1
|
Khare M, Piparia S, Tantisira KG. Pharmacogenetics of childhood uncontrolled asthma. Expert Rev Clin Immunol 2025; 21:181-194. [PMID: 37190963 PMCID: PMC10657335 DOI: 10.1080/1744666x.2023.2214363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/11/2023] [Indexed: 05/17/2023]
Abstract
INTRODUCTION Asthma is a heterogeneous, multifactorial disease with multiple genetic and environmental risk factors playing a role in pathogenesis and therapeutic response. Understanding of pharmacogenetics can help with matching individualized treatments to specific genotypes of asthma to improve therapeutic outcomes especially in uncontrolled or severe asthma. AREAS COVERED In this review, we outline novel information about biology, pathways, and mechanisms related to interindividual variability in drug response (corticosteroids, bronchodilators, leukotriene modifiers, and biologics) for childhood asthma. We discuss candidate gene, genome-wide association studies and newer omics studies including epigenomics, transcriptomics, proteomics, and metabolomics as well as integrative genomics and systems biology methods related to childhood asthma. The articles were obtained after a series of searches, last updated November 2022, using database PubMed/CINAHL DB. EXPERT OPINION Implementation of pharmacogenetic algorithms can improve therapeutic targeting in children with asthma, particularly with severe or uncontrolled asthma who typically have challenges in clinical management and carry considerable financial burden. Future studies focusing on potential biomarkers both clinical and pharmacogenetic can help formulate a prognostic test for asthma treatment response that would represent true bench to bedside clinical implementation.
Collapse
Affiliation(s)
- Manaswitha Khare
- Division of Pediatric Hospital Medicine, Department of Pediatrics, University of California San Diego, San Diego, CA, USA
- Division of Pediatric Hospital Medicine, Department of Pediatrics, Rady Children's Hospital of San Diego, San Diego, CA, USA
| | - Shraddha Piparia
- Division of Pediatric Respiratory Medicine, Department of Pediatrics, University of California San Diego, San Diego, CA, USA
| | - Kelan G Tantisira
- Division of Pediatric Respiratory Medicine, Department of Pediatrics, University of California San Diego, San Diego, CA, USA
- Division of Pediatric Respiratory Medicine, Department of Pediatrics, Rady Children's Hospital of San Diego, San Diego, CA, USA
| |
Collapse
|
2
|
Ochoa‐Avilés C, Ochoa‐Avilés A, Rivas‐Párraga R, Escandón S, Santos‐Jesus TD, Silva MDJ, Leão V, Salinas M, Vicuña Y, Baldeón L, Molina‐Cando MJ, Morillo D, Machuca M, Rodas C, Figueiredo C, Neira VA. Mother's smoking habits affects IL10 methylation but not asthma in Ecuadorian children. Mol Genet Genomic Med 2024; 12:e2438. [PMID: 38666495 PMCID: PMC11046467 DOI: 10.1002/mgg3.2438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 04/29/2024] Open
Abstract
There is no evidence evaluating the IL10 epigenetic upregulation among mestizo children in a high-altitude Andean city in Latin America. OBJECTIVE To identify polymorphisms and methylation profiles in the IL10 gene associated with asthma in children aged 5 to 11. METHODS A case-control study was conducted with asthmatic and non-asthmatic children aged 5 to 11 years in Cuenca-Ecuador. Data on allergic diseases and risk factors were collected through a questionnaire for parents. Atopy was measured by skin prick test (SPT) to relevant aeroallergens. Three IL10 single nucleotide polymorphisms were evaluated in all participants, and methylation analysis was performed in 54 participants. Association between risk factors, allergic diseases and genetic factors were estimated using multivariate logistic regression. RESULTS The results of polymorphisms showed no differences between cases and controls when comparing the SNPs rs3024495, rs3024496, rs1800896 allelic and genotypic frequencies. In the methylation analysis, no differences in the IL10 methylation profile were found between cases and controls; however, the multivariate analysis showed an association between the mother's smoking habits and the IL10 methylation profile. CONCLUSION Smoking habit could be essential as an environmental exposure factor in regulating gene expression in children with asthma.
Collapse
Affiliation(s)
- Cristina Ochoa‐Avilés
- Departamento de BiocienciasUniversidad de CuencaCuencaAzuayEcuador
- Departamento de Biorregulação, Instituto de Ciências da SaúdeUniversidade Federal da BahiaSalvadorBahiaBrazil
| | | | - Roque Rivas‐Párraga
- Departamento de BiocienciasUniversidad de CuencaCuencaAzuayEcuador
- Biomass to Resources GroupUniversidad Regional Amazónica IkiamTenaNapoEcuador
| | - Samuel Escandón
- Departamento de BiocienciasUniversidad de CuencaCuencaAzuayEcuador
| | - Talita Dos Santos‐Jesus
- Departamento de Biorregulação, Instituto de Ciências da SaúdeUniversidade Federal da BahiaSalvadorBahiaBrazil
| | - Milca de J. Silva
- Departamento de Biorregulação, Instituto de Ciências da SaúdeUniversidade Federal da BahiaSalvadorBahiaBrazil
| | - Valderiene Leão
- Departamento de Biorregulação, Instituto de Ciências da SaúdeUniversidade Federal da BahiaSalvadorBahiaBrazil
| | - Marco Salinas
- Biomass to Resources GroupUniversidad Regional Amazónica IkiamTenaNapoEcuador
| | - Yosselin Vicuña
- Instituto de Investigación en Biomedicina Facultad de Ciencias MédicasUniversidad Central del EcuadorQuitoPichinchaEcuador
| | - Lucy Baldeón
- Instituto de Investigación en Biomedicina Facultad de Ciencias MédicasUniversidad Central del EcuadorQuitoPichinchaEcuador
| | - María José Molina‐Cando
- Departamento de BiocienciasUniversidad de CuencaCuencaAzuayEcuador
- Facultad de MedicinaUniversidad Internacional del EcuadorQuitoPichinchaEcuador
| | - Diana Morillo
- Departamento de BiocienciasUniversidad de CuencaCuencaAzuayEcuador
- Facultad de MedicinaUniversidad Internacional del EcuadorQuitoPichinchaEcuador
| | - Marcos Machuca
- Facultad de MedicinaUniversidad del AzuayCuencaAzuayEcuador
| | - Claudia Rodas
- Facultad de MedicinaUniversidad del AzuayCuencaAzuayEcuador
| | - Camila Figueiredo
- Departamento de Biorregulação, Instituto de Ciências da SaúdeUniversidade Federal da BahiaSalvadorBahiaBrazil
| | - Vivian Alejandra Neira
- Departamento de BiocienciasUniversidad de CuencaCuencaAzuayEcuador
- Facultad de MedicinaUniversidad del AzuayCuencaAzuayEcuador
| |
Collapse
|
3
|
Slob EMA, Termote JUM, Nijkamp JW, van der Kamp HJ, van den Akker ELT. Safety of Antenatal Predniso(lo)ne and Dexamethasone on Fetal, Neonatal and Childhood Outcomes: A Systematic Review. J Clin Endocrinol Metab 2024; 109:e1328-e1335. [PMID: 37715964 DOI: 10.1210/clinem/dgad547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/09/2023] [Accepted: 09/14/2023] [Indexed: 09/18/2023]
Abstract
CONTEXT Due to ethical considerations, antenatal dose finding for prednisolone and dexamethasone in pregnant women is limited, leading to a knowledge gap. OBJECTIVE In order to guide the clinician in weighing benefits vs risks, the aim is to systematically review the current literature on the side effects of antenatal predniso(lo)ne and dexamethasone use on the fetus, newborn, and (pre)pubertal child. EVIDENCE ACQUISITION The search was performed in PubMed/MEDLINE and Embase using prespecified keywords and Medical Subject Headings. This systematic review investigated studies published until August 2022, with the following inclusion criteria: studies were conducted in humans and assessed side effects of long-term antenatal predniso(lo)ne and dexamethasone use during at least one of the trimesters on the child during the fetal period, neonatal phase, and during childhood. EVIDENCE SYNTHESIS In total, 328 papers in PubMed and 193 in Embase were identified. Fifteen studies were eligible for inclusion. Seven records were added through references. Antenatal predniso(lo)ne use may be associated with lower gestational age, but was not associated with miscarriages and stillbirths, congenital abnormalities, differences in blood pressure or low blood glucose levels at birth, or with low bone mass, long-term elevated cortisol and cortisone, or high blood pressure at prepubertal age. Increased risks of antenatal dexamethasone use include association with miscarriages and stillbirths, and from age 16 years, associations with disturbed insulin secretion and higher glucose and cholesterol levels. CONCLUSIONS Based on the limited evidence found, predniso(lo)ne may have less side effects compared with dexamethasone in short- and long-term outcomes. Current literature shows minimal risk of side effects in the newborn from administration of a prenatal predniso(lo)ne dose of up to 10 mg per day.
Collapse
Affiliation(s)
- Elise M A Slob
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
- Department of Clinical Pharmacy, Haaglanden Medical Center, P.O. Box 432, 2501 CK The Hague, The Netherlands
| | - Jacqueline U M Termote
- Department of Neonatology, Woman and Baby Division, Wilhelmina Children's Hospital-University Medical Center, P.O. Box 85090, 3508 AB Utrecht, The Netherlands
| | - Janna W Nijkamp
- Department of Obstetrics, Women and Baby Division, Birth Centre Wilhelmina Children's Hospital, University Medical Center Utrecht, P.O. Box 85090, 3508 AB Utrecht, The Netherlands
| | - Hetty J van der Kamp
- Department of Pediatric Endocrinology, Wilhelmina Children's Hospital, University Medical Center Utrecht, P.O. Box 85090, 3508 AB Utrecht, The Netherlands
| | - Erica L T van den Akker
- Department of Pediatrics, Division of Endocrinology, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
4
|
Adikusuma W, Chou WH, Lin MR, Ting J, Irham LM, Perwitasari DA, Chang WP, Chang WC. Identification of Druggable Genes for Asthma by Integrated Genomic Network Analysis. Biomedicines 2022; 10:biomedicines10010113. [PMID: 35052792 PMCID: PMC8773254 DOI: 10.3390/biomedicines10010113] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 02/01/2023] Open
Abstract
Asthma is a common and heterogeneous disease characterized by chronic airway inflammation. Currently, the two main types of asthma medicines are inhaled corticosteroids and long-acting β2-adrenoceptor agonists (LABAs). In addition, biological drugs provide another therapeutic option, especially for patients with severe asthma. However, these drugs were less effective in preventing severe asthma exacerbation, and other drug options are still limited. Herein, we extracted asthma-associated single nucleotide polymorphisms (SNPs) from the genome-wide association studies (GWAS) and phenome-wide association studies (PheWAS) catalog and prioritized candidate genes through five functional annotations. Genes enriched in more than two categories were defined as “biological asthma risk genes.” Then, DrugBank was used to match target genes with FDA-approved medications and identify candidate drugs for asthma. We discovered 139 biological asthma risk genes and identified 64 drugs targeting 22 of these genes. Seven of them were approved for asthma, including reslizumab, mepolizumab, theophylline, dyphylline, aminophylline, oxtriphylline, and enprofylline. We also found 17 drugs with clinical or preclinical evidence in treating asthma. In addition, eleven of the 40 candidate drugs were further identified as promising asthma therapy. Noteworthy, IL6R is considered a target for asthma drug repurposing based on its high target scores. Through in silico drug repurposing approach, we identified sarilumab and satralizumab as the most promising drug for asthma treatment.
Collapse
Affiliation(s)
- Wirawan Adikusuma
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan; (W.A.); (W.-H.C.); (M.-R.L.); (J.T.)
- Department of Pharmacy, Faculty of Health Science, University of Muhammadiyah Mataram, Mataram 83127, Indonesia
| | - Wan-Hsuan Chou
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan; (W.A.); (W.-H.C.); (M.-R.L.); (J.T.)
| | - Min-Rou Lin
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan; (W.A.); (W.-H.C.); (M.-R.L.); (J.T.)
| | - Jafit Ting
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan; (W.A.); (W.-H.C.); (M.-R.L.); (J.T.)
| | - Lalu Muhammad Irham
- Faculty of Pharmacy, University of Ahmad Dahlan, Yogyakarta 55164, Indonesia; (L.M.I.); (D.A.P.)
| | - Dyah Aryani Perwitasari
- Faculty of Pharmacy, University of Ahmad Dahlan, Yogyakarta 55164, Indonesia; (L.M.I.); (D.A.P.)
| | - Wei-Pin Chang
- School of Health Care Administration, College of Management, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: (W.-P.C.); (W.-C.C.)
| | - Wei-Chiao Chang
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan; (W.A.); (W.-H.C.); (M.-R.L.); (J.T.)
- TMU Research Center of Cancer Translational Medicine, Taipei 11031, Taiwan
- Department of Pharmacy, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Integrative Research Center for Critical Care, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Department of Pharmacology, National Defense Medical Center, Taipei 11490, Taiwan
- Correspondence: (W.-P.C.); (W.-C.C.)
| |
Collapse
|
5
|
Lommatzsch M. Immune Modulation in Asthma: Current Concepts and Future Strategies. Respiration 2020; 99:566-576. [PMID: 32512570 DOI: 10.1159/000506651] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 12/20/2022] Open
Abstract
Asthma treatment concepts have profoundly changed over the last 20 years, from standard therapeutic regimens for all patients with asthma towards individually tailored interventions targeting treatable traits ("precision medicine"). A precise and highly effective immune modulation with minimal adverse effects plays a central role in this new concept. Recently, there have been major advances in the treatment of asthma with immune-modulatory compounds. One example is the approval of several highly potent biologics for the treatment of severe asthma. New immune-modulatory strategies are expected to enter clinical practice in the future; these innovations will be especially important for patients with treatment-resistant asthma.
Collapse
Affiliation(s)
- Marek Lommatzsch
- Abteilung für Pneumologie/Interdisziplinäre Internistische Intensivstation, Medizinische Klinik I, Zentrum für Innere Medizin, Universitätsmedizin Rostock, Rostock, Germany,
| |
Collapse
|
6
|
Huo Y, Zhang HY. Genetic Mechanisms of Asthma and the Implications for Drug Repositioning. Genes (Basel) 2018; 9:genes9050237. [PMID: 29751569 PMCID: PMC5977177 DOI: 10.3390/genes9050237] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/21/2018] [Accepted: 04/26/2018] [Indexed: 12/20/2022] Open
Abstract
Asthma is a chronic disease that is caused by airway inflammation. The main features of asthma are airway hyperresponsiveness (AHR) and reversible airway obstruction. The disease is mainly managed using drug therapy. The current asthma drug treatments are divided into two categories, namely, anti-inflammatory drugs and bronchodilators. However, disease control in asthma patients is not very efficient because the pathogenesis of asthma is complicated, inducing factors that are varied, such as the differences between individual patients. In this paper, we delineate the genetic mechanisms of asthma, and present asthma-susceptible genes and genetic pharmacology in an attempt to find a diagnosis, early prevention, and treatment methods for asthma. Finally, we reposition some clinical drugs for asthma therapy, based on asthma genetics.
Collapse
Affiliation(s)
- Yue Huo
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hong-Yu Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
7
|
Qiu W, Guo F, Glass K, Yuan GC, Quackenbush J, Zhou X, Tantisira KG. Differential connectivity of gene regulatory networks distinguishes corticosteroid response in asthma. J Allergy Clin Immunol 2017; 141:1250-1258. [PMID: 28736268 DOI: 10.1016/j.jaci.2017.05.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/02/2017] [Accepted: 05/03/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Variations in drug response between individuals have prevented us from achieving high drug efficacy in treating many complex diseases, including asthma. Genetics plays an important role in accounting for such interindividual variations in drug response. However, systematic approaches for addressing how genetic factors and their regulators determine variations in drug response in asthma treatment are lacking. OBJECTIVE We sought to identify key transcriptional regulators of corticosteroid response in asthma using a novel systems biology approach. METHODS We used Passing Attributes between Networks for Data Assimilations (PANDA) to construct the gene regulatory networks associated with good responders and poor responders to inhaled corticosteroids based on a subset of 145 white children with asthma who participated in the Childhood Asthma Management Cohort. PANDA uses gene expression profiles and published relationships among genes, transcription factors (TFs), and proteins to construct the directed networks of TFs and genes. We assessed the differential connectivity between the gene regulatory network of good responders versus that of poor responders. RESULTS When compared with poor responders, the network of good responders has differential connectivity and distinct ontologies (eg, proapoptosis enriched in network of good responders and antiapoptosis enriched in network of poor responders). Many of the key hubs identified in conjunction with clinical response are also cellular response hubs. Functional validation demonstrated abrogation of differences in corticosteroid-treated cell viability following siRNA knockdown of 2 TFs and differential downstream expression between good responders and poor responders. CONCLUSIONS We have identified and validated multiple TFs influencing asthma treatment response. Our results show that differential connectivity analysis can provide new insights into the heterogeneity of drug treatment effects.
Collapse
Affiliation(s)
- Weiliang Qiu
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Feng Guo
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Kimberly Glass
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Guo Cheng Yuan
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Mass; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Mass
| | - John Quackenbush
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Mass; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Mass
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Kelan G Tantisira
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass.
| |
Collapse
|
8
|
Teixeira HMP, Alcantara-Neves NM, Barreto M, Figueiredo CA, Costa RS. Adenylyl cyclase type 9 gene polymorphisms are associated with asthma and allergy in Brazilian children. Mol Immunol 2017; 82:137-145. [PMID: 28076799 DOI: 10.1016/j.molimm.2017.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/21/2016] [Accepted: 01/01/2017] [Indexed: 01/07/2023]
Abstract
Asthma is a chronic inflammatory disease of the respiratory tract. This heterogeneous disease is caused by the interaction of interindividual genetic variability and environmental factors. The gene adenylyl cyclase type 9 (ADCY9) encodes a protein called adenylyl cyclase (AC), responsible for producing the second messenger cyclic AMP (cAMP). cAMP is produced by T regulatory cells and is involved in the down-regulation of T effector cells. Failures in cAMP production may be related to an imbalance in the regulatory immune response, leading to immune-mediated diseases, such as allergic disorders. The aim of this study was to investigate how polymorphisms in the ADCY9 are associated with asthma and allergic markers. The study comprised 1309 subjects from the SCAALA (Social Changes Asthma and Allergy in Latin America) program. Genotyping was accomplished using the Illumina 2.5 Human Omni bead chip. Logistic regression was used to assess the association between allergy markers and ADCY9 variation in PLINK 1.07 software with adjustments for sex, age, helminth infection and ancestry markers. The ADCY9 candidate gene was associated with different phenotypes, such as asthma, specific IgE, skin prick test, and cytokine production. Among 133 markers analyzed, 29 SNPs where associated with asthma and allergic markers in silico analysis revealed the functional impact of the 6 SNPs on ADCY9 expression. It can be concluded that polymorphisms in the ADCY9 gene are significantly associated with asthma and/or allergy markers. We believe that such polymorphisms may lead to increased expression of adenylyl cyclase with a consequent increase in immunoregulatory activity. Therefore, these SNPs may offer an impact on the occurrence of these conditions in admixture population from countries such as Brazil.
Collapse
Affiliation(s)
- Helena M P Teixeira
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Bahia, Brazil
| | | | - Maurício Barreto
- Instituto de Saúde Coletiva, Universidade Federal da Bahia, Bahia, Brazil
| | - Camila A Figueiredo
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Bahia, Brazil
| | - Ryan S Costa
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Bahia, Brazil.
| |
Collapse
|
9
|
Abstract
Genome-wide association studies (GWAS) have been employed in the field of allergic disease, and significant associations have been published for nearly 100 asthma genes/loci. An outcome of GWAS in allergic disease has been the formation of national and international collaborations leading to consortia meta-analyses, and an appreciation for the specificity of genetic associations to sub-phenotypes of allergic disease. Molecular genetics has undergone a technological revolution, leading to next-generation sequencing strategies that are increasingly employed to hone in on the causal variants associated with allergic diseases. Unmet needs include the inclusion of diverse cohorts and strategies for managing big data.
Collapse
Affiliation(s)
- Romina A Ortiz
- Department of Medicine, The Johns Hopkins Asthma and Allergy Center, 5501 Hopkins Bayview Circle, Room 3A.62, Baltimore, MD 21224, USA
| | - Kathleen C Barnes
- Department of Medicine, The Johns Hopkins Asthma and Allergy Center, 5501 Hopkins Bayview Circle, Room 3A.62, Baltimore, MD 21224, USA.
| |
Collapse
|
10
|
Munro CL. Individual genetic and genomic variation: a new opportunity for personalized nursing interventions. J Adv Nurs 2014; 71:35-41. [DOI: 10.1111/jan.12552] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2014] [Indexed: 12/16/2022]
Affiliation(s)
- Cindy L. Munro
- University of South Florida College of Nursing; Tampa Florida USA
| |
Collapse
|