1
|
Po J, Morrison J, Marian B, Chen Z, James Gauderman W, Garcia E. Gene-Air Pollution Interaction and Diversity of Genetic Sampling: The Southern California Children's Health Study. Genet Epidemiol 2025; 49:e70000. [PMID: 39865338 DOI: 10.1002/gepi.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/18/2024] [Accepted: 01/03/2025] [Indexed: 01/28/2025]
Abstract
Gene-environment interactions have been observed for childhood asthma, however few have been assessed in ethnically diverse populations. Thus, we examined how polygenic risk score (PRS) modifies the association between ambient air pollution exposure (nitrogen dioxide [NO2], ozone, particulate matter < 2.5 and < 10 μm) and childhood asthma incidence in a diverse cohort. Participants (n = 1794) were drawn from the Southern California Children's Health Study, a multi-wave prospective cohort followed from 4th to 12th grade. PRS was developed using single nucleotide polymorphisms previously associated with childhood asthma. PRS-asthma associations and PRS-air pollutant interactions were estimated using Poisson regression. An interquartile range PRS increase was associated with 36% (95% CI: 9%, 70%) higher asthma incidence among non-Hispanic children, but not associated with asthma among Hispanic children (rate ratio: 0.81 [95% CI: 0.62, 1.04]). NO2-PRS interaction was borderline significant in the overall sample (coefficient: 0.23 [95% CI: -0.03, 0.49]). Limited evidence was observed for a positive interaction between PRS and NO2 exposure associated with asthma incidence; however, the literature-based PRS was not associated with asthma among Hispanic participants. Equitable, diverse genetic sampling approaches are needed to better identify clinically relevant SNPs in this population.
Collapse
Grants
- This work was supported by the National Institute of Environmental Health Sciences (grant # P30ES007048). The C.H.S. was supported by the National Institute of Environmental Health Sciences (grants P01ES011627, R01ES021801, R01ES023262, P01ES009581, P01ES022845, R01ES016535, R03ES014046, P50CA180905, R01HL061768, R01HL076647, R01HL087680, RC2HL101651, and R00ES027870), the Environmental Protection Agency (grants RD83544101, R826708, RD831861, and R831845), and the Hastings Foundation.
Collapse
Affiliation(s)
- Justine Po
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - John Morrison
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Brittney Marian
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Zhanghua Chen
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - W James Gauderman
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Erika Garcia
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| |
Collapse
|
2
|
Radbel J, Rebuli ME, Kipen H, Brigham E. Indoor air pollution and airway health. J Allergy Clin Immunol 2024; 154:835-846. [PMID: 39182629 DOI: 10.1016/j.jaci.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Because of the disproportionate amount of time that people spend indoors and the complexities of air pollutant exposures found there, indoor air pollution is a growing concern for airway health. Both infiltration of outdoor air pollution into the indoor space and indoor sources (such as smoke from tobacco products, cooking or heating practices and combustion of associated fuels, and household materials) contribute to unique exposure mixtures. Although there is substantial literature on the chemistry of indoor air pollution, research focused on health effects is only beginning to emerge and remains an important area of need to protect public health. We provide a review of emerging literature spanning the past 3 years and relating indoor air exposures to airway health, with a specific focus on the impact of either individual pollutant exposures or common combustion sources on the lower airways. Factors defining susceptibility and/or vulnerability are reviewed with consideration for priority populations and modifiable risk factors that may be targeted to advance health equity.
Collapse
Affiliation(s)
- Jared Radbel
- Division of Pulmonary and Critical Care Medicine, Rutgers Robert Wood Johnson University, New Brunswick, NJ
| | - Meghan E Rebuli
- Department of Pediatrics and Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina, Chapel Hill, NC
| | - Howard Kipen
- Department of Environmental and Occupational Health and Justice, Rutgers University, Piscataway, NJ
| | - Emily Brigham
- Division of Respirology, University of British Columbia, Vancouver, British Columbia, Canada; Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada.
| |
Collapse
|
3
|
Zeng X, Tian G, Zhu J, Yang F, Zhang R, Li H, An Z, Li J, Song J, Jiang J, Liu D, Wu W. Air pollution associated acute respiratory inflammation and modification by GSTM1 and GSTT1 gene polymorphisms: a panel study of healthy undergraduates. Environ Health 2023; 22:14. [PMID: 36703205 PMCID: PMC9881318 DOI: 10.1186/s12940-022-00954-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Epidemiological evidence has linked air pollution with adverse respiratory outcomes, but the mechanisms underlying susceptibility to air pollution remain unclear. This study aimed to investigate the role of glutathione S-transferase (GST) polymorphism in the association between air pollution and lung function levels. A total of 75 healthy young volunteers aged 18-20 years old were recruited for six follow-up visits and examinations. Spirometry was conducted to obtain lung function parameters such as forced vital capacity (FVC), and forced expiratory volume in 1 s (FEV1). Nasal fluid concentrations of interleukin-6 (IL-6), interleukin-8 (IL-8), tumor necrosis factor-α (TNF-α), and 8-epi-prostaglandin F2α (8-epi-PGF2a) were measured using ELISA kits. Linear mixed-effect models were used to evaluate the association of air pollutants with respiratory outcomes. Additionally, polymorphisms of glutathione S-transferase mu 1 (GSTM1) and glutathione S-transferase theta 1 (GSTT1) were estimated to explore its role in the association between air pollutants and lung function. We found that short-term exposure to atmospheric particulates such as PM2.5 and PM10 can cause an increase in nasal biomarkers of inflammation, oxidative stress, and lung function, while air gaseous pollutant exposure is linked with decreased lung function, except for CO. Stratification analyses showed that an increase in nasal inflammatory cytokines caused by exposure to atmospheric particulates is more obvious in subjects with GSTM1-sufficient (GSTM1+) than GSTM1-null (GSTM1-), while elevated lung function levels due to air particles are more significant in subjects with the genotype of GSTM1- when compared to GSTM1+. As for air gaseous pollutants, decreased lung function levels caused by O3, SO2, and NO2 exposure is more manifest in subjects with the genotype of GSTM1- compared to GSTM1+. Taken together, short-term exposure to air pollutants is associated with alterations in nasal biomarkers and lung function levels in young healthy adults, and susceptible genotypes play an important mediation role in the association between exposure to air pollutants and inflammation, oxidative stress, and lung function levels.
Collapse
Affiliation(s)
- Xiang Zeng
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan, 453003, China
- School of Public Health, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, Zhejiang Province, China
| | - Ge Tian
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan, 453003, China
| | - Jingfang Zhu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan, 453003, China
| | - Fuyun Yang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan, 453003, China
| | - Rui Zhang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan, 453003, China
| | - Huijun Li
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan, 453003, China
| | - Zhen An
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan, 453003, China
| | - Juan Li
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan, 453003, China
| | - Jie Song
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan, 453003, China
| | - Jing Jiang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan, 453003, China
| | - Dongling Liu
- School of Basic Medical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, Zhejiang Province, China
| | - Weidong Wu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan, 453003, China.
| |
Collapse
|
4
|
Song J, Qu R, Sun B, Wang Y, Chen R, Kan H, An Z, Wu H, Li J, Jiang J, Zhang Y, Wu W. Acute effects of ambient nitrogen dioxide exposure on serum biomarkers of nervous system damage in healthy older adults. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114423. [PMID: 36525948 DOI: 10.1016/j.ecoenv.2022.114423] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Ambient nitrogen dioxide (NO2)-induced adverse health effects have been studied, but documented evidence on neural systems is limited. This study aimed to determine the acute effect of NO2 exposure on nervous system damage biomarker levels in healthy older adults. Five rounds of follow-up among 34 healthy retired people were scheduled from December 2018 to April 2019 in Xinxiang, China. The real-time NO2 concentrations were measured using a fixed site monitor. Serum samples were acquired during each round to measure nervous system damage biomarker levels: brain-derived neurotrophic factor (BDNF), neurofilament light chain (NfL), neuron-specific enolase (NSE), protein gene product 9.5 (PGP9.5), and S100 calcium-binding protein B (S100B). A linear mixed-effect model was incorporated to analyze the association between short-term NO2 exposure and serum concentrations of the above-mentioned biomarkers. Stratification analysis based on sex, educational attainment, glutathione S-transferase theta 1 gene (GSTT1) polymorphism, and physical activity intensity was conducted to explore their potential modification effect. The NO2 concentration ranged from 34.7 to 59.0 µg/m3 during the study period. Acute exposure to ambient NO2 was significantly associated with elevated serum levels of NfL, PGP9.5, and BDNF. In response to a 10 µg/m3 increase in NO2 concentration, NfL and PGP9.5 levels increased by 76 % (95 % confidence interval [CI]: 12-140 %) and 54 % (95 % CI: 1-107 %) on the lag0 day, respectively, while BDNF levels increased by 49 % (95 % CI: 2-96 %) at lag4 day. The estimated effect of NO2 on NSE levels in GSTT1-sufficient participants was significantly higher than that in GSTT1-null participants. Intriguingly, the estimation of NO2 on PGP9.5 levels in females was significantly higher than that in males. Most two-pollutant models showed robust results, except for O3, which might have had confounding effects on NO2-induced BDNF stimulation. In summary, acute exposure to NO2 was associated with increased levels of serum nervous system damage biomarker levels including NFL, PGP9.5, and BDNF. The present study provided insights into NO2 exposure-induced adverse neural effects.
Collapse
Affiliation(s)
- Jie Song
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Rongrong Qu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Beibei Sun
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Yinbiao Wang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Renjie Chen
- School of Public Health, Fudan University, Shanghai, China
| | - Haidong Kan
- School of Public Health, Fudan University, Shanghai, China
| | - Zhen An
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Hui Wu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Juan Li
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Jing Jiang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Yange Zhang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Weidong Wu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China.
| |
Collapse
|
5
|
Kelchtermans J, Hakonarson H. The role of gene-ambient air pollution interactions in paediatric asthma. Eur Respir Rev 2022; 31:220094. [PMID: 36384702 PMCID: PMC9724879 DOI: 10.1183/16000617.0094-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022] Open
Abstract
Globally, asthma prevention and treatment remain a challenge. Ambient air pollution (AAP) is an environmental risk factor of special interest in asthma research. AAP is poorly defined and has been subdivided either by the origin of the air pollution or by the specific bioactive compounds. The link between AAP exposure and asthma exacerbations is well established and has been extensively reviewed. In this narrative review, we discuss the specific genetic variants that have been associated with increased AAP sensitivity and impact in paediatric asthma. We highlight the relative importance of variants associated with genes with a role in oxidant defences and the nuclear factor-κB pathway supporting a potential central role for these pathways in AAP sensitivity.
Collapse
Affiliation(s)
- Jelte Kelchtermans
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- The Center of Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Pulmonary Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hakon Hakonarson
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- The Center of Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Pulmonary Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
6
|
Dai X, Dharmage SC, Lodge CJ. Interactions between glutathione S-transferase genes and household air pollution on asthma and lung function. Front Mol Biosci 2022; 9:955193. [PMID: 36250015 PMCID: PMC9557149 DOI: 10.3389/fmolb.2022.955193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022] Open
Abstract
Oxidative stress is one of the main pathophysiological mechanisms for chronic respiratory disease. Glutathione S-transferase (GST) genes play important roles in antioxidant defences and may influence respiratory health. Although there is not consistent evidence that the three commonly studied genes of GSTM1, GSTT1 and GSTP1 are associated directly with respiratory outcomes, they seem to be related to disease susceptibility if exposure interactions are taken into account. Exposure to household air pollution may be particularly important in increasing lung oxidative stress. This review summarizes the relationships between GST genes, household air pollution and asthma and impaired lung function. Our findings support a role for GST polymorphisms in susceptibility to asthma and impaired lung function via oxidative stress pathways. Future research should additionally consider the role of gene-gene interactions, multiple environmental exposures, and gender in these complex associations, that are involved in maintaining antioxidant defences and lung health.
Collapse
|
7
|
Keswani A, Akselrod H, Anenberg SC. Health and Clinical Impacts of Air Pollution and Linkages with Climate Change. NEJM EVIDENCE 2022; 1:EVIDra2200068. [PMID: 38319260 DOI: 10.1056/evidra2200068] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Air Pollution Impacts and Climate Change LinksAs part of the NEJM Group series on climate change, Keswani and colleagues review the linkages between climate change and air pollution and suggest strategies that clinicians may use to mitigate the adverse health impacts of air pollution.
Collapse
Affiliation(s)
- Anjeni Keswani
- Division of Allergy/Immunology, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Hana Akselrod
- Division of Infectious Diseases, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Susan C Anenberg
- George Washington University Milken Institute School of Public Health, Washington, DC
| |
Collapse
|
8
|
Sun B, Song J, Wang Y, Jiang J, An Z, Li J, Zhang Y, Wang G, Li H, Alexis NE, Jaspers I, Wu W. Associations of short-term PM 2.5 exposures with nasal oxidative stress, inflammation and lung function impairment and modification by GSTT1-null genotype: A panel study of the retired adults. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117215. [PMID: 33932759 DOI: 10.1016/j.envpol.2021.117215] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
PM2.5 (particulate matter ≤2.5 μm in aerodynamic diameter) is a major urban air pollutant worldwide. Its effects on the respiratory system of the susceptible population have been less characterized. This study aimed to estimate the association of short-term PM2.5 exposure with respiratory outcomes of the retired adults, and to examine whether these associations were stronger among the subjects with GSTT-null genotype. 32 healthy subjects (55-77 years) were recruited for five follow-up examinations. Ambient concentrations of PM2.5 were monitored consecutively for 7 days prior to physical examination. Pulmonary outcomes including forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1), peak expiratory flow (PEF), and fractional exhaled nitric oxide (FeNO), and nasal fluid concentrations of 8-epi-prostaglandin F2 alpha (8-epi-PGF2α), tumor necrosis factor-α (TNF-α), interleukin-8 (IL-8) and IL-1β were measured. A linear mixed-effect model was introduced to evaluate the associations of PM2.5 concentrations with respiratory outcomes. Additionally, GSTT1 genotype-based stratification was performed to characterize modification on PM2.5-related respiratory outcomes. We found that a 10 μg/m3 increase in PM2.5 was associated with decreases of 0.52 L (95% confidence interval [CI]: -1.04, -0.002), 0.64 L (95% CI: -1.13, -0.16), 0.1 (95% CI: -0.23, 0.04) and 2.87 L/s (95% CI: -5.09, -0.64) in FVC, FEV1, FEV1/FVC ratio and PEF at lag 2, respectively. Meanwhile, marked increases of 80.82% (95% CI: 5.13%, 156.50%) in IL-8, 77.14% (95% CI: 1.88%, 152.40%) in IL-1β and 67.87% (95% CI: 14.85%, 120.88%) in 8-epi-PGF2α were observed as PM2.5 concentration increased by 10 μg/m3 at lag 2. Notably, PM2.5-associated decreases in FVC and PEF and increase in FeNO were stronger among the subjects with GSTT1-null genotype. In summary, short-term exposure to PM2.5 is associated with nasal inflammation, oxidative stress and lung function reduction in the retired subjects. Lung function reduction and inflammation are stronger among the subjects with GSTT1-null genotype.
Collapse
Affiliation(s)
- Beibei Sun
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, China
| | - Jie Song
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, China
| | - Ya Wang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, China
| | - Jing Jiang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, China
| | - Zhen An
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, China
| | - Juan Li
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, China
| | - Yange Zhang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, China
| | - Gui Wang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, China
| | - Huijun Li
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, China
| | - Neil E Alexis
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, NC, 27599, United States
| | - Ilona Jaspers
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, NC, 27599, United States
| | - Weidong Wu
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, China.
| |
Collapse
|
9
|
Dai X, Bui DS, Lodge C. Glutathione S-Transferase Gene Associations and Gene-Environment Interactions for Asthma. Curr Allergy Asthma Rep 2021; 21:31. [PMID: 33970355 DOI: 10.1007/s11882-021-01005-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE OF REVIEW Asthma is one of the most common chronic inflammatory airway diseases. Airway oxidative stress is defined as an imbalance between oxidative and antioxidative processes in the airways. There is evidence that chronic damage caused by oxidative stress may be involved in asthmatic inflammation and reduced lung function. Given their biological antioxidant function, the antioxidant genes in the glutathione S-transferase (GST) family are believed to be associated with development and progression of asthma. This review aims to summarize evidence on the relationship between GST gene polymorphisms and asthma and interactions with environmental exposures. RECENT FINDINGS The current evidence on the association between GST genes and asthma is still weak or inconsistent. Failure to account for environmental exposures may explain the lack of consistency. It is highly likely that environmental exposures interact with GST genes involved in the antioxidant pathway. According to current knowledge, carriers of GSTM1(rs366631)/T1(rs17856199) null genotypes and GSTP1 Val105 (rs1695) genotypes are more susceptible to environmental oxidative exposures and have a higher risk of asthma. Some doubt remains regarding the presence or absence of interactions with different environmental exposures in different study scenarios. The GST-environment interaction may depend on exposure type, asthma phenotype or endotype, ethnics, and other complex gene-gene interaction. Future studies could be improved by defining precise asthma endotypes, involving multiple gene-gene interactions, and increasing sample size and power. Although there is evidence for an interaction between GST genes, and environmental exposures in relation to asthma, results are not concordant. Further investigations are needed to explore the reasons behind the inconsistency.
Collapse
Affiliation(s)
- Xin Dai
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Level 3 207 Bouverie Street, Parkville, VIC, 3010, Australia
| | - Dinh S Bui
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Level 3 207 Bouverie Street, Parkville, VIC, 3010, Australia
| | - Caroline Lodge
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Level 3 207 Bouverie Street, Parkville, VIC, 3010, Australia.
| |
Collapse
|
10
|
Lifetime Risk Factors for Pre- and Post-Bronchodilator Lung Function Decline. A Population-based Study. Ann Am Thorac Soc 2021; 17:302-312. [PMID: 31800292 DOI: 10.1513/annalsats.201904-329oc] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Rationale: Interactions between early life and adult insults on lung function decline are not well understood, with most studies investigating prebronchodilator (pre-BD) FEV1 decline.Objectives: To investigate relationships between adult risk factors and pre- and post-BD lung function decline and their potential effect modification by early life and genetic factors.Methods: Multiple regression was used to examine associations between adult exposures (asthma, smoking, occupational exposures, traffic pollution, and obesity) and decline in both pre- and post-BD spirometry (forced expiratory volume in 1 s [FEV1], forced vital capacity [FVC], and FEV1/FVC) between ages 45 and 53 years in the Tasmanian Longitudinal Health Study (n = 857). Effect modification of these relationships by childhood respiratory risk factors, including low childhood lung function and GST (glutathione S-transferase) gene polymorphisms, was investigated.Results: Baseline asthma, smoking, occupational exposure to vapors/gases/dusts/fumes, and living close to traffic were associated with accelerated decline in both pre- and post-BD FEV1. These factors were also associated with FEV1/FVC decline. Occupational exposure to aromatic solvents was associated with pre-BD but not post-BD FEV1 decline. Maternal smoking accentuated the effect of personal smoking on pre- and post-BD FEV1 decline. Lower childhood lung function and having the GSTM1 null allele accentuated the effect of occupational exposure to vapors/gases/dusts/fumes and personal smoking on post-BD FEV1 decline. Incident obesity was associated with accelerated decline in FEV1 and more pronounced in FVC.Conclusions: This study provides new evidence for accentuation of individual susceptibility to adult risk factors by low childhood lung function, GSTM1 genotype, and maternal smoking.
Collapse
|
11
|
Abstract
The burden imposed by pollution falls more on those living in low-income and middle-income countries, affecting children more than adults. Most air pollution results from incomplete combustion and contains a mixture of particulate matter and gases. Air pollution exposure has negative impacts on respiratory health. This article concentrates on air pollution in 2 settings, the child's home and the ambient environment. There is an inextricable 2-way link between air pollution and climate change, and the effects of climate change on childhood respiratory health also are discussed.
Collapse
|
12
|
Rosário Filho NA, Urrutia-Pereira M, D'Amato G, Cecchi L, Ansotegui IJ, Galán C, Pomés A, Murrieta-Aguttes M, Caraballo L, Rouadi P, Chong-Neto HJ, Peden DB. Air pollution and indoor settings. World Allergy Organ J 2021; 14:100499. [PMID: 33510831 PMCID: PMC7806792 DOI: 10.1016/j.waojou.2020.100499] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 12/20/2022] Open
Abstract
Indoor environments contribute significantly to total human exposure to air pollutants, as people spend most of their time indoors. Household air pollution (HAP) resulting from cooking with polluting ("dirty") fuels, which include coal, kerosene, and biomass (wood, charcoal, crop residues, and animal manure) is a global environmental health problem. Indoor pollutants are gases, particulates, toxins, and microorganisms among others, that can have an impact especially on the health of children and adults through a combination of different mechanisms on oxidative stress and gene activation, epigenetic, cellular, and immunological systems. Air pollution is a major risk factor and contributor to morbidity and mortality from major chronic diseases. Children are significantly affected by the impact of the environment due to biological immaturity, prenatal and postnatal lung development. Poor air quality has been related to an increased prevalence of clinical manifestations of allergic asthma and rhinitis. Health professionals should increase their role in managing the exposure of children and adults to air pollution with better methods of care, prevention, and collective action. Interventions to reduce household pollutants may promote health and can be achieved with education, community, and health professional involvement.
Collapse
Key Words
- AR, allergic rhinitis
- Air pollutants
- BAL, bronchoalveolar lavage
- CO, carbon monoxide
- CO2, carbon dioxide
- COPD, chronic obstructive pulmonary disease
- DEPs, diesel exhaust particles
- Environmental pollution
- FEV1, forced expiratory volume
- FeNO, fractional exhaled nitric oxide
- GM-CSF, granulocyte and macrophage growth stimulating factor
- GST, glutathione S-transferase
- HAP, household air pollution
- HEPA, High Efficiency Particulate Arrestance
- ILC2, innate lymphoid cells
- Indoor air pollution
- NCD, non-communicable disease
- NO, nitric oxide
- NO2, nitrogen dioxide
- O3, ozone
- PAH, polycyclic aromatic hydrocarbons
- PM, particulate matter
- PMNs, polymorphonuclear leukocytes
- Pollution
- SO2, sulfur dioxide
- TRAP, Traffic-related air pollution
- TSLP, thymic stromal lymphopoietin
- VOCs, volatile organic compounds
Collapse
Affiliation(s)
| | | | - Gennaro D'Amato
- Division of Respiratory and Allergic Diseases, High Specialty Hospital A. Cardarelli, School of Specialization in Respiratory Diseases, Federico II University, Naples, Italy
| | - Lorenzo Cecchi
- Centre of Bioclimatology, University of Florence, Florence, Italy; SOS Allergy and Clinical Immunology, USL Toscana Centro Prato, Italy
| | | | - Carmen Galán
- Department of Botany, Ecology and Plant Physiology, International Campus of Excellence on Agrifood (ceiA3), University of Córdoba, Córdoba, Spain
| | - Anna Pomés
- Basic Research, Indoor Biotechnologies, Inc, Charlottesville, VA, United States
| | | | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Philip Rouadi
- Department of Otolaryngology- Head and Neck Surgery, Eye and Ear University Hospital, Beirut, Lebanon
| | - Herberto J. Chong-Neto
- Division of Allergy and Immunology, Department of Pediatrics, Federal University of Paraná, Curitiba, PR, Brazil
| | - David B. Peden
- UNC School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
13
|
Abstract
Globally, exposure to ambient air pollutants is responsible for premature mortality and is implicated in the development and exacerbation of several acute and chronic lung disease across all ages. In this article, we discuss the source apportionment of ambient pollutants and the respiratory health effects in humans. We specifically discuss the evidence supporting ambient pollution in the development of asthma and chronic obstructive pulmonary disease and acute exacerbations of each condition. Practical advice is given to health care providers in how to promote a healthy environment and advise patients with chronic conditions to avoid unsafe air quality.
Collapse
Affiliation(s)
- Gary Adamkiewicz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Jahred Liddie
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Jonathan M Gaffin
- Division of Pulmonary Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
14
|
Carlsen HK, Nyberg F, Torén K, Segersson D, Olin AC. Exposure to traffic-related particle matter and effects on lung function and potential interactions in a cross-sectional analysis of a cohort study in west Sweden. BMJ Open 2020; 10:e034136. [PMID: 33077557 PMCID: PMC7574932 DOI: 10.1136/bmjopen-2019-034136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVES To investigate the long-term effects of source-specific particle matter (PM) on lung function, effects of Surfactant Protein A (SP-A) and glutathione S-transferase (GST) genes GSTP1 and GSTT1 gene variants and effect modification by single-nucleotide polymorphism (SNP) genotype. DESIGN Cohort study with address-based annual PM exposure assigned from annual estimates of size (PM10, PM2.5 and PMBC) and source-specific (traffic, industry, marine traffic and wood burning) dispersion modelling. SETTING Gothenburg, Sweden. PARTICIPANTS The ADult-Onset asthma and NItric oXide Study had 6685 participants recruited from the general population, of which 5216 (78%) were included in the current study with information on all variables of interest. Mean age at the time of enrolment was 51.4 years (range 24-76) and 2427 (46.5%) were men. PRIMARY AND SECONDARY OUTCOME MEASURES The primary outcome was forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV1). Secondary outcome measures were effects and gene-environment interactions of SP-A and GSTT1 and GSTP1 genotypes. RESULTS Exposure to traffic-related PM10 and PM2.5 was associated with decreases in percent-predicted (% predicted) FEV1 by -0.48% (95% CI -0.89% to -0.07%) and -0.47% (95% CI -0.88% to -0.07%) per IQR 3.05 and 2.47 µg/m3, respectively, and with decreases in % predicted FVC by -0.46% (95% CI -0.83% to -0.08%) and -0.47% (95% CI -0.83% to -0.10%). Total and traffic-related PMBC was strongly associated with both FEV1 and FVC by -0.53 (95% CI -0.94 to -0.13%) and -0.43% (95% CI -0.77 to -0.09%) per IQR, respectively, for FVC, and similarly for FEV1. Minor allele carrier status for two GSTP1 SNPs and the GSTT1 null genotype were associated with decreases in % predicted lung function. Three SP-A SNPs showed effect modification with exposure to PM2.5 from industry and marine traffic. CONCLUSIONS PM exposure, specifically traffic related, was associated with FVC and FEV1 reductions and not modified by genotype. Genetic effect modification was suggested for industry and marine traffic PM2.5.
Collapse
Affiliation(s)
- Hanne Krage Carlsen
- Occupational and Environmental Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik Nyberg
- Occupational and Environmental Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Register Epidemiology, School of Public Health and Community Medicine, Sahlgrenska Academy, Gothenburg, Sweden
| | - Kjell Torén
- Occupational and Environmental Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - David Segersson
- Swedish Meteorological and Hydrological Institute, Norrkoping, Sweden
| | - Anna-Carin Olin
- Occupational and Environmental Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
15
|
Dai X, Dharmage SC, Abramson MJ, Erbas B, Bennett CM, Svanes C, Hui J, Axelrad C, Lowe AJ, Lodge CJ. Early life acetaminophen exposure, glutathione S-transferase genes, and development of adolescent asthma in a high-risk birth cohort. J Allergy Clin Immunol 2020; 146:1035-1044.e12. [PMID: 32289338 DOI: 10.1016/j.jaci.2020.03.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Although the impact of early life acetaminophen on asthma risk is still not clear, potential interactions with glutathione S-transferase (GST) genes due to reduced antioxidant function in particular polymorphisms, and possible impact on lung function, have never been investigated in adolescents. OBJECTIVE We aimed to investigate associations between early life acetaminophen use and adolescent asthma and lung function and to assess potential interactions by GST polymorphisms. METHODS Acetaminophen use was recorded 18 times up to age 2 years (n = 575 [92.7%]). Participants were genotyped for GST polymorphisms (GSTM1/T1/P1) (n = 429 [69.2%]). Asthma and lung function were measured at 12 (n = 365 [58.9%]) and 18 years (n = 413 [66.6%]). Regression models assessed associations and interactions. RESULTS Doubling of days of acetaminophen use was associated with reduced prebronchodilator FEV1/forced vital capacity (β coefficient, -0.10; 95% CI, -0.19 to -0.01) and midexpiratory flow (-0.09; 95% CI, -0.18 to 0) at 18 years, but this association was not found when restricted for nonrespiratory reasons, suggesting confounding by indication. However, in children with GSTM1 null and GSTT1 present, increasing acetaminophen use for nonrespiratory reasons was associated with reduced FEV1 and midexpiratory flow at 18 years (interaction between GSTM1/T1 and acetaminophen P < .05). Increased acetaminophen use was associated with asthma at 18 years for children with GSTP1 Ile/Ile (odds ratio, 1.66; 95% CI, 1.07 to 2.57), but not other GSTP1 genotypes. CONCLUSIONS These novel findings need to be investigated for consistency in other studies but suggest that children carrying risk genotypes may be susceptible to respiratory consequences from acetaminophen use.
Collapse
Affiliation(s)
- Xin Dai
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, the University of Melbourne, Melbourne, Australia
| | - Shyamali C Dharmage
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, the University of Melbourne, Melbourne, Australia; Centre for Food and Allergy Research, Murdoch Children's Research Institute, Melbourne, Australia.
| | - Michael J Abramson
- School of Public Health & Preventive Medicine, Monash University, Melbourne, Australia
| | - Bircan Erbas
- School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Catherine M Bennett
- Institute for Health Transformation, Deakin University, Melbourne, Australia
| | - Cecilie Svanes
- Centre for International Health, University of Bergen, Bergen, Norway; Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
| | - Jennie Hui
- Pathwest Laboratory Medicine of West Australia, Perth, Australia; School of Population and Global Health and School of Pathology and Laboratory Medicine, the University of Western Australia, Crawley, Australia
| | - Christine Axelrad
- Centre for Food and Allergy Research, Murdoch Children's Research Institute, Melbourne, Australia
| | - Adrian J Lowe
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, the University of Melbourne, Melbourne, Australia; Centre for Food and Allergy Research, Murdoch Children's Research Institute, Melbourne, Australia
| | - Caroline J Lodge
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, the University of Melbourne, Melbourne, Australia
| |
Collapse
|
16
|
Song J, Zhu J, Tian G, Li H, Li H, An Z, Jiang J, Fan W, Wang G, Zhang Y, Wu W. Short time exposure to ambient ozone and associated cardiovascular effects: A panel study of healthy young adults. ENVIRONMENT INTERNATIONAL 2020; 137:105579. [PMID: 32086080 DOI: 10.1016/j.envint.2020.105579] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
The evidence that exposure to ambient ozone (O3) causes acute cardiovascular effects appears inconsistent. A repeated-measure study with 61 healthy young volunteers was conducted in Xinxiang, Central China. Real-time concentrations of O3 were monitored. Cardiovascular outcomes including blood pressure (BP), heart rate (HR), serum levels of high sensitivity C-reactive protein (hs-CRP), 8-hydroxy-2'-deoxyguanosine (8-OHdG), tissue-type plasminogen activator (t-PA), and platelet-monocyte aggregation (PMA) were repeated measured. Linear mixed-effect models were used to analyze the association of ambient O3 with these cardiovascular outcomes. Additionally, the modifying effects of glutathione S-transferase mu 1 (GSTM1) and glutathione S-transferase theta 1 (GSTT1) polymorphisms were estimated to explore the potential mechanisms and role of the association between O3 exposure and the above cardiovascular outcomes. A 10 μg/m3 increase in O3 was associated with increases of 9.2 mmHg (95% confidence interval [CI]: 2.5, 15.9), 7.2 mmHg (95% CI: 0.8, 13.6), and 21.2 bpm (95% CI: 5.8, 36.6) in diastolic BP (DBP, lag1), mean arterial BP (MABP, lag1), and HR (lag01), respectively. Meanwhile, the serum concentrations of hs-CRP, 8-OHdG, and t-PA were all increased by O3 exposure, but the PMA level was decreased. Stratification analyses showed that the estimated effects of O3 on DBP, MABP, and HR in GSTM1-sufficient subjects were significantly higher than in GSTM1-null subjects. Moreover, GSTM1-null genotype enhanced O3-induced increases, albeit insignificant, in levels of serum hs-CRP, 8-OHdG, and t-PA compared with GSTM1-sufficient genotype. Insignificant increases in hs-CRP and t-PA were also detected in GSTT1-null subjects. Taken together, our findings indicate that acute exposure to ambient O3 induces autonomic alterations, systemic inflammation, oxidative stress, and fibrinolysis in healthy young subjects. GSTM1 genotype presents the trend of modifying O3-induced cardiovascular effects.
Collapse
Affiliation(s)
- Jie Song
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Jingfang Zhu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Ge Tian
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Haibin Li
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Huijun Li
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Zhen An
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Jing Jiang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Wei Fan
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Gui Wang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Yange Zhang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Weidong Wu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China.
| |
Collapse
|
17
|
Janssen-Heininger Y, Reynaert NL, van der Vliet A, Anathy V. Endoplasmic reticulum stress and glutathione therapeutics in chronic lung diseases. Redox Biol 2020; 33:101516. [PMID: 32249209 PMCID: PMC7251249 DOI: 10.1016/j.redox.2020.101516] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/20/2020] [Accepted: 03/20/2020] [Indexed: 02/07/2023] Open
Affiliation(s)
- Yvonne Janssen-Heininger
- Department of Pathology and Laboratory Medicine, University of Vermont, Larner College of Medicine, Burlington, VT, 05405, USA.
| | - Niki L Reynaert
- Department of Respiratory Medicine and School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center, Maastricht, the Netherlands
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, University of Vermont, Larner College of Medicine, Burlington, VT, 05405, USA
| | - Vikas Anathy
- Department of Pathology and Laboratory Medicine, University of Vermont, Larner College of Medicine, Burlington, VT, 05405, USA
| |
Collapse
|
18
|
Tang HHF, Sly PD, Holt PG, Holt KE, Inouye M. Systems biology and big data in asthma and allergy: recent discoveries and emerging challenges. Eur Respir J 2020; 55:13993003.00844-2019. [PMID: 31619470 DOI: 10.1183/13993003.00844-2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/12/2019] [Indexed: 12/15/2022]
Abstract
Asthma is a common condition caused by immune and respiratory dysfunction, and it is often linked to allergy. A systems perspective may prove helpful in unravelling the complexity of asthma and allergy. Our aim is to give an overview of systems biology approaches used in allergy and asthma research. Specifically, we describe recent "omic"-level findings, and examine how these findings have been systematically integrated to generate further insight.Current research suggests that allergy is driven by genetic and epigenetic factors, in concert with environmental factors such as microbiome and diet, leading to early-life disturbance in immunological development and disruption of balance within key immuno-inflammatory pathways. Variation in inherited susceptibility and exposures causes heterogeneity in manifestations of asthma and other allergic diseases. Machine learning approaches are being used to explore this heterogeneity, and to probe the pathophysiological patterns or "endotypes" that correlate with subphenotypes of asthma and allergy. Mathematical models are being built based on genomic, transcriptomic and proteomic data to predict or discriminate disease phenotypes, and to describe the biomolecular networks behind asthma.The use of systems biology in allergy and asthma research is rapidly growing, and has so far yielded fruitful results. However, the scale and multidisciplinary nature of this research means that it is accompanied by new challenges. Ultimately, it is hoped that systems medicine, with its integration of omics data into clinical practice, can pave the way to more precise, personalised and effective management of asthma.
Collapse
Affiliation(s)
- Howard H F Tang
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Australia .,Cambridge Baker Systems Genomics Initiative, Dept of Public Health and Primary Care, University of Cambridge, Cambridge, UK.,School of BioSciences, The University of Melbourne, Parkville, Australia
| | - Peter D Sly
- Queensland Children's Medical Research Institute, The University of Queensland, Brisbane, Australia.,Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Patrick G Holt
- Queensland Children's Medical Research Institute, The University of Queensland, Brisbane, Australia.,Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Kathryn E Holt
- Dept of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Australia.,London School of Hygiene and Tropical Medicine, London, UK
| | - Michael Inouye
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Australia.,Cambridge Baker Systems Genomics Initiative, Dept of Public Health and Primary Care, University of Cambridge, Cambridge, UK.,School of BioSciences, The University of Melbourne, Parkville, Australia.,The Alan Turing Institute, London, UK
| |
Collapse
|
19
|
Chia SB, Elko EA, Aboushousha R, Manuel AM, van de Wetering C, Druso JE, van der Velden J, Seward DJ, Anathy V, Irvin CG, Lam YW, van der Vliet A, Janssen-Heininger YMW. Dysregulation of the glutaredoxin/ S-glutathionylation redox axis in lung diseases. Am J Physiol Cell Physiol 2019; 318:C304-C327. [PMID: 31693398 DOI: 10.1152/ajpcell.00410.2019] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glutathione is a major redox buffer, reaching millimolar concentrations within cells and high micromolar concentrations in airways. While glutathione has been traditionally known as an antioxidant defense mechanism that protects the lung tissue from oxidative stress, glutathione more recently has become recognized for its ability to become covalently conjugated to reactive cysteines within proteins, a modification known as S-glutathionylation (or S-glutathiolation or protein mixed disulfide). S-glutathionylation has the potential to change the structure and function of the target protein, owing to its size (the addition of three amino acids) and charge (glutamic acid). S-glutathionylation also protects proteins from irreversible oxidation, allowing them to be enzymatically regenerated. Numerous enzymes have been identified to catalyze the glutathionylation/deglutathionylation reactions, including glutathione S-transferases and glutaredoxins. Although protein S-glutathionylation has been implicated in numerous biological processes, S-glutathionylated proteomes have largely remained unknown. In this paper, we focus on the pathways that regulate GSH homeostasis, S-glutathionylated proteins, and glutaredoxins, and we review methods required toward identification of glutathionylated proteomes. Finally, we present the latest findings on the role of glutathionylation/glutaredoxins in various lung diseases: idiopathic pulmonary fibrosis, asthma, and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Shi B Chia
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Evan A Elko
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Reem Aboushousha
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Allison M Manuel
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Cheryl van de Wetering
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Joseph E Druso
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Jos van der Velden
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - David J Seward
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Vikas Anathy
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Charles G Irvin
- Department of Medicine, University of Vermont, Burlington, Vermont
| | - Ying-Wai Lam
- Department of Biology, University of Vermont, Burlington, Vermont
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | | |
Collapse
|
20
|
Johansson H, Mersha TB, Brandt EB, Khurana Hershey GK. Interactions between environmental pollutants and genetic susceptibility in asthma risk. Curr Opin Immunol 2019; 60:156-162. [PMID: 31470287 DOI: 10.1016/j.coi.2019.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 12/17/2022]
Abstract
Exposure to air pollution is associated with enhanced risk of developing asthma, notably in the presence of genetic risk factors. Interaction analyses have shown that both outdoor and indoor air pollution interact with genetic variability to increase the incidence of asthma. In this review, we summarize recent progress in candidate gene-based studies, as well as genome-wide gene-air pollution interaction studies. Advances in epigenetics have provided evidence for DNA methylation as a mediator in gene-air pollution interactions. Emerging strategies for study design and statistical analyses may improve power in future studies. Improved air pollution exposure assessment methods and asthma endo-typing can also be expected to increase the ability to detect biologically driven gene-air pollution interaction effects.
Collapse
Affiliation(s)
- Hanna Johansson
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Tesfaye B Mersha
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Eric B Brandt
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Gurjit K Khurana Hershey
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| |
Collapse
|
21
|
Glutathione Transferase P1-1 an Enzyme Useful in Biomedicine and as Biomarker in Clinical Practice and in Environmental Pollution. Nutrients 2019; 11:nu11081741. [PMID: 31357662 PMCID: PMC6723968 DOI: 10.3390/nu11081741] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 12/19/2022] Open
Abstract
Glutathione transferase P1-1 (GSTP1-1) is expressed in some human tissues and is abundant in mammalian erythrocytes (here termed e-GST). This enzyme is able to detoxify the cell from endogenous and exogenous toxic compounds by using glutathione (GSH) or by acting as a ligandin. This review collects studies that propose GSTP1-1 as a useful biomarker in different fields of application. The most relevant studies are focused on GSTP1-1 as a biosensor to detect blood toxicity in patients affected by kidney diseases. In fact, this detoxifying enzyme is over-expressed in erythrocytes when unusual amounts of toxins are present in the body. Here we review articles concerning the level of GST in chronic kidney disease patients, in maintenance hemodialysis patients and to assess dialysis adequacy. GST is also over-expressed in autoimmune disease like scleroderma, and in kidney transplant patients and it may be used to check the efficiency of transplanted kidneys. The involvement of GSTP in the oxidative stress and in other human pathologies like cancer, liver and neurodegenerative diseases, and psychiatric disorders is also reported. Promising applications of e-GST discussed in the present review are its use for monitoring human subjects living in polluted areas and mammals for veterinary purpose.
Collapse
|
22
|
López-Rodríguez JC, Manosalva J, Cabrera-García JD, Escribese MM, Villalba M, Barber D, Martínez-Ruiz A, Batanero E. Human glutathione-S-transferase pi potentiates the cysteine-protease activity of the Der p 1 allergen from house dust mite through a cysteine redox mechanism. Redox Biol 2019; 26:101256. [PMID: 31229842 PMCID: PMC6597738 DOI: 10.1016/j.redox.2019.101256] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/30/2019] [Accepted: 06/10/2019] [Indexed: 11/30/2022] Open
Abstract
Environmental proteases have been widely associated to the pathogenesis of allergic disorders. Der p 1, a cysteine-protease from house dust mite (HDM) Dermatophagoides pteronyssinus, constitutes one of the most clinically relevant indoor aeroallergens worldwide. Der p 1 protease activity depends on the redox status of its catalytic cysteine residue, which has to be in the reduced state to be active. So far, it is unknown whether Der p 1-protease activity could be regulated by host redox microenvironment once it reaches the lung epithelial lining fluid in addition to endogenous mite components. In this sense, Glutathione-S-transferase pi (GSTpi), an enzyme traditionally linked to phase II detoxification, is highly expressed in human lung epithelial cells, which represent the first line of defence against aeroallergens. Moreover, GSTpi is a generalist catalyst of protein S-glutathionylation reactions, and some polymorphic variants of this enzyme has been associated to the development of allergic asthma. Here, we showed that human GSTpi increased the cysteine-protease activity of Der p 1, while GSTmu (the isoenzyme produced by the mite) did not alter it. GSTpi induces the reduction of Cys residues in Der p 1, probably by rearranging its disulphide bridges. Furthermore, GSTpi was detected in the apical medium collected from human bronchial epithelial cell cultures, and more interesting, it increased cysteine-protease activity of Der p 1. Our findings support the role of human GSTpi from airways in modulating of Der p 1 cysteine-protease activity, which may have important clinical implications for immune response to this aeroallergen in genetically susceptible individuals.
Collapse
Affiliation(s)
- Juan Carlos López-Rodríguez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, Madrid, Spain
| | - Juliana Manosalva
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, Madrid, Spain
| | - J Daniel Cabrera-García
- Unidad de Investigación, Hospital Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | - María M Escribese
- Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo CEU, Madrid, Spain
| | - Mayte Villalba
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, Madrid, Spain
| | - Domingo Barber
- Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo CEU, Madrid, Spain
| | - Antonio Martínez-Ruiz
- Unidad de Investigación, Hospital Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain.
| | - Eva Batanero
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, Madrid, Spain.
| |
Collapse
|
23
|
London SJ, Melén E. Genomic interactions with exposure to inhaled pollutants. J Allergy Clin Immunol 2019; 143:2011-2013.e1. [PMID: 31029775 PMCID: PMC6563341 DOI: 10.1016/j.jaci.2019.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/17/2019] [Accepted: 04/19/2019] [Indexed: 12/09/2022]
Affiliation(s)
- Stephanie J London
- Epidemiology Branch and Immunity, Inflammation and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC.
| | - Erik Melén
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Science and Education, Karolinska Institutet and Sachs' Children's Hospital, South General Hospital, Stockholm, Sweden
| |
Collapse
|