1
|
Wang Y, Xin Z, Wu W, Hu Z, Jia Z, Zhang C, Ma Y, Zhang X. Case Report: Coexistence of an esophageal schwannoma disguised as a leiomyoma with a gastrointestinal stromal tumor of the gastric fundus. Front Oncol 2025; 15:1573436. [PMID: 40308497 PMCID: PMC12040618 DOI: 10.3389/fonc.2025.1573436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 04/01/2025] [Indexed: 05/02/2025] Open
Abstract
To our knowledge, this is the first reported case of coexisting esophageal schwannoma and gastric fundus gastrointestinal stromal tumor (GIST). This case report describes the diagnostic and treatment process of a patient with esophageal schwannoma who also had a concurrent gastric fundus GIST and was presented to Hebei General Hospital (Hebei, China) in October 2024. The association between the pathogenesis of the two types of submucosal gastrointestinal tumors is unclear, with limited existing evidence in the literature. The esophageal schwannoma was misdiagnosed as a leiomyoma preoperatively, which prompted us to seek new diagnostic modalities to differentiate gastrointestinal submucosal lesions (leiomyomas, GISTs, and schwannomas). Surgical resection is considered the optimal treatment for esophageal schwannoma. The patient underwent a right single-port thoracoscopic esophageal tumor resection and recovered well, subsequently being discharged smoothly from the hospital.
Collapse
Affiliation(s)
- Yuedong Wang
- Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Thoracic Surgery Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Zhifei Xin
- Department of Thoracic Surgery Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Wenbo Wu
- Department of Thoracic Surgery Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Zhonghui Hu
- Department of Thoracic Surgery Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Zhenghao Jia
- Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Thoracic Surgery Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Chengyao Zhang
- Department of Thoracic Surgery Hebei General Hospital, Shijiazhuang, Hebei, China
- North China University of Science and Technology, Tangshan, Hebei, China
| | - Yi Ma
- Department of Thoracic Surgery Hebei General Hospital, Shijiazhuang, Hebei, China
- North China University of Science and Technology, Tangshan, Hebei, China
| | - Xiaopeng Zhang
- Department of Thoracic Surgery Hebei General Hospital, Shijiazhuang, Hebei, China
| |
Collapse
|
2
|
Romandini D, Sobczuk P, Cicala CM, Serrano C. Next questions on gastrointestinal stromal tumors: unresolved challenges and future directions. Curr Opin Oncol 2025:00001622-990000000-00251. [PMID: 40207474 DOI: 10.1097/cco.0000000000001145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
PURPOSE OF REVIEW Despite remarkable progress in the management of gastrointestinal stromal tumors (GISTs), critical challenges persist. Key aspects such as risk stratification, the optimal duration of adjuvant therapy, and strategies to enhance the efficacy of first-line treatment remain subjects of ongoing debate. This review explores emerging concepts and innovative approaches aimed at refining patient selection and optimizing therapeutic decision-making to further improve clinical outcomes. RECENT FINDINGS Molecular and genomic parameters have the potential to enhance traditional risk models, enabling more precise stratification of high-risk patients. Innovations in artificial intelligence and liquid biopsy are emerging as powerful tools for refining predictions of recurrence and treatment response. Meanwhile, the definition and prognostic significance of tumor rupture remain pivotal challenges that influence both risk assessment and adjuvant therapy decisions. Furthermore, transcriptomic and multiomic analyses have unveiled distinct GIST subtypes with significant prognostic and therapeutic implications, paving the way for more tailored treatment strategies. SUMMARY Integrating molecular features into clinical decision making may refine risk assessment and personalize the treatment in patients with GIST. Future research should focus on validating these tools and redefine clinical trial designs to accelerate drug development for this rare disease.
Collapse
Affiliation(s)
- Davide Romandini
- Sarcoma Translational Research Group, Vall d'Hebron Institute of Oncology (VHIO)
| | - Pawel Sobczuk
- Sarcoma Translational Research Group, Vall d'Hebron Institute of Oncology (VHIO)
| | - Carlo M Cicala
- Sarcoma Translational Research Group, Vall d'Hebron Institute of Oncology (VHIO)
- Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - César Serrano
- Sarcoma Translational Research Group, Vall d'Hebron Institute of Oncology (VHIO)
- Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| |
Collapse
|
3
|
Gabellone S, Vanni S, Fausti V, Miserocchi G, Liverani C, Spadazzi C, Cocchi C, Calabrese C, Cavaliere D, Pacilio CA, Ercolani G, Pieri F, Gurrieri L, Riva N, Jones R, De Vita A. Exploring nanotechnology solutions for improved outcomes in gastrointestinal stromal tumors. Heliyon 2024; 10:e40596. [PMID: 39687122 PMCID: PMC11647801 DOI: 10.1016/j.heliyon.2024.e40596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Objectives Gastrointestinal stromal tumors, the most prevalent mesenchymal tumors (80 %) of the gastrointestinal tract, comprise less than 1 % of all gastrointestinal neoplasms and about 5 % of all sarcomas. Despite their rarity, Gastrointestinal stromal tumors present diverse clinical manifestations, anatomic locations, histological subtypes, and prognostic outcomes. Methods This scoping review comprehensively explores the epidemiology, clinical characteristics, diagnostic and prognostic modalities, as well as new therapeutic options for Gastrointestinal stromal tumors. Results A particular focus is placed on the promising role of bio-nanomaterials as multifunctional agents for drug delivery and 3D tumor microenvironment modeling. Bio-nanomaterials offer promising opportunities for targeted drug delivery, overcoming treatment resistance, and improving therapeutic efficacy. Conclusion Despite significant advancements, Gastrointestinal stromal tumors remain a complex clinical entity with ongoing challenges. The integration of nanotechnology into Gastrointestinal stromal tumors management offers the potential to enhance patient outcomes. Future studies should prioritize the development and evaluation of nanomaterial-based therapies in clinical trials to facilitate the translation of laboratory discoveries into real-world clinical applications.
Collapse
Affiliation(s)
- Sofia Gabellone
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014, Meldola, Italy
| | - Silvia Vanni
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014, Meldola, Italy
| | - Valentina Fausti
- Clinical and Experimental Oncology, Immunotherapy, Rare Cancers and Biological Resource Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014, Meldola, Italy
| | - Giacomo Miserocchi
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014, Meldola, Italy
| | - Chiara Liverani
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014, Meldola, Italy
| | - Chiara Spadazzi
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014, Meldola, Italy
| | - Claudia Cocchi
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014, Meldola, Italy
| | - Chiara Calabrese
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014, Meldola, Italy
| | - Davide Cavaliere
- General and Oncologic Surgery, “Morgagni-Pierantoni” Hospital, 47121, Forlì, Italy
| | | | - Giorgio Ercolani
- General and Oncologic Surgery, “Morgagni-Pierantoni” Hospital, 47121, Forlì, Italy
| | - Federica Pieri
- Pathology Unit, “Morgagni-Pierantoni” Hospital, 47121, Forlì, Italy
| | - Lorena Gurrieri
- Clinical and Experimental Oncology, Immunotherapy, Rare Cancers and Biological Resource Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014, Meldola, Italy
| | - Nada Riva
- Clinical and Experimental Oncology, Immunotherapy, Rare Cancers and Biological Resource Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014, Meldola, Italy
| | - Robin Jones
- Sarcoma Unit, The Royal Marsden NHS Foundation Trust, SW3 6JJ, London, UK
| | - Alessandro De Vita
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014, Meldola, Italy
| |
Collapse
|
4
|
Beecroft JR, Brar S, Feng X, Hamilton T, Han-Lee C, Henning JW, Josephy PD, Khalili K, Ko YJ, Lemieux C, Liu DM, MacDonald DB, Noujaim J, Pollett A, Salawu A, Saleh R, Smrke A, Warren BE, Zbuk K, Razak AA. Pan-Canadian consensus recommendations for GIST management in high- and low-throughput centres across Canada. Ther Adv Med Oncol 2024; 16:17588359241266179. [PMID: 39386314 PMCID: PMC11461906 DOI: 10.1177/17588359241266179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/18/2024] [Indexed: 10/12/2024] Open
Abstract
Gastrointestinal stromal tumours (GISTs) are mesenchymal tumours that originate from the interstitial cells of Cajal. GISTs are mainly driven by gain-of-function mutations in receptor tyrosine kinase or platelet-derived growth factor receptor alpha. Surgical resection is the only curative treatment for localized tumours and all currently approved medical GIST treatments are based on orally available tyrosine kinase inhibitors. Recent discoveries in the molecular and clinical features of GISTs have greatly impacted GIST management. Due to the provincially rather than nationally administered Canadian healthcare system, there have been inconsistencies in the treatment of GISTs across the country. Therefore, guidance on the latest knowledge, clinical management and treatment of GIST is needed to standardize the approach to GIST management nationwide. To establish pan-Canadian guidance, provide up-to-date data and harmonize the clinical practice of GIST management in high- and low-throughput centres across Canada; a panel of 20 physicians with extensive clinical experience in GIST management reviewed relevant literature. This included radiologists, pathologists, interventional radiologists, surgeons and medical oncologists across Canada. The structured literature focused on seven key domains: molecular profiling, radiological techniques/reporting, targeted localized therapy, intricacies of systemic treatments, emerging tests, multidisciplinary care and patient advocacy. This literature review, along with clinical expertise and opinion, was used to develop this concise and clinically relevant consensus paper to harmonize the knowledge and clinical practice on GIST management across Canada. The content presented here will help guide healthcare providers, especially in Canada, in terms of approaching and managing GIST.
Collapse
Affiliation(s)
- J. Robert Beecroft
- Division of Interventional Radiology, Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital, Toronto, ON, Canada
| | - Savtaj Brar
- Department of Surgery, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Xiaolan Feng
- Division of Medical Oncology, Tom Baker Cancer Center, Calgary, AB, Canada
| | - Trevor Hamilton
- Department of Surgery, BC Cancer, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Cheng Han-Lee
- Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, AB, Canada
| | - Jan-Willem Henning
- Department of Oncology, Tom Baker Cancer Centre, Cuming School of Medicine, University of Calgary, Calgary, AB, Canada
| | | | - Korosh Khalili
- Department of Medical Imaging, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Yoo-Joung Ko
- Department of Medicine, St. Michael’s Hospital, Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Christopher Lemieux
- Division of Hematology and Medical Oncology, Centre Hospitalier Universitaire de Québec, Université Laval, Quebec City, QC, Canada
| | - David M. Liu
- Department of Radiology, University of British Columbia, School of Biomedical Engineering, Vancouver, BC, Canada
- Department of Interventional Radiology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - D. Blair MacDonald
- Department of Medical Radiology, The Ottawa Hospital, University of Ottawa, Ottawa, ON, Canada
| | - Jonathan Noujaim
- Division of Medical Oncology, Hôpital Maisonneuve-Rosemont, University of Montreal, Montreal, QC, Canada
| | - Aaron Pollett
- Pathology and Laboratory Medicine, Division of Diagnostic Medical Genetics, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Abdulazeez Salawu
- Division of Medical Oncology, Princess Margaret Cancer Centre, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Ramy Saleh
- Division of Medical Oncology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Alannah Smrke
- Division of Medical Oncology, BC Cancer, University of British Columbia, Vancouver, BC, Canada
| | - Blair E. Warren
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Kevin Zbuk
- Department of Oncology, McMaster University, Hamilton, ON, Canada
| | - Albiruni Abdul Razak
- Division of Medical Oncology, Princess Margaret Cancer Centre, Mount Sinai Hospital, University of Toronto, 610 University Ave., Toronto, ON M2G 2M9, Canada
| |
Collapse
|
5
|
Hashimoto T, Nakamura Y, Komatsu Y, Yuki S, Takahashi N, Okano N, Hirano H, Ohtsubo K, Ohta T, Oki E, Nishina T, Yasui H, Kawakami H, Esaki T, Machida N, Doi A, Boku S, Kudo T, Yamamoto Y, Kanazawa A, Denda T, Goto M, Iida N, Ozaki H, Shibuki T, Imai M, Fujisawa T, Bando H, Naito Y, Yoshino T. Different efficacy of tyrosine kinase inhibitors by KIT and PGFRA mutations identified in circulating tumor DNA for the treatment of refractory gastrointestinal stromal tumors. BJC REPORTS 2024; 2:54. [PMID: 39516322 PMCID: PMC11523999 DOI: 10.1038/s44276-024-00073-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/30/2024] [Accepted: 06/09/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND While advanced gastrointestinal stromal tumors (GISTs) are primarily treated with tyrosine kinase inhibitors (TKIs), acquired resistance from specific mutations in KIT or PDGFRA frequently occurs. We aimed to assess the utility of circulating tumor DNA (ctDNA) as a modality of therapeutic decision-making in advanced GIST. METHODS We conducted a pooled analysis of SCRUM-Japan studies for advanced GIST patients. We compared patient characteristics analyzed with tissue and blood samples, assessed gene alteration profiles, and evaluated prognostic implications from ctDNA status. RESULTS In 133 patients, tissue and blood samples were analyzed for 89 and 44 patients, respectively. ctDNA was detected in 72.7% of cases; no prior treatment or progressive disease was significantly associated with ctDNA-positivity. ctDNA-positive patients had significantly shorter progression-free survival compared with ctDNA-negative patients (hazard ratio = 3.92; P = 0.007). ctDNA genotyping revealed a complex landscape of gene alterations, characterized by multi-exonic mutations in KIT, compared with tissue-based analysis. Patients who received TKIs matched to the identified KIT mutation in ctDNA demonstrated significantly longer PFS than those with unmatched treatment (median, 8.23 vs. 2.43 months; P < 0.001). CONCLUSIONS ctDNA-based analysis facilitates assessment of disease status and genomic profiles, thus potentially assisting in identifying optimal therapeutic strategies for advanced GIST patients.
Collapse
Affiliation(s)
- Tadayoshi Hashimoto
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yoshiaki Nakamura
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan.
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan.
| | - Yoshito Komatsu
- Department of Cancer Center, Hokkaido University Hospital, Sapporo, Japan
| | - Satoshi Yuki
- Department of Gastroenterology and Hepatology, Hokkaido University Hospital, Sapporo, Japan
| | - Naoki Takahashi
- Department of Gastroenterology, Saitama Cancer Center, Saitama, Japan
| | - Naohiro Okano
- Department of Medical Oncology, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Hidekazu Hirano
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tsukiji, Japan
| | - Koushiro Ohtsubo
- Department of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Takashi Ohta
- Department of Clinical Oncology, Kansai Rosai Hospital, Hyogo, Japan
| | - Eiji Oki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomohiro Nishina
- Department of Gastrointestinal Medical Oncology, National Hospital Organization Shikoku Cancer Center, Matsuyama, Japan
| | - Hisateru Yasui
- Department of Medical Oncology, Kobe City Medical Center General Hospital, Hyogo, Japan
| | - Hisato Kawakami
- Department of Medical Oncology, Kindai University Hospital, Osaka, Japan
| | - Taito Esaki
- Department of Gastrointestinal and Medical oncology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Nozomu Machida
- Department of Gastroenterology, Kanagawa Cancer Center, Yokohama, Japan
| | - Ayako Doi
- Department of Clinical Oncology, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Shogen Boku
- Cancer Treatment Center, Kansai Medical University, Osaka, Japan
| | - Toshihiro Kudo
- Department of Medical Oncology, Osaka International Cancer Institute Osaka Prefectural Hospital Organization, Osaka, Japan
| | - Yoshiyuki Yamamoto
- Department of Gastroenterology, University of Tsukuba Hospital, Ibaraki, Japan
| | - Akiyoshi Kanazawa
- Department of Surgery Shimane Prefectural Central Hospital, Shimane, Japan
| | - Tadamichi Denda
- Division of Gastroenterology, Chiba Cancer Center, Chiba, Japan
| | - Masahiro Goto
- Cancer Chemotherapy Center, Osaka Medical and Pharmaceutical University Hospital, Takatsuki, Japan
| | - Naoko Iida
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
| | - Hiroshi Ozaki
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
| | - Taro Shibuki
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
| | - Mitsuho Imai
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
| | - Takao Fujisawa
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
- Department of Head and Neck Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Hideaki Bando
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yoichi Naito
- Department of Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Takayuki Yoshino
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| |
Collapse
|
6
|
Gómez-Peregrina D, Cicala CM, Serrano C. Monitoring advanced gastrointestinal stromal tumor with circulating tumor DNA. Curr Opin Oncol 2024; 36:282-290. [PMID: 38726808 DOI: 10.1097/cco.0000000000001040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
PURPOSE OF REVIEW This review explores the role of circulating tumor (ct)DNA as a biomarker for clinical decision-making and monitoring purposes in metastatic gastrointestinal stromal tumor (GIST) patients. We discuss key insights from recent clinical trials and anticipate the future perspectives of ctDNA profiling within the clinical landscape of GIST. RECENT FINDINGS The identification and molecular characterization of KIT/platelet-derived growth factor receptor alpha (PDGFRA) mutations from ctDNA in metastatic GIST is feasible and reliable. Such identification through ctDNA serves as a predictor of clinical outcomes to tyrosine-kinase inhibitors (TKIs) in metastatic patients. Additionally, conjoined ctDNA analysis from clinical trials reveal the evolving mutational landscapes and increase in intratumoral heterogeneity across treatment lines. Together, this data positions ctDNA determination as a valuable tool for monitoring disease progression and guiding therapy in metastatic patients. These collective efforts culminated in the initiation of a ctDNA-based randomized clinical trial in GIST, marking a significant milestone in integrating ctDNA testing into the clinical care of GIST patients. SUMMARY The dynamic field of ctDNA technologies is rapidly evolving and holds significant promise for research. Several trials have successfully validated the clinical utility of ctDNA in metastatic GIST, laying the foundations for its prospective integration into the routine clinical management of GIST patients.
Collapse
Affiliation(s)
- David Gómez-Peregrina
- Sarcoma Translational Research Laboratory, Vall d'Hebron Institute of Oncology (VHIO)
| | - Carlo Maria Cicala
- Sarcoma Translational Research Laboratory, Vall d'Hebron Institute of Oncology (VHIO)
- Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - César Serrano
- Sarcoma Translational Research Laboratory, Vall d'Hebron Institute of Oncology (VHIO)
- Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| |
Collapse
|
7
|
Olivera-Salazar R, Salcedo Cabañas G, Vega-Clemente L, Alonso-Martín D, Castellano Megías VM, Volward P, García-Olmo D, García-Arranz M. Pilot Study by Liquid Biopsy in Gastrointestinal Stromal Tumors: Analysis of PDGFRA D842V Mutation and Hypermethylation of SEPT9 Presence by Digital Droplet PCR. Int J Mol Sci 2024; 25:6783. [PMID: 38928487 PMCID: PMC11203410 DOI: 10.3390/ijms25126783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Tissue biopsy remains the standard for diagnosing gastrointestinal stromal tumors (GISTs), although liquid biopsy is emerging as a promising alternative in oncology. In this pilot study, we advocate for droplet digital PCR (ddPCR) to diagnose GIST in tissue samples and explore its potential for early diagnosis via liquid biopsy, focusing on the PDGFRA D842V mutation and SEPT9 hypermethylated gene. We utilized ddPCR to analyze the predominant PDGFRA mutation (D842V) in surgical tissue samples from 15 GIST patients, correlating with pathologists' diagnoses. We expanded our analysis to plasma samples to compare DNA alterations between tumor tissue and plasma, also investigating SEPT9 gene hypermethylation. We successfully detected the PDGFRA D842V mutation in GIST tissues by ddPCR. Despite various protocols to enhance mutation detection in early-stage disease, it remained challenging, likely due to the low concentration of DNA in plasma samples. Additionally, the results of Area Under the Curve (AUC) for the hypermethylated SEPT9 gene, analyzing concentration, ratio, and abundance were 0.74 (95% Confidence Interval (CI): 0.52 to 0.97), 0.77 (95% CI: 0.56 to 0.98), and 0.79 (95% CI: 0.59 to 0.99), respectively. As a rare disease, the early detection of GIST through such biomarkers is particularly crucial, offering significant potential to improve patient outcomes.
Collapse
Affiliation(s)
- Rocío Olivera-Salazar
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD), Avda. Reyes Católicos, 2, 28040 Madrid, Spain; (L.V.-C.); (D.A.-M.); (D.G.-O.); (M.G.-A.)
| | - Gabriel Salcedo Cabañas
- Surgeon Esophagogastric Unit, Hospital Fundación Jiménez Díaz, Avda. Reyes Católicos, 2, 28040 Madrid, Spain; (G.S.C.); (P.V.)
| | - Luz Vega-Clemente
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD), Avda. Reyes Católicos, 2, 28040 Madrid, Spain; (L.V.-C.); (D.A.-M.); (D.G.-O.); (M.G.-A.)
| | - David Alonso-Martín
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD), Avda. Reyes Católicos, 2, 28040 Madrid, Spain; (L.V.-C.); (D.A.-M.); (D.G.-O.); (M.G.-A.)
| | | | - Peter Volward
- Surgeon Esophagogastric Unit, Hospital Fundación Jiménez Díaz, Avda. Reyes Católicos, 2, 28040 Madrid, Spain; (G.S.C.); (P.V.)
| | - Damián García-Olmo
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD), Avda. Reyes Católicos, 2, 28040 Madrid, Spain; (L.V.-C.); (D.A.-M.); (D.G.-O.); (M.G.-A.)
- Department of Surgery, Fundación Jiménez Díaz University Hospital (FJD), 28040 Madrid, Spain
- Department of Surgery, Universidad Autónoma de Madrid, 28034 Madrid, Spain
| | - Mariano García-Arranz
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD), Avda. Reyes Católicos, 2, 28040 Madrid, Spain; (L.V.-C.); (D.A.-M.); (D.G.-O.); (M.G.-A.)
- Department of Surgery, Universidad Autónoma de Madrid, 28034 Madrid, Spain
| |
Collapse
|
8
|
Calderillo-Ruíz G, Pérez-Yepez EA, García-Gámez MA, Millan-Catalan O, Díaz-Romero C, Ugalde-Silva P, Salas-Benavides R, Pérez-Plasencia C, Carbajal-López B. Genomic profiling in GIST: Implications in clinical outcome and future challenges. Neoplasia 2024; 48:100959. [PMID: 38183711 PMCID: PMC10808967 DOI: 10.1016/j.neo.2023.100959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/15/2023] [Indexed: 01/08/2024]
Abstract
Gastrointestinal Stromal Tumors (GIST) are the most frequent mesenchymal neoplasia of the digestive tract. Genomic alterations in KIT, PDFGRA, SDH, and BRAF genes are essential in GIST oncogenesis. Therefore, the mutations in these genes have demonstrated clinical implications. Tumors with deletions in KIT-exon 11 or duplications in exon 9 are associated with a worse prognosis. In contrast, KIT-exon 11 substitutions and duplications are associated with a better clinical outcome. Moreover, mutations in Kit exon 9 and 11 are actionable, due to their response to imatinib, while mutations in PDGFRA respond to sunitinib and/or avapritinib. Although, molecular testing on tissue samples is effective; it is invasive, requires adequate amounts of tissue, and a long experimental process is needed for results. In contrast, liquid biopsy has been proposed as a simple and non-invasive method to test biomarkers in cancer. The most common molecule analyzed by liquid biopsy is circulating tumor DNA (ctDNA). GISTs ctDNA testing has been demonstrated to be effective in identifying known and novel KIT mutations that were not detected using traditional tissue DNA testing and have been useful in determining progression risk and response to TKI therapy. This allows the clinician to have an accurate picture of the genetic changes of the tumor over time. In this work, we aimed to discuss the implications of mutational testing in clinical outcomes, the methods to test ctDNA and the future challenges in the establishment of alternatives of personalized medicine.
Collapse
Affiliation(s)
- German Calderillo-Ruíz
- Departamento de Oncología Gastrointestinal, Instituto Nacional de Cancerología, Tlalpan, CDMX, México
| | | | | | | | - Consuelo Díaz-Romero
- Departamento de Oncología Gastrointestinal, Instituto Nacional de Cancerología, Tlalpan, CDMX, México
| | | | | | - Carlos Pérez-Plasencia
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Tlalpan, CDMX, Mexico
- Laboratorio de Genómica Funcional. UBIMED, FES-IZTACALA, UNAM, Tlalnepantla, Mexico
| | - Berenice Carbajal-López
- Departamento de Oncología Gastrointestinal, Instituto Nacional de Cancerología, Tlalpan, CDMX, México
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Tlalpan, CDMX, Mexico
- Fundación GIST México, A.B.P, Nuevo León, México
| |
Collapse
|
9
|
Han S, Song M, Wang J, Huang Y, Li Z, Yang A, Sui C, Zhang Z, Qiao J, Yang J. Intelligent identification system of gastric stromal tumors based on blood biopsy indicators. BMC Med Inform Decis Mak 2023; 23:214. [PMID: 37833709 PMCID: PMC10576280 DOI: 10.1186/s12911-023-02324-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND The most prevalent mesenchymal-derived gastrointestinal cancers are gastric stromal tumors (GSTs), which have the highest incidence (60-70%) of all gastrointestinal stromal tumors (GISTs). However, simple and effective diagnostic and screening methods for GST remain a great challenge at home and abroad. This study aimed to build a GST early warning system based on a combination of machine learning algorithms and routine blood, biochemical and tumour marker indicators. METHODS In total, 697 complete samples were collected from four hospitals in Gansu Province, including 42 blood indicators from 318 pretreatment GST patients, 180 samples of gastric polyps and 199 healthy individuals. In this study, three algorithms, gradient boosting machine (GBM), random forest (RF), and logistic regression (LR), were chosen to build GST prediction models for comparison. The performance and stability of the models were evaluated using two different validation techniques: 5-fold cross-validation and external validation. The DeLong test assesses significant differences in AUC values by comparing different ROC curves, the variance and covariance of the AUC value. RESULTS The AUC values of both the GBM and RF models were higher than those of the LR model, and this difference was statistically significant (P < 0.05). The GBM model was considered to be the optimal model, as a larger area was enclosed by the ROC curve, and the axes indicated robust model classification performance according to the accepted model discriminant. Finally, the integration of 8 top-ranked blood indices was proven to be able to distinguish GST from gastric polyps and healthy people with sensitivity, specificity and area under the curve of 0.941, 0.807 and 0.951 for the cross-validation set, respectively. CONCLUSION The GBM demonstrated powerful classification performance and was able to rapidly distinguish GST patients from gastric polyps and healthy individuals. This identification system not only provides an innovative strategy for the diagnosis of GST but also enables the exploration of hidden associations between blood parameters and GST for subsequent studies on the prevention and disease surveillance management of GST. The GST discrimination system is available online for free testing of doctors and high-risk groups at https://jzlyc.gsyy.cn/bear/mobile/index.html .
Collapse
Affiliation(s)
- Shangjun Han
- Department of the First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, People's Republic of China
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, People's Republic of China
| | - Meijuan Song
- Department of the First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, People's Republic of China
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, People's Republic of China
| | - Jiarui Wang
- Department of Medical Information and Engineering, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Yalong Huang
- Department of the First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, People's Republic of China
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, People's Republic of China
| | - Zuxi Li
- Department of the First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, People's Republic of China
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, People's Republic of China
| | - Aijia Yang
- Department of the First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, People's Republic of China
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, People's Republic of China
| | - Changsheng Sui
- Department of the First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, People's Republic of China
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, People's Republic of China
| | - Zeping Zhang
- Department of the First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, People's Republic of China
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, People's Republic of China
| | - Jiling Qiao
- Department of the First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, People's Republic of China
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, People's Republic of China
| | - Jing Yang
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, People's Republic of China.
| |
Collapse
|
10
|
Serrano C, Álvarez R, Carrasco JA, Marquina G, Martínez-García J, Martínez-Marín V, Sala MÁ, Sebio A, Sevilla I, Martín-Broto J. SEOM-GEIS clinical guideline for gastrointestinal stromal tumors (2022). Clin Transl Oncol 2023; 25:2707-2717. [PMID: 37129716 PMCID: PMC10425520 DOI: 10.1007/s12094-023-03177-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
Gastrointestinal stromal tumor (GIST) is the most common malignant neoplasm of mesenchymal origin, and a paradigmatic model for a successful rational development of targeted therapies in cancer. The introduction of tyrosine kinase inhibitors with activity against KIT/PDGFRA in both localized and advanced stages has remarkably improved the survival in a disease formerly deemed resistant to all systemic therapies. These guidelines are elaborated by the conjoint effort of the Spanish Society of Medical Oncology (SEOM) and the Spanish Sarcoma Research Group (GEIS) and provide a multidisciplinary and updated consensus for the diagnosis and treatment of GIST patients. We strongly encourage that the managing of these patients should be performed within multidisciplinary teams in reference centers.
Collapse
Affiliation(s)
- César Serrano
- Sarcoma Translational Research Group, Vall d’Hebron Institute of Oncology (VHIO), Hospital Universitario Vall d’Hebron, Vall d’Hebron Barcelona Hospital Campus, C/Natzaret, 115-117, 08035 Barcelona, Spain
| | - Rosa Álvarez
- Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Juan Antonio Carrasco
- Hospital Álvaro Cunqueiro–Complejo Hospitalario Universitario de Vigo, Pontevedra, Spain
| | | | | | | | | | - Ana Sebio
- Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - Isabel Sevilla
- Hospitales Universitarios Regional y Virgen de la Victoria, Málaga, Spain
| | | |
Collapse
|
11
|
Serrano C, Bauer S, Gómez-Peregrina D, Kang YK, Jones RL, Rutkowski P, Mir O, Heinrich MC, Tap WD, Newberry K, Grassian A, Shi H, Bialick S, Schöffski P, Pantaleo MA, von Mehren M, Trent JC, George S. Circulating tumor DNA analysis of the phase III VOYAGER trial: KIT mutational landscape and outcomes in patients with advanced gastrointestinal stromal tumor treated with avapritinib or regorafenib. Ann Oncol 2023; 34:615-625. [PMID: 37105265 PMCID: PMC10330293 DOI: 10.1016/j.annonc.2023.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND The current treatment paradigm of imatinib-resistant metastatic gastrointestinal stromal tumor (GIST) does not incorporate KIT/PDGFRA genotypes in therapeutic drug sequencing, except for PDGFRA exon 18-mutant GIST that is indicated for avapritinib treatment. Here, circulating tumor DNA (ctDNA) sequencing was used to analyze plasma samples prospectively collected in the phase III VOYAGER trial to understand how the KIT/PDGFRA mutational landscape contributes to tyrosine kinase inhibitor (TKI) resistance and to determine its clinical validity and utility. PATIENTS AND METHODS VOYAGER (N = 476) compared avapritinib with regorafenib in patients with KIT/PDGFRA-mutant GIST previously treated with imatinib and one or two additional TKIs (NCT03465722). KIT/PDGFRA ctDNA mutation profiling of plasma samples at baseline and end of treatment was assessed with 74-gene Guardant360® CDx. Molecular subgroups were determined and correlated with outcomes. RESULTS A total of 386/476 patients with KIT/PDGFRA-mutant tumors underwent baseline (pre-trial treatment) ctDNA analysis; 196 received avapritinib and 190 received regorafenib. KIT and PDGFRA mutations were detected in 75.1% and 5.4%, respectively. KIT resistance mutations were found in the activation loop (A-loop; 80.4%) and ATP-binding pocket (ATP-BP; 40.8%); 23.4% had both. An average of 2.6 KIT mutations were detected per patient; 17.2% showed 4-14 different KIT resistance mutations. Of all pathogenic KIT variants, 28.0% were novel, including alterations in exons/codons previously unreported. PDGFRA mutations showed similar patterns. ctDNA-detected KIT ATP-BP mutations negatively prognosticated avapritinib activity, with a median progression-free survival (mPFS) of 1.9 versus 5.6 months for regorafenib. mPFS for regorafenib did not vary regardless of the presence or absence of ATP-BP/A-loop mutants and was greater than mPFS with avapritinib in this population. Secondary KIT ATP-BP pocket mutation variants, particularly V654A, were enriched upon disease progression with avapritinib. CONCLUSIONS ctDNA sequencing efficiently detects KIT/PDGFRA mutations and prognosticates outcomes in patients with TKI-resistant GIST treated with avapritinib. ctDNA analysis can be used to monitor disease progression and provide more personalized treatment.
Collapse
Affiliation(s)
- C Serrano
- Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona; Sarcoma Translational Research Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.
| | - S Bauer
- Department of Medical Oncology, Sarcoma Center, West German Cancer Center, DKTK-Partner-Site, University of Duisburg-Essen, Essen, Germany
| | - D Gómez-Peregrina
- Sarcoma Translational Research Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Y-K Kang
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - R L Jones
- Royal Marsden Hospital and Institute of Cancer Research, London, UK
| | - P Rutkowski
- Maria Skłodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - O Mir
- Institut Gustave Roussy, Villejuif, France
| | - M C Heinrich
- Portland VA Health Care System and OHSU Knight Cancer Institute, Portland
| | - W D Tap
- Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York
| | - K Newberry
- Blueprint Medicines Corporation, Cambridge
| | - A Grassian
- Blueprint Medicines Corporation, Cambridge
| | - H Shi
- Blueprint Medicines Corporation, Cambridge
| | - S Bialick
- Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, USA
| | - P Schöffski
- Department of General Medicine Oncology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium
| | - M A Pantaleo
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - M von Mehren
- Department of Hematology Oncology, Fox Chase Cancer Center, Philadelphia
| | - J C Trent
- Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, USA
| | - S George
- Department of Medical Oncology, Sarcoma Center, Dana-Farber Cancer Institute, Boston, USA
| |
Collapse
|
12
|
Mechahougui H, Michael M, Friedlaender A. Precision Oncology in Gastrointestinal Stromal Tumors. Curr Oncol 2023; 30:4648-4662. [PMID: 37232809 DOI: 10.3390/curroncol30050351] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
GIST (gastrointestinal stromal tumors) represent 20% of sarcomatous tumors and 1-2% of primary gastrointestinal cancers. They have an excellent prognosis when localized and resectable, though their prognosis is poor in the metastatic setting, with limited options after the second line until recently. Four lines are now standard in KIT-mutated GIST and one in PDGFRA-mutated GIST. An exponential growth of new treatments is expected in this era of molecular diagnostic techniques and systematic sequencing. Currently, the main challenge remains the emergence of resistance linked to secondary mutations caused by selective pressure induced by TKIs. Repeating biopsies to tailor treatments might be a step in the right direction, and liquid biopsies at progression may offer a non-invasive alternative. New molecules with wider KIT inhibition are under investigation and could change the catalog and the sequence of existing treatments. Combination therapies may also be an approach to overcome current resistance mechanisms. Here, we review the current epidemiology and biology of GIST and discuss future management options, with an emphasis on genome-oriented therapies.
Collapse
Affiliation(s)
- Hiba Mechahougui
- Oncology Department, Geneva University Hospital, 1205 Geneva, Switzerland
| | | | - Alex Friedlaender
- Oncology Department, Geneva University Hospital, 1205 Geneva, Switzerland
- Clinique Générale Beaulieu, 1206 Geneva, Switzerland
| |
Collapse
|
13
|
Baa AK, Rastogi S, Fernandes S, Shrivastava S, Yadav R, Barwad A, Shamim SA, Dash NR. Insights into the medical management of gastrointestinal stromal tumours: lessons learnt from a dedicated gastrointestinal stromal tumour clinic in North India. Ecancermedicalscience 2023; 17:1497. [PMID: 36816783 PMCID: PMC9937073 DOI: 10.3332/ecancer.2023.1497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Indexed: 01/18/2023] Open
Abstract
Background The advent of molecular driver alterations has brought in a revolutionary transformation in the treatment landscape of gastrointestinal stromal tumour (GIST). However, there is a paucity of data regarding mutational testing prevalence and associated outcomes from India. Methods It was a retrospective study. We reviewed the case records of all patients diagnosed with GIST in a tertiary care centre from 2015 to 2021. The clinicopathological, mutational analysis and treatment plans were recorded. The study cohort was characterised by descriptive statistics. Results Our study included 120 patients with a median age of 53 years (range: 28-77), with a male preponderance of 2:1. The most common site of the primary was the stomach (50%), followed by the small intestine (37%), with 55.8% of the patients having disseminated disease at presentation with a predominance of liver metastasis (67%). The prevalence of mutational analysis among patients prior to referral was 4%. 60.8% of the patients at our clinic had mutational analysis performed, and unavailability of analysis in the rest was due to financial constraints (12.5%), exhaustion of tissue (7.5%), reluctance to repeat biopsy (4.1%) and low-risk patients. We report c-kit in the majority (52%), platelet-derived growth factor receptor (PDGFR) in 19.2% and wild type in 16.4% along with the rarer subtypes: succinate dehydrogenase (SDH)-deficient GIST in 10.9% and Neurotrophic tyrosine receptor kinase (NTRK) fusion in 1.3%. Four of the eight SDH-deficient GIST patients had germline mutations (50%). The knowledge of driver mutations led to a change of treatment in 39.7% (29/73), i.e. stoppage of tyrosine kinase inhibitor (TKI) in 3, switch of TKI in 23, increase in TKI dose in 2 and upfront surgery in 1. The most common change was the use of sunitinib and regorafenib in patients with SDH-deficient GIST. Conclusion Our study is one of the largest comprehensive series describing the clinical and mutational profile of GIST from India. The mutation testing rates at primary care centres continue to be low. Despite the hurdles, a large percentage of our patients underwent molecular testing, aiding in therapeutic decision-making.
Collapse
Affiliation(s)
- Annie Kanchan Baa
- Department of Medical Oncology, Dr B R Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sameer Rastogi
- Department of Medical Oncology, Dr B R Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sanal Fernandes
- Department of Medical Oncology, Dr B R Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Shakti Shrivastava
- Department of Medical Oncology, Dr B R Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Rajni Yadav
- Department of Pathology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Adarsh Barwad
- Department of Pathology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Shamim A Shamim
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Nihar Ranjan Dash
- Department of Gastrointestinal Surgery, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
14
|
Falkenhorst J, Grunewald S, Krzeciesa D, Herold T, Ketzer J, Christoff M, Hamacher R, Kostbade K, Treckmann J, Köster J, Farzaliyev F, Fletcher BS, Dieckmann N, Kaths M, Mühlenberg T, Schildhaus HU, Bauer S. Plasma Sequencing for Patients with GIST-Limitations and Opportunities in an Academic Setting. Cancers (Basel) 2022; 14:5496. [PMID: 36428589 PMCID: PMC9688348 DOI: 10.3390/cancers14225496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
Circulating tumor DNA (ctDNA) from circulating free DNA (cfDNA) in GIST is of interest for the detection of heterogeneous resistance mutations and treatment monitoring. However, methodologies for use in a local setting are not standardized and are error-prone and difficult to interpret. We established a workflow to evaluate routine tumor tissue NGS (Illumina-based next generation sequencing) panels and pipelines for ctDNA sequencing in an academic setting. Regular blood collection (Sarstedt) EDTA tubes were sufficient for direct processing whereas specialized tubes (STRECK) were better for transportation. Mutation detection rate was higher in automatically extracted (AE) than manually extracted (ME) samples. Sensitivity and specificity for specific mutation detection was higher using digital droplet (dd)PCR compared to NGS. In a retrospective analysis of NGS and clinical data (133 samples from 38 patients), cfDNA concentration correlated with tumor load and mutation detection. A clinical routine pipeline and a novel research pipeline yielded different results, but known and resistance-mediating mutations were detected by both and correlated with the resistance spectrum of TKIs used. In conclusion, NGS routine panel analysis was not sensitive and specific enough to replace solid biopsies in GIST. However, more precise methods (hybridization capture NGS, ddPCR) may comprise important research tools to investigate resistance. Future clinical trials need to compare methodology and protocols.
Collapse
Affiliation(s)
- Johanna Falkenhorst
- Department of Medical Oncology, Sarcoma Center, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45147 Essen, Germany
| | - Susanne Grunewald
- Department of Medical Oncology, Sarcoma Center, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45147 Essen, Germany
| | - Dawid Krzeciesa
- Department of Medical Oncology, Sarcoma Center, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45147 Essen, Germany
| | - Thomas Herold
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45147 Essen, Germany
- Institute of Pathology, University Medical Center Essen, 45147 Essen, Germany
| | - Julia Ketzer
- Department of Medical Oncology, Sarcoma Center, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45147 Essen, Germany
| | - Miriam Christoff
- Department of Medical Oncology, Sarcoma Center, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45147 Essen, Germany
| | - Rainer Hamacher
- Department of Medical Oncology, Sarcoma Center, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45147 Essen, Germany
| | - Karina Kostbade
- Department of Medical Oncology, Sarcoma Center, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45147 Essen, Germany
| | - Jürgen Treckmann
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45147 Essen, Germany
- Department of Visceral Surgery, Sarcoma Center, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Johannes Köster
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45147 Essen, Germany
- Algorithms for Reproducible Bioinformatics, Genome Informatics, Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Farhad Farzaliyev
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45147 Essen, Germany
- Department of Visceral Surgery, Sarcoma Center, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Benjamin Samulon Fletcher
- Department of Medical Oncology, Sarcoma Center, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45147 Essen, Germany
| | - Nils Dieckmann
- Department of Medical Oncology, Sarcoma Center, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45147 Essen, Germany
| | - Moritz Kaths
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45147 Essen, Germany
- Department of Visceral Surgery, Sarcoma Center, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Thomas Mühlenberg
- Department of Medical Oncology, Sarcoma Center, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45147 Essen, Germany
| | - Hans-Ulrich Schildhaus
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45147 Essen, Germany
- Institute of Pathology, University Medical Center Essen, 45147 Essen, Germany
| | - Sebastian Bauer
- Department of Medical Oncology, Sarcoma Center, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45147 Essen, Germany
| |
Collapse
|
15
|
GIST avancées : quels traitements en 2022. Bull Cancer 2022; 109:1082-1087. [DOI: 10.1016/j.bulcan.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/24/2022]
|
16
|
KANTARCIOĞLU COŞKUN S. Clinicopathological features of Gastrointestinal Stromal Tumors and review of the literature. KONURALP TIP DERGISI 2022. [DOI: 10.18521/ktd.1094503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Objective: Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal neoplasias of the gastrointestinal system (GIS). The malignancy potential of GISTs may vary ranging from indolent tumors to progressive malignant tumors. This study aims to define clinicopathological and immunohistochemical features of GISTs diagnosed in our institute with a review of the literature.
Method: A total of 28 GIST cases were included in the study. The Hematoxylin&Eosin stained slides of surgical resection materials and cell blocks and immunohistochemistry performed slides were reviewed by a pathologist. The immunohistochemical expression with CD117, DOG-1, CD34, SMA, and S100 was scored between 0 and 3 points according to staining intensity. Descriptive statistics were used in the study. The demographic data, prognostic histopathological, and immunohistochemical findings are evaluated with the literature indications.
Result: Eleven of the cases were male and seventeen were female. The age range was 18-88. The most common site of GISTs was the stomach, followed by the small intestine, colorectal region, and, esophagus. Twenty of the tumors were resected surgically, four were endoscopic biopsy material and four were fine-needle aspiration biopsies. The tumor size in measurable materials ranged from 0,2 to 22 cm. The mitotic count in 50 HPF ranges from 0 to 10. Seven of the GISTs were high grade and the remaining 21 were low grade. The majority of the cases were composed of spindle cells, 3 were epithelioid and 3 were the mixed type with spindle and epitheloid cells.
Conclusion: A variety of criteria has been proposed to estimate the malignancy potential of GISTs and predict prognosis but definite prognostic criteria remain uncertain. Further studies with larger series of GISTs consisting of different types of biopsy materials may help define criteria to predict prognosis precisely.
Collapse
|
17
|
Bauer S, Heinrich MC, George S, Zalcberg JR, Serrano C, Gelderblom H, Jones RL, Attia S, D'Amato G, Chi P, Reichardt P, Meade J, Su Y, Ruiz-Soto R, Blay JY, von Mehren M, Schöffski P. Clinical Activity of Ripretinib in Patients with Advanced Gastrointestinal Stromal Tumor Harboring Heterogeneous KIT/PDGFRA Mutations in the Phase III INVICTUS Study. Clin Cancer Res 2021; 27:6333-6342. [PMID: 34503977 PMCID: PMC9401492 DOI: 10.1158/1078-0432.ccr-21-1864] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/04/2021] [Accepted: 09/07/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE Most patients with gastrointestinal stromal tumor (GIST) have activating mutations in KIT/PDGFRA and are initially responsive to tyrosine kinase inhibitors (TKI). The acquisition of secondary mutations leads to refractory/relapsed disease. This study reports the results of an analysis from the phase III INVICTUS study (NCT03353753) characterizing the genomic heterogeneity of tumors from patients with advanced GIST and evaluating ripretinib efficacy across KIT/PDGFRA mutation subgroups. PATIENTS AND METHODS Tumor tissue and liquid biopsy samples that captured circulating tumor DNA were collected prior to study enrollment and sequenced using next-generation sequencing. Subgroups were determined by KIT/PDGFRA mutations and correlation of clinical outcomes and KIT/PDGFRA mutational status was assessed. RESULTS Overall, 129 patients enrolled (ripretinib 150 mg once daily, n = 85; placebo, n = 44). The most common primary mutation subgroup detected by combined tissue and liquid biopsies were in KIT exon 11 (ripretinib, 61.2%; placebo, 77.3%) and KIT exon 9 (ripretinib, 18.8%; placebo, 15.9%). Patients receiving ripretinib demonstrated progression-free survival (PFS) benefit versus placebo regardless of mutation status (HR 0.16) and in all assessed subgroups in Kaplan-Meier PFS analysis (exon 11, P < 0.0001; exon 9, P = 0.0023; exon 13, P < 0.0001; exon 17, P < 0.0001). Among patients with wild-type KIT/PDGFRA by tumor tissue, PFS ranged from 2 to 23 months for ripretinib versus 0.9 to 10.1 months for placebo. CONCLUSIONS Ripretinib provided clinically meaningful activity across mutation subgroups in patients with advanced GIST, demonstrating that ripretinib inhibits a broad range of KIT/PDGFRA mutations in patients with advanced GIST who were previously treated with three or more TKIs.
Collapse
Affiliation(s)
- Sebastian Bauer
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany.
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
| | - Michael C Heinrich
- VA Portland Veterans Health Care System, Portland, Oregon
- OHSU Knight Cancer Institute, Portland, Oregon
| | | | - John R Zalcberg
- Monash University School of Public Health and Preventive Medicine and Alfred Health, Melbourne, Victoria, Australia
| | - César Serrano
- Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | | | - Robin L Jones
- Royal Marsden and Institute of Cancer Research, London, United Kingdom
| | | | - Gina D'Amato
- Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, Florida
| | - Ping Chi
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Peter Reichardt
- Sarcoma Center Berlin-Brandenburg, Helios Klinikum Berlin-Buch, Berlin, Germany
| | - Julie Meade
- Deciphera Pharmaceuticals, LLC, Waltham, Massachusetts
| | - Ying Su
- Deciphera Pharmaceuticals, LLC, Waltham, Massachusetts
| | | | | | | | - Patrick Schöffski
- University Hospitals Leuven, Department of General Medical Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
18
|
Johansson G, Berndsen M, Lindskog S, Österlund T, Fagman H, Muth A, Ståhlberg A. Monitoring Circulating Tumor DNA During Surgical Treatment in Patients with Gastrointestinal Stromal Tumors. Mol Cancer Ther 2021; 20:2568-2576. [PMID: 34552011 PMCID: PMC9398151 DOI: 10.1158/1535-7163.mct-21-0403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/30/2021] [Accepted: 09/14/2021] [Indexed: 01/07/2023]
Abstract
The majority of patients diagnosed with advanced gastrointestinal stromal tumors (GISTs) are successfully treated with a combination of surgery and tyrosine kinase inhibitors (TKIs). However, it remains challenging to monitor treatment efficacy and identify relapse early. Here, we utilized a sequencing strategy based on molecular barcodes and developed a GIST-specific panel to monitor tumor-specific and TKI resistance mutations in cell-free DNA and applied the approach to patients undergoing surgical treatment. Thirty-two patients with GISTs were included, and 161 blood plasma samples were collected and analyzed at routine visits before and after surgery and at the beginning, during, and after surgery. Patients were included regardless of their risk category. Our GIST-specific sequencing approach allowed detection of tumor-specific mutations and TKI resistance mutations with mutant allele frequency < 0.1%. Circulating tumor DNA (ctDNA) was detected in at least one timepoint in nine of 32 patients, ranging from 0.04% to 93% in mutant allele frequency. High-risk patients were more often ctDNA positive than other risk groups (P < 0.05). Patients with detectable ctDNA also displayed higher tumor cell proliferation rates (P < 0.01) and larger tumor sizes (P < 0.01). All patients who were ctDNA positive during surgery became negative after surgery. Finally, in two patients who progressed on TKI treatment, we detected multiple resistance mutations. Our data show that ctDNA may become a clinically useful biomarker in monitoring treatment efficacy in patients with high-risk GISTs and can assist in treatment decision making.
Collapse
Affiliation(s)
- Gustav Johansson
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Marta Berndsen
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Section of Endocrine and Sarcoma Surgery, Department of Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Stefan Lindskog
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Section of Endocrine and Sarcoma Surgery, Department of Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Surgery, Halland Regional Hospital Varberg, Region Halland, Varberg, Sweden
| | - Tobias Österlund
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.,Region Västra Götaland, Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Henrik Fagman
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Andreas Muth
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Section of Endocrine and Sarcoma Surgery, Department of Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden.,Corresponding Authors: Anders Ståhlberg, Sahlgrenska Center for Cancer Research, University of Gothenburg, Box 425, Gothenburg 405 30, Sweden. E-mail: ; and Andreas Muth, Department of Surgery, Sahlgrenska University Hospital, Blå stråket 5, 413 45 Gothenburg, Sweden. E-mail:
| | - Anders Ståhlberg
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.,Region Västra Götaland, Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden.,Corresponding Authors: Anders Ståhlberg, Sahlgrenska Center for Cancer Research, University of Gothenburg, Box 425, Gothenburg 405 30, Sweden. E-mail: ; and Andreas Muth, Department of Surgery, Sahlgrenska University Hospital, Blå stråket 5, 413 45 Gothenburg, Sweden. E-mail:
| |
Collapse
|
19
|
Bauer S, George S, von Mehren M, Heinrich MC. Early and Next-Generation KIT/PDGFRA Kinase Inhibitors and the Future of Treatment for Advanced Gastrointestinal Stromal Tumor. Front Oncol 2021; 11:672500. [PMID: 34322383 PMCID: PMC8313277 DOI: 10.3389/fonc.2021.672500] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/22/2021] [Indexed: 12/21/2022] Open
Abstract
The majority of gastrointestinal stromal tumors (GIST) harbor an activating mutation in either the KIT or PDGFRA receptor tyrosine kinases. Approval of imatinib, a KIT/PDGFRA tyrosine kinase inhibitor (TKI), meaningfully improved the treatment of advanced GIST. Other TKIs subsequently gained approval: sunitinib as a second-line therapy and regorafenib as a third-line therapy. However, resistance to each agent occurs in almost all patients over time, typically due to secondary kinase mutations. A major limitation of these 3 approved therapies is that they target the inactive conformation of KIT/PDGFRA; thus, their efficacy is blunted against secondary mutations in the kinase activation loop. Neither sunitinib nor regorafenib inhibit the full spectrum of KIT resistance mutations, and resistance is further complicated by extensive clonal heterogeneity, even within single patients. To combat these limitations, next-generation TKIs were developed and clinically tested, leading to 2 new USA FDA drug approvals in 2020. Ripretinib, a broad-spectrum KIT/PDGFRA inhibitor, was recently approved for the treatment of adult patients with advanced GIST who have received prior treatment with 3 or more kinase inhibitors, including imatinib. Avapritinib, a type I kinase inhibitor that targets active conformation, was approved for the treatment of adults with unresectable or metastatic GIST harboring a PDGFRA exon 18 mutation, including PDGFRA D842V mutations. In this review, we will discuss how resistance mutations have driven the need for newer treatment options for GIST and compare the original GIST TKIs with the next-generation KIT/PDGFRA kinase inhibitors, ripretinib and avapritinib, with a focus on their mechanisms of action.
Collapse
Affiliation(s)
- Sebastian Bauer
- Department of Medical Oncology, West German Cancer Center, Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Suzanne George
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Margaret von Mehren
- Department of Hematology and Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Michael C. Heinrich
- Department of Medicine, Portland VA Health Care System and OHSU Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW The current article revisits the most recent advances that occurred in the field of gastrointestinal stromal tumor (GIST) therapeutics. RECENT FINDINGS GIST is driven by the oncogenic activation of KIT or PDGFRA receptor tyrosine kinases, and agents targeting these receptors lead to substantial benefit throughout the entire course of the disease. Two new drugs were approved in 2020. On one hand, ripretinib obtained the regulatory approval for the treatment of GIST patients after progression to all standard treatments. On the other hand, avapritinib became the first agent ever displaying activity in GIST driven by the multiresistant PDGFRA D842V mutation. The addition of both drugs to GIST therapeutics constitutes a remarkable milestone, particularly considering that the last agent approved was back in 2012. Similarly, the recent identification of neurotrophic tyrosine receptor kinase (NTRK) fusions in a subset of KIT/PDGFRA wild-type GISTs led to an open window for tailored treatment using specific NTRK inhibitors. Finally, multiple efforts have been made toward the clinical implementation of circulating tumor DNA evaluation to guide clinical decisions in GIST. SUMMARY GIST has been consolidated over the years as a paradigmatic model in personalized medicine for the successful development of novel therapeutic strategies through targeted inhibition of oncogenic drivers.
Collapse
Affiliation(s)
- César Serrano
- Department of Medical Oncology, Vall d'Hebron University Hospital
- Sarcoma Translational Research Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| |
Collapse
|