1
|
Kumthekar P, Le Rhun E. Brain Metastases and Leptomeningeal Disease. Continuum (Minneap Minn) 2023; 29:1727-1751. [PMID: 38085896 DOI: 10.1212/con.0000000000001354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
OBJECTIVE Central nervous system (CNS) metastases include brain parenchymal, spinal cord, and leptomeningeal metastases. This article discusses the diagnostic and therapeutic advances of the last decade that have improved outcomes for patients with these CNS metastases. LATEST DEVELOPMENTS The diagnostic tools for CNS metastases, particularly leptomeningeal disease, have evolved over the past decade with respect to advancements in CSF analysis. Multiple medical therapies are now available for brain metastasis treatment that have shown CNS efficacy, including targeted therapies and antibody-drug conjugates. Molecular testing for CNS metastases has become more common and the repertoire of molecularly targeted therapies continues to expand. Advancements in radiation therapy, including improvements in stereotactic radiation techniques, whole-brain radiation with hippocampal avoidance, and proton beam radiation, have changed the radiation management of patients with CNS metastases. New intrathecal agents are currently being tested for the management of leptomeningeal metastases. ESSENTIAL POINTS CNS metastases are far more common than primary brain tumors and are increasing in prevalence in the setting of improved treatments and prolonged survival in patients with systemic cancers. There have been many changes in the diagnostics and treatment of CNS metastases, yielding subsequent improvements in patient outcomes with further advancements on the horizon.
Collapse
|
2
|
Tang C, Qin S, Li Q, Huang Y. Therapeutic effectiveness and safety of sequential ICIs with radiotherapy for symptomatic brain and bone metastases in NSCLC patients. Medicine (Baltimore) 2022; 101:e31665. [PMID: 36401404 PMCID: PMC9678514 DOI: 10.1097/md.0000000000031665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
In advanced non-small cell lung cancer (NSCLC), the brain and bones are common metastatic sites, and the disease seriously affects the survival time and quality of life. For metastatic lesions with symptoms, local treatment often precedes systemic treatment. However, in clinical trials, patients with symptomatic brain or bone metastases are often excluded. Therefore, limited data are available on the efficacy of immune checkpoint inhibitors (ICIs) in those patients. We aimed to evaluate the effectiveness and safety of local radiotherapy followed by ICIs in driver gene-negative NSCLC patients with symptomatic local metastasis in the brain and bone. This is a 29-month 2 centered retrospective cohort study performed in China between March 2019 and August 2021. A total of 22 patients with advanced NSCLC were included. All patients received radiotherapy in the brain or bone before the administration of ICIs. For all patients, the overall response rate was 59.09%, the median progression-free survival (PFS) was 7.5 months, the PFS rate at 6 months was 72.73%, and the PFS rate at 1 year was 13.64%. Waterfall plots showed that tumor size was mostly reduced compared with baseline. The spider map showed that the tumor continued to shrink. In terms of symptom improvement, 100% pain control and 83.33% improvement were observed in epilepsy and neurological function. Sequential ICIs with local radiotherapy is effective for the treatment of patients with symptomatic brain and bone metastases of driver gene-negative NSCLC, which will benefit patients and improve their symptoms.
Collapse
Affiliation(s)
- Cuiping Tang
- The Second Clinical College of Chongqing Medical University, Chongqing, China
- Department of Oncology, the second affiliated hospital of Chongqing Medical University, Chongqing, China
| | - Si Qin
- Department of Oncology, Xinqiao Hospital, Army Military Medical University, Chongqing, China
| | - Qian Li
- Department of Pathology, Southwest Hospital, Army Military Medical University, Chongqing, China
- * Correspondence: Yusheng Huang, Department of Oncology, the second affiliated hospital of Chongqing Medical University, 288 Tianwen Avenue, Nan ‘an District, Chongqing, 400010 China (e-mail: )
| | - Yusheng Huang
- Department of Oncology, the second affiliated hospital of Chongqing Medical University, Chongqing, China
- * Correspondence: Yusheng Huang, Department of Oncology, the second affiliated hospital of Chongqing Medical University, 288 Tianwen Avenue, Nan ‘an District, Chongqing, 400010 China (e-mail: )
| |
Collapse
|
3
|
Advances in the Diagnosis and Treatment of Leptomeningeal Disease. Curr Neurol Neurosci Rep 2022; 22:413-425. [PMID: 35588045 DOI: 10.1007/s11910-022-01198-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2022] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Leptomeningeal disease (LMD) is a rare, late complication of systemic cancer and is associated with significant neurological morbidity and high mortality. Here we provide an overview of this condition, summarizing key recent research findings and clinical practice trends in its diagnosis and treatment. We also review current clinical trials for LMD. RECENT FINDINGS Improved molecular diagnostic tools are in development to enable more sensitive detection of LMD, including circulating tumor cells and circulating tumor DNA. The use of targeted and CNS-penetrant therapeutics has shown survival improvements with tyrosine kinase inhibitors, antibody-drug conjugates, and select chemotherapy. However, these studies have primarily been phase I/II and retrospective analyses. There remains a dearth of clinical trials that include LMD patients. The combination of patient-specific molecular information and novel therapeutic approaches holds significant promise for improving outcomes in patients with LMD.
Collapse
|
4
|
Wang B, Guo H, Xu H, Yu H, Chen Y, Zhao G. Research Progress and Challenges in the Treatment of Central Nervous System Metastasis of Non-Small Cell Lung Cancer. Cells 2021; 10:2620. [PMID: 34685600 PMCID: PMC8533870 DOI: 10.3390/cells10102620] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/06/2021] [Accepted: 09/25/2021] [Indexed: 12/26/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the most common malignant tumors and has high morbidity and mortality rates. Central nervous system (CNS) metastasis is one of the most frequent complications in patients with NSCLC and seriously affects the quality of life (QOL) and overall survival (OS) of patients, with a median OS of untreated patients of only 1-3 months. There are various treatment methods for NSCLC CNS metastasis, including surgery, chemotherapy, radiotherapy, targeted therapy, and immunotherapy, which do not meet the requirements of patients in terms of improving OS and QOL. There are still many problems in the treatment of NSCLC CNS metastasis that need to be solved urgently. This review summarizes the research progress in the treatment of NSCLC CNS metastasis to provide a reference for clinical practice.
Collapse
Affiliation(s)
- Bin Wang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun 130021, China; (B.W.); (H.X.); (H.Y.)
| | - Hanfei Guo
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, China;
| | - Haiyang Xu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun 130021, China; (B.W.); (H.X.); (H.Y.)
| | - Hongquan Yu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun 130021, China; (B.W.); (H.X.); (H.Y.)
| | - Yong Chen
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun 130021, China; (B.W.); (H.X.); (H.Y.)
| | - Gang Zhao
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun 130021, China; (B.W.); (H.X.); (H.Y.)
| |
Collapse
|
5
|
Nosaki K, Yamanaka T, Hamada A, Shiraishi Y, Harada T, Himeji D, Kitazaki T, Ebi N, Shimose T, Seto T, Takenoyama M, Sugio K. Erlotinib for Non-Small Cell Lung Cancer with Leptomeningeal Metastases: A Phase II Study (LOGIK1101). Oncologist 2020; 25:e1869-e1878. [PMID: 32654250 DOI: 10.1634/theoncologist.2020-0640] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/28/2020] [Indexed: 01/06/2023] Open
Abstract
LESSONS LEARNED This phase II trial evaluated the efficacy of erlotinib for patients with non-small cell lung cancer with leptomeningeal metastasis. The 17 cerebrospinal fluid specimens that were available for epidermal growth factor receptor mutation analysis were all negative for the resistance-conferring T790M mutation. The cytological objective clearance rate was 30.0% (95% confidence interval: 11.9%-54.3%). The median time to progression was 2.2 months. The rate of cerebrospinal fluid penetration among these patients was equivalent to those in previous reports regarding leptomeningeal metastasis. BACKGROUND Leptomeningeal metastases (LM) occur in approximately 5% of patients with non-small cell lung cancer (NSCLC) and are associated with a poor prognosis. However, no prospective study has identified an active chemotherapeutic drug in this setting. METHODS Patients were considered eligible to receive erlotinib if they had NSCLC with cytologically confirmed LM. The objective cytological clearance rate, time to LM progression (TTP), overall survival (OS), quality of life outcomes, and pharmacokinetics were analyzed. This study was closed because of slow accrual at 21 of the intended 32 patients (66%). RESULTS Between December 2011 and May 2015, 21 patients (17 with activating epidermal growth factor receptor [EGFR] mutations) were enrolled. The 17 cerebrospinal fluid specimens available were all negative for the T790M mutation, which confers erlotinib resistance. The clearance rate was 30.0% (95% confidence interval [CI]: 11.9%-54.3%), the median TTP was 2.2 months, and the median OS was 3.4 months. Significantly longer TTP and OS times were observed in patients with mutant EGFR (p = .0113 and p < .0054, respectively). The mean cerebrospinal fluid penetration rate was 3.31% ± 0.77%. There was a good correlation between plasma and cerebrospinal fluid (CSF) concentrations, although there was no clear correlation between pharmacokinetic parameters and clinical outcome. CONCLUSION Erlotinib was active for LM and may be a treatment option for patients with EGFR-mutated NSCLC and LM.
Collapse
Affiliation(s)
- Kaname Nosaki
- Department of Thoracic Oncology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Takeharu Yamanaka
- Department of Biostatistics, Yokohama City University, Yokohama, Japan
| | - Akinobu Hamada
- Division of Molecular Pharmacology, National Cancer Center Research Institute, Tokyo, Japan
| | - Yoshimasa Shiraishi
- Department of Respiratory Disease, National Hospital Organization Fukuoka-Higashi Medical Center, Koga, Japan
| | - Taishi Harada
- Department of Respiratory Medicine, Japan Community Health Care Organization (JCHO) Kyushu Hospital, Kitakyushu, Japan
| | - Daisuke Himeji
- Department of Internal Medicine, Miyazaki Prefectural Miyazaki Hospital, Miyazaki, Japan
| | - Takeshi Kitazaki
- Department of Respiratory Disease, Japan Red Cross Nagasaki Genbaku Hospital, Nagasaki, Japan
| | - Noriyuki Ebi
- Department of Respiratory Oncology, Iizuka Hospital, Iizuka, Japan
| | | | - Takashi Seto
- Department of Thoracic Oncology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Mitsuhiro Takenoyama
- Department of Thoracic Oncology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Kenji Sugio
- Department of Thoracic Oncology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
- Department of Thoracic and Breast Surgery, Oita University, Yufu, Japan
| |
Collapse
|
6
|
Complete Remission of Multiple Brain Metastases in a Patient with EGFR-Mutated Non-Small-Cell Lung Cancer Treated with First-Line Osimertinib without Radiotherapy. Case Rep Oncol Med 2020; 2020:9076168. [PMID: 32257480 PMCID: PMC7109584 DOI: 10.1155/2020/9076168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 03/07/2020] [Indexed: 11/18/2022] Open
Abstract
Osimertinib has demonstrated efficacy against stable or asymptomatic central nervous system (CNS) metastases of epidermal growth factor receptor (EGFR) mutation-positive non-small-cell lung cancer (NSCLC) in phase 2 and 3 clinical trials that allowed prior CNS radiotherapy. However, the efficacy of osimertinib only or the optimal treatment combination or sequence of radiotherapy has not been investigated. A 74-year-old woman diagnosed with T4N1M1c Stage IVB lung adenocarcinoma with EGFR mutation presented with a left upper lobe mass and multiple bilateral lung metastases. A total of more than 20 asymptomatic multiple brain metastases with a maximum diameter of 12 mm were diagnosed simultaneously. Osimertinib was administered as first-line treatment. Whole brain radiotherapy was deferred because she had no neurological symptoms. After 5 weeks, the multiple brain metastases disappeared completely, together with the response in the lung lesions. This case demonstrated that first-line treatment with osimertinib could even achieve complete remission of multiple brain metastases comprising as many as twenty lesions of EGFR-mutated NSCLC without radiation therapy. Radiation therapy for brain metastases can be deferred or even withheld. A new treatment strategy for EGFR mutated NSCLC with CNS metastases should be investigated using osimertinib, especially regarding optimal combination or sequence of radiotherapy.
Collapse
|
7
|
Sun H, Wu YL. Dacomitinib in non-small-cell lung cancer: a comprehensive review for clinical application. Future Oncol 2019; 15:2769-2777. [PMID: 31401844 DOI: 10.2217/fon-2018-0535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dacomitinib is a second-generation EGFR tyrosine kinase inhibitor (TKI) that irreversibly binds to and inhibits EGFR/Her1, Her2 and Her4 subtypes with an efficacy comparable to other TKIs. In the ARCHER 1050 trial, progression-free survival was improved by dacomitinib compared with gefitinib, supporting dacomitinib as a first-line treatment option for advanced non-small-cell lung cancer with sensitive EGFR mutation. Regarding to the higher adverse events rate, dose reductions did not reduce the efficacy of dacomitinib and could effectively decreased the incidence and severity of adverse events. Considering the evolving landscape of EGFR-mutant non-small-cell lung cancer, future head to head comparison between dacomitinib and osimertinib could provide key information to determine the optimal TKI treatment schedule.
Collapse
Affiliation(s)
- Hao Sun
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, First Affiliated Hospital of South China University of Technology, Guangzhou 510080, PR China
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou 510080, PR China
| |
Collapse
|
8
|
Ma C, Huang C, Tang D, Ye X, Li Z, Liu R, Mu N, Li J, Jiang R, Zhang J. Afatinib for Advanced Non-small Cell Lung Cancer in a Case With an Uncommon Epidermal Growth Factor Receptor Mutation (G719A) Identified in the Cerebrospinal Fluid. Front Oncol 2019; 9:628. [PMID: 31396478 PMCID: PMC6664872 DOI: 10.3389/fonc.2019.00628] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/25/2019] [Indexed: 01/16/2023] Open
Abstract
Few previous studies of patients with non-small cell lung cancer (NSCLC) and leptomeningeal metastases have used liquid biopsy of cerebrospinal fluid (CSF) to identify epidermal growth factor receptor (EGFR) mutations and guide therapy. A 34-year-old male patient with NSCLC and leptomeningeal metastases was admitted to the Interventional Radiology Department, Tianjin Huanhu Hospital on 18th April 2018 after showing no response to chemoradiotherapy. On admission, the patient was in critical condition with an estimated survival <1 month. A ventriculoperitoneal shunt was placed in the right lateral ventricle. The CSF level of carcinoembryonic antigen (CEA) was 9,869 ng/mL. Next-generation sequencing (NGS) of the CSF revealed an EGFR G719A mutation (frequency: 55.63%), whereas sequencing of circulating tumor DNA or cells in the peripheral blood identified no clinically significant mutations. Afatinib therapy was initiated based on the NGS results. During follow-up, the patient's symptoms improved, ventricular dilatation lessened, and pulmonary lesions decreased in size. At the last follow-up (7 months), the patient continued to show a good response to afatinib therapy with minimal adverse effects. This is the first clinical study to report the use of simultaneous genetic testing of CSF and peripheral blood to guide the successful implementation of afatinib therapy in a patient with NSCLC and leptomeningeal metastases. Notably, NGS of CSF was superior to genetic testing of peripheral blood at identifying an uncommon EGFR mutation (G719A) in a patient with NSCLC and leptomeningeal metastases.
Collapse
Affiliation(s)
- Chunhua Ma
- Department of Intervention, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Disease, Tianjin, China
| | - Chuoji Huang
- Zhuhai SanMed Biotech Ltd., Zhuhai, China
- Joint Research Center of Liquid Biopsy in Guangdong, Hong Kong and Macao, Zhuhai, China
| | - Dongjiang Tang
- Zhuhai SanMed Biotech Ltd., Zhuhai, China
- Joint Research Center of Liquid Biopsy in Guangdong, Hong Kong and Macao, Zhuhai, China
| | - Xin Ye
- Zhuhai SanMed Biotech Ltd., Zhuhai, China
- Joint Research Center of Liquid Biopsy in Guangdong, Hong Kong and Macao, Zhuhai, China
| | - Zhi Li
- Zhuhai Livzon Gene Diagnostics Ltd., Zhuhai, China
| | - Renzhong Liu
- Zhuhai Livzon Gene Diagnostics Ltd., Zhuhai, China
| | - Ning Mu
- Department of Intervention, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Disease, Tianjin, China
| | - Jing Li
- Department of Intervention, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Disease, Tianjin, China
| | - Rong Jiang
- Department of Intervention, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Disease, Tianjin, China
| | - Juncheng Zhang
- Zhuhai SanMed Biotech Ltd., Zhuhai, China
- Joint Research Center of Liquid Biopsy in Guangdong, Hong Kong and Macao, Zhuhai, China
| |
Collapse
|
9
|
Cheng G, Zhang Q, Pan J, Lee Y, Ouari O, Hardy M, Zielonka M, Myers CR, Zielonka J, Weh K, Chang AC, Chen G, Kresty L, Kalyanaraman B, You M. Targeting lonidamine to mitochondria mitigates lung tumorigenesis and brain metastasis. Nat Commun 2019; 10:2205. [PMID: 31101821 PMCID: PMC6525201 DOI: 10.1038/s41467-019-10042-1] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 04/09/2019] [Indexed: 02/07/2023] Open
Abstract
Lung cancer often has a poor prognosis, with brain metastases a major reason for mortality. We modified lonidamine (LND), an antiglycolytic drug with limited efficacy, to mitochondria-targeted mito-lonidamine (Mito-LND) which is 100-fold more potent. Mito-LND, a tumor-selective inhibitor of oxidative phosphorylation, inhibits mitochondrial bioenergetics in lung cancer cells and mitigates lung cancer cell viability, growth, progression, and metastasis of lung cancer xenografts in mice. Mito-LND blocks lung tumor development and brain metastasis by inhibiting mitochondrial bioenergetics, stimulating the formation of reactive oxygen species, oxidizing mitochondrial peroxiredoxin, inactivating AKT/mTOR/p70S6K signaling, and inducing autophagic cell death in lung cancer cells. Mito-LND causes no toxicity in mice even when administered for eight weeks at 50 times the effective cancer inhibitory dose. Collectively, these findings show that mitochondrial targeting of LND is a promising therapeutic approach for investigating the role of autophagy in mitigating lung cancer development and brain metastasis.
Collapse
Affiliation(s)
- Gang Cheng
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Center for Disease Prevention Research, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Qi Zhang
- Center for Disease Prevention Research, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Jing Pan
- Center for Disease Prevention Research, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Yongik Lee
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Olivier Ouari
- Aix Marseille Univ, CNRS, ICR UMR 7273, 13013, Marseille, France
| | - Micael Hardy
- Aix Marseille Univ, CNRS, ICR UMR 7273, 13013, Marseille, France
| | - Monika Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Center for Disease Prevention Research, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Charles R Myers
- Center for Disease Prevention Research, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Jacek Zielonka
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Center for Disease Prevention Research, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Katherine Weh
- Section of Thoracic Surgery, Department of Surgery, Rogel Cancer Center, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Andrew C Chang
- Section of Thoracic Surgery, Department of Surgery, Rogel Cancer Center, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Guoan Chen
- Section of Thoracic Surgery, Department of Surgery, Rogel Cancer Center, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Laura Kresty
- Section of Thoracic Surgery, Department of Surgery, Rogel Cancer Center, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Balaraman Kalyanaraman
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Center for Disease Prevention Research, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Ming You
- Center for Disease Prevention Research, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
10
|
Survival and prognostic factors in surgically treated brain metastases. J Neurooncol 2019; 143:359-367. [DOI: 10.1007/s11060-019-03171-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/09/2019] [Indexed: 12/26/2022]
|
11
|
Karachaliou N, Fernandez-Bruno M, Bracht JWP, Rosell R. EGFR first- and second-generation TKIs-there is still place for them in EGFR-mutant NSCLC patients. Transl Cancer Res 2019; 8:S23-S47. [PMID: 35117062 PMCID: PMC8797317 DOI: 10.21037/tcr.2018.10.06] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/08/2018] [Indexed: 11/06/2022]
Abstract
Identification of epidermal growth factor receptor (EGFR) as a molecular target has radically changed the treatment of metastatic non-small cell lung cancer (NSCLC) from standard chemotherapy to personalized, targeted therapy. First-, second- and third-generation EGFR tyrosine kinase inhibitors (TKIs) are now available for the treatment of EGFR-mutant NSCLC patients. This review will focus on the clinical development of first- and second-generation EGFR TKIs. We will emphasize on essential points like the head-to-head comparison among EGFR TKIs, their activity on brain metastases, mechanisms of resistance, as well as their combination with anti-angiogenic compounds, other targeted therapies, or immunotherapy. The efficacy of first- and second-generation EGFR TKIs in early-stage EGFR-mutant NSCLC will be also finally reviewed.
Collapse
Affiliation(s)
- Niki Karachaliou
- QuironSalud Group, Institute of Oncology Rosell (IOR), University Hospital Sagrat Cor, Barcelona, Spain
- Pangaea Oncology, Laboratory of Molecular Biology, Quiron-Dexeus University Institute, Barcelona, Spain
| | - Manuel Fernandez-Bruno
- QuironSalud Group, Institute of Oncology Rosell (IOR), University Hospital Sagrat Cor, Barcelona, Spain
| | | | - Rafael Rosell
- Pangaea Oncology, Laboratory of Molecular Biology, Quiron-Dexeus University Institute, Barcelona, Spain
- Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
- Institute of Oncology Rosell (IOR), Quiron-Dexeus University Institute, Barcelona, Spain
- Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona, Spain
| |
Collapse
|
12
|
Kelly WJ, Shah NJ, Subramaniam DS. Management of Brain Metastases in Epidermal Growth Factor Receptor Mutant Non-Small-Cell Lung Cancer. Front Oncol 2018; 8:208. [PMID: 30018881 PMCID: PMC6037690 DOI: 10.3389/fonc.2018.00208] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/22/2018] [Indexed: 01/26/2023] Open
Abstract
Lung cancer remains a leading cause of mortality with 1.69 million deaths worldwide. Activating mutations in epidermal growth factor receptor (EGFR), predominantly exon 19 deletions and exon 21 L858R mutations, are known oncogenic drivers identified in 20-40% of non-small-cell lung cancers (NSCLC). 70% of EGFR-mutant NSCLC patients develop brain metastases (BM), compared to 38% in EGFR wild-type patients. First-generation tyrosine kinase inhibitors (TKIs), such as erlotinib and gefitinib have proven to be superior to chemotherapy in the front-line treatment of EGFR-mutant NSCLC, as has afatinib, a second-generation TKI. The most common acquired resistance mechanism is the development of a gatekeeper mutation in exon 20 T790M. Osimertinib has emerged as a third-generation EGFR TKI with proven activity in the front-line setting as well as in patients with a T790M acquired resistance mutation with remarkable CNS activity. As long-term survival outcomes in EGFR-mutant NSCLC continue to improve, the burden of BM becomes a greater challenge. Here, we review the literature related to the management of BM in EGFR-mutant NSCLC including the role of the three generations of EGFR TKIs, immunotherapy, and brain radiation.
Collapse
Affiliation(s)
| | | | - Deepa S. Subramaniam
- Division of Hematology-Oncology, Georgetown University, Washington, DC, United States
| |
Collapse
|
13
|
Yomo S, Oda K. Impacts of EGFR-mutation status and EGFR-TKI on the efficacy of stereotactic radiosurgery for brain metastases from non-small cell lung adenocarcinoma: A retrospective analysis of 133 consecutive patients. Lung Cancer 2018; 119:120-126. [DOI: 10.1016/j.lungcan.2018.03.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 12/15/2022]
|
14
|
Zhao C, Li Y, Zhang W, Zhao D, Ma L, Ma P, Yang F, Wang Y, Shu Y, Qiu W. IL‑17 induces NSCLC A549 cell proliferation via the upregulation of HMGA1, resulting in an increased cyclin D1 expression. Int J Oncol 2018; 52:1579-1592. [PMID: 29512693 DOI: 10.3892/ijo.2018.4307] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/16/2018] [Indexed: 11/06/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is considered to be an inflammation-associated carcinoma. Although interleukin‑17 (IL‑17) production contributes to the proliferation and growth of NSCLC, the mechanisms underlying IL‑17-induced NSCLC cell proliferation have not been fully elucidated. In the present study, by using ELISA and immunohistochemical analyses, we first found that the expression levels of IL‑17, IL‑17 receptor (IL‑17R), high-mobility group A1 (HMGA1) and cyclin D1 were elevated in the samples of patients with NSCLC. Subsequently, by RT-qPCR, western blot analysis and cell proliferation assay in vitro, we revealed that stimulation with recombinant human IL‑17 (namely IL‑17A) markedly induced the expression of HMGA1 and cyclin D1 in the A549 cells (a human lung adenocarcinoma cell line) and promoted cell proliferation. Furthermore, luciferase reporter and ChIP assays confirmed that upregulated HMGA1 directly bound to the cyclin D1 gene promoter and activated its transcription. Notably, the response element of HMGA1 binding to the cyclin D1 promoter was disclosed for the first time, at least to the best of our knowledge. Taken together, our findings indicate that the IL‑17/HMGA1/cyclin D1 axis plays an important role in NSCLC cell proliferation and may provide new insight into NSCLC pathogenesis and may thus aid in the development of novel therapeutic targets for NSCLC.
Collapse
Affiliation(s)
- Chenhui Zhao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Yongting Li
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Weiming Zhang
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Dan Zhao
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Ling Ma
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Pei Ma
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Fengming Yang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Yingwei Wang
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Wen Qiu
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| |
Collapse
|
15
|
Attarian S, Rahman N, Halmos B. Emerging uses of biomarkers in lung cancer management: molecular mechanisms of resistance. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:377. [PMID: 29057237 DOI: 10.21037/atm.2017.07.18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Management of patients with advanced non-small cell lung cancer (NSCLC) has recently been transformed by molecularly targeted and immunotherapeutic agents. In patients with EGFR/ALK/ROS mutated NSCLC, first line molecular therapy is the standard of care. Moreover, immune checkpoint inhibitors are revolutionary treatment options for advanced NSCLC and are now the standard of care in front-line or later line settings. Both classes of agents have led to improved patient outcomes, however, primary resistance and development of acquired resistance to both targeted and immunotherapeutic agents is commonly observed, limiting the use of these agents in clinical settings. In this review, we will discuss the most recent advances in understanding the mechanisms of primary and acquired resistance, progress in the spectrum of assays detecting causative molecular events and the development of new generations of inhibitors to overcome acquired resistance.
Collapse
Affiliation(s)
- Shirin Attarian
- Department of Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Numa Rahman
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Balazs Halmos
- Department of Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|