotherapy Unit, 1st Department of Radiology, Medical School, Aretaieion University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - S Nikoloudi
- Radiotherapy Unit, 1st Department of Radiology, Medical School, Aretaieion University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - V Kouloulias
- Radiotherapy Unit, 2nd Department of Radiology, Medical School, ATTIKON University Hospital, National and Kapodistrian University of Athens, Rimini 1, 12462, Chaidari, Greece.
| |
Collapse
|
45
|
Nordling-David MM, Yaffe R, Guez D, Meirow H, Last D, Grad E, Salomon S, Sharabi S, Levi-Kalisman Y, Golomb G, Mardor Y. Liposomal temozolomide drug delivery using convection enhanced delivery. J Control Release 2017; 261:138-146. [DOI: 10.1016/j.jconrel.2017.06.028] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/23/2017] [Accepted: 06/26/2017] [Indexed: 12/11/2022]
|
46
|
Bianco J, Bastiancich C, Jankovski A, des Rieux A, Préat V, Danhier F. On glioblastoma and the search for a cure: where do we stand? Cell Mol Life Sci 2017; 74:2451-2466. [PMID: 28210785 PMCID: PMC11107640 DOI: 10.1007/s00018-017-2483-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 01/30/2017] [Indexed: 01/25/2023]
Abstract
Although brain tumours have been documented and recorded since the nineteenth century, 2016 marked 90 years since Percival Bailey and Harvey Cushing coined the term "glioblastoma multiforme". Since that time, although extensive developments in diagnosis and treatment have been made, relatively little improvement on prognosis has been achieved. The resilience of GBM thus makes treating this tumour one of the biggest challenges currently faced by neuro-oncology. Aggressive and robust development, coupled with difficulties of complete resection, drug delivery and therapeutic resistance to treatment are some of the main issues that this nemesis presents today. Current treatments are far from satisfactory with poor prognosis, and focus on palliative management rather than curative intervention. However, therapeutic research leading to developments in novel treatment stratagems show promise in combating this disease. Here we present a review on GBM, looking at the history and advances which have shaped neurosurgery over the last century that cumulate to the present day management of GBM, while also exploring future perspectives in treatment options that could lead to new treatments on the road to a cure.
Collapse
Affiliation(s)
- John Bianco
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, Avenue Mounier 73, bte B1 73.12, 1200, Brussels, Belgium.
| | - Chiara Bastiancich
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, Avenue Mounier 73, bte B1 73.12, 1200, Brussels, Belgium
| | - Aleksander Jankovski
- Institute of Neuroscience, Université catholique de Louvain, Avenue Hippocrate B1.54.10, 1200, Brussels, Belgium
- Department of Neurosurgery, CHU UCL Namur, Avenue G. Thérasse 1, 5530, Yvoir, Belgium
| | - Anne des Rieux
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, Avenue Mounier 73, bte B1 73.12, 1200, Brussels, Belgium
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Véronique Préat
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, Avenue Mounier 73, bte B1 73.12, 1200, Brussels, Belgium.
| | - Fabienne Danhier
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, Avenue Mounier 73, bte B1 73.12, 1200, Brussels, Belgium
| |
Collapse
|