1
|
Hund SK, Sampath V, Zhou X, Thai B, Desai K, Nadeau KC. Scientific developments in understanding food allergy prevention, diagnosis, and treatment. Front Immunol 2025; 16:1572283. [PMID: 40330465 PMCID: PMC12052904 DOI: 10.3389/fimmu.2025.1572283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 03/21/2025] [Indexed: 05/08/2025] Open
Abstract
Food allergies (FAs) are adverse immune reactions to normally innocuous foods. Their prevalence has been increasing in recent decades. They can be IgE-mediated, non-IgE mediated, or mixed. Of these, the mechanisms underlying IgE-mediated FA are the best understood and this has assisted in the development of therapeutics. Currently there are two approved drugs for the treatment of FA, Palforzia and Omalizumab. Palfornia is a characterized peanut product used as immunotherapy for peanut allergy. Immunotherapy, involves exposure of the patient to small but increasing doses of the allergen and slowly builds immune tolerance to the allergen and increases a patient's allergic threshold. Omalizumab, a biologic, is an anti-IgE antibody which binds to IgE and prevents release of proinflammatory allergenic mediators on exposure to allergen. Other biologics, investigational vaccines, nanoparticles, Janus Kinase and Bruton's tyrosine kinase inhibitors, or DARPins are also being evaluated as potential therapeutics. Oral food challenges (OFC) are the gold standard for the diagnosis for FA. However, they are time-consuming and involve risk of anaphylaxis; therefore, alternative diagnostic methods are being evaluated. This review will discuss how the immune system mediates an allergic response to specific foods, as well as FA risk factors, diagnosis, prevention, and treatments for FA.
Collapse
Affiliation(s)
- Shirin Karimi Hund
- Clinic for Internal Medicine, Spital Zollikerberg, Zollikerberg, Switzerland
| | - Vanitha Sampath
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| | - Xiaoying Zhou
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| | - Bryan Thai
- Geffen Academy at UCLA, Los Angeles, CA, United States
| | - Khushi Desai
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| | - Kari C. Nadeau
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| |
Collapse
|
2
|
Alam T, Rustgi S. Peanut Genotypes with Reduced Content of Immunogenic Proteins by Breeding, Biotechnology, and Management: Prospects and Challenges. PLANTS (BASEL, SWITZERLAND) 2025; 14:626. [PMID: 40006885 PMCID: PMC11858956 DOI: 10.3390/plants14040626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/05/2025] [Accepted: 02/16/2025] [Indexed: 02/27/2025]
Abstract
Peanut allergies affect millions of people worldwide, often causing life-threatening reactions and necessitating strict avoidance. Recent advancements in oral immunotherapy, such as Palforzia™, and IgE-mediated treatments (e.g., Xolair), have improved care options; however, their high costs limit accessibility and widespread utility. To address these challenges, researchers are employing conventional breeding and advanced molecular tools, such as CRISPR editing, to develop peanut lines with reduced levels of major allergenic proteins (Ara h1, Ara h2, Ara h3, and Ara h6). These reduced-immunogenicity genotypes retain their agronomic viability, flavor, and nutritional quality to some extent, offering the potential for cost-effective oral immunotherapy and safe food options for use in public spaces by non-allergic individuals. Rigorous evaluation, including immunological assays and human feeding trials, is essential to confirm their effectiveness in reducing allergic reactions. Adoption will depend on the establishment of clear regulatory guidelines, stakeholder education, and transparent communication of the benefits and risks. With sustained research, public trust, and supportive policies, reduced-immunogenicity peanuts could substantially lower the global burden of peanut allergies. This communication examined the impact of peanut allergies worldwide and explored strategies to develop peanut genotypes with reduced allergen content, including conventional breeding and advanced genetic engineering. It also addressed the challenges associated with these approaches, such as policy and regulatory hurdles, and outlined key requirements for their successful adoption by farmers and consumers.
Collapse
Affiliation(s)
- Tariq Alam
- Department of Plant and Environmental Sciences, Clemson University Pee Dee Research and Education Center, Florence, SC 29506, USA;
| | - Sachin Rustgi
- Department of Plant and Environmental Sciences, Clemson University Pee Dee Research and Education Center, Florence, SC 29506, USA;
- School of Health Research, Clemson University, Clemson, SC 29634, USA
- Center for Human Genetics, Clemson University, Greenwood, SC 29646, USA
| |
Collapse
|
3
|
Cao S, Maulloo CD, Raczy MM, Sabados M, Slezak AJ, Nguyen M, Solanki A, Wallace RP, Shim HN, Wilson DS, Hubbell JA. Glycosylation-modified antigens as a tolerance-inducing vaccine platform prevent anaphylaxis in a pre-clinical model of food allergy. Cell Rep Med 2024; 5:101346. [PMID: 38128531 PMCID: PMC10829738 DOI: 10.1016/j.xcrm.2023.101346] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/06/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
The only FDA-approved oral immunotherapy for a food allergy provides protection against accidental exposure to peanuts. However, this therapy often causes discomfort or side effects and requires long-term commitment. Better preventive and therapeutic solutions are urgently needed. We develop a tolerance-inducing vaccine technology that utilizes glycosylation-modified antigens to induce antigen-specific non-responsiveness. The glycosylation-modified antigens are administered intravenously (i.v.) or subcutaneously (s.c.) and traffic to the liver or lymph nodes, respectively, leading to preferential internalization by antigen-presenting cells, educating the immune system to respond in an innocuous way. In a mouse model of cow's milk allergy, treatment with glycosylation-modified β-lactoglobulin (BLG) is effective in preventing the onset of allergy. In addition, s.c. administration of glycosylation-modified BLG shows superior safety and potential in treating existing allergies in combination with anti-CD20 co-therapy. This platform provides an antigen-specific immunomodulatory strategy to prevent and treat food allergies.
Collapse
Affiliation(s)
- Shijie Cao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, USA.
| | - Chitavi D Maulloo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Michal M Raczy
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Matthew Sabados
- Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA
| | - Anna J Slezak
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Mindy Nguyen
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; Animal Resource Center, University of Chicago, Chicago, IL 60637, USA
| | - Ani Solanki
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; Animal Resource Center, University of Chicago, Chicago, IL 60637, USA
| | - Rachel P Wallace
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Ha-Na Shim
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - D Scott Wilson
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA
| | - Jeffrey A Hubbell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW To highlight the current evidence on food desensitization in children with food allergy. RECENT FINDINGS Food Allergen Specific Immunotherapy (FA-AIT) is currently recognised as a treatment option for treating children with allergy at least to the main common foods (i.e. milk, egg and peanut). The oral route of administration has been proven to be the most effective in achieving desensitisation. Efforts are devoted to overcome the current unmet needs mainly related to safety issues and long-term efficacy, as well as adherence to the treatment and improvement of health-related quality of life. In this perspective, alternative routes of administration and adjunctive treatments are under investigation. SUMMARY The future of food allergy management is a personalised approach based on a shared decision-making that takes into account the needs of patients and families. Health professionals will be able to offer multiple treatment options, including FA-AIT with adjunctive or alternative therapies. Thus, patients should be correctly identified, using validated predictive factors, in order to select appropriate candidates for these therapies.
Collapse
|
5
|
Clinical Manifestations of Pediatric Food Allergy: a Contemporary Review. Clin Rev Allergy Immunol 2021; 62:180-199. [PMID: 34519995 DOI: 10.1007/s12016-021-08895-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 12/12/2022]
Abstract
Food allergies (FAs) are an emerging health care issue, and a "second wave of the allergy epidemic" was named. There are extensive data that documented the prevalence rate as high as approximately 10%. FAs are immunological adverse reactions, including IgE-mediated mechanisms, cell-mediated mechanisms, or mixed IgE- and cell-mediated mechanisms. A diagnosis of FA is made by specific symptoms encounter with food, detailed past history, sensitization tests, and oral food challenges (OFCs) if necessary. The component-resolved diagnostics (CRD) test can distinguish true or cross-reaction. "Minimal elimination" from the results of CRD and OFC could avoid unnecessary food restriction. Strict food limitation is harsh and stressful on patients and their families. Children with FAs experience a higher rate of post-traumatic stress symptoms (PTSS) and bullying than others. In the last 20 years, oral immunotherapy (OIT), sublingual immunotherapy (SLIT), and epicutaneous immunotherapy (EPIT) are treatment strategies. OIT and EPIT are the most two encouraging treatments for FA. This review aims to introduce FAs in diverse clinical disorders, new perspectives, and their practical implications in diagnosing and treating FA.
Collapse
|
6
|
Liu G, Liu M, Wang J, Mou Y, Che H. The Role of Regulatory T Cells in Epicutaneous Immunotherapy for Food Allergy. Front Immunol 2021; 12:660974. [PMID: 34305893 PMCID: PMC8297384 DOI: 10.3389/fimmu.2021.660974] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022] Open
Abstract
In recent decades, a rapid increase in the prevalence of food allergies has led to extensive research on novel treatment strategies and their mechanisms. Mouse models have provided preliminary insights into the mechanism of epicutaneous immunotherapy (EPIT)-induced immune tolerance. In EPIT, antigen applied on the skin surface can be captured, processed, and presented in the lymph nodes (LNs) by Antigen-presenting cells (APCs). In the LNs, induction of regulatory T cells (Treg cells) requires both direct contact during antigen presentation and indirect mechanisms such as cytokines. Foxp3+CD62L+ Treg cells can exhibit the characteristics of hypomethylation of Foxp3 TSDR and Foxp3-LAP+ Treg cells, which increase the expression of surface tissue-specific homing molecules to exert further sustained systemic immune tolerance. Studies have shown that EPIT is a potential treatment for food allergies and can effectively induce immune tolerance, but its mechanism needs further exploration. Here, we review Treg cells' role in immune tolerance induced by EPIT and provide a theoretical basis for future research directions, such as the mechanism of EPIT and the development of more effective EPIT treatments.
Collapse
Affiliation(s)
| | | | | | | | - Huilian Che
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Regulatory Requirements for the Quality of Allergen Products for Allergen Immunotherapy of Food Allergy. Curr Allergy Asthma Rep 2021; 21:32. [PMID: 33970347 PMCID: PMC8110504 DOI: 10.1007/s11882-021-01008-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2020] [Indexed: 11/13/2022]
Abstract
Purpose of Review Medicinal products for allergen immunotherapy (AIT) of food allergies have gained enormous momentum in recent years. With this new class of products entering marketing authorization procedures, compliance to regulatory requirements becomes a critical element. Here, an overview is provided on specific requirements and aspects concerning the quality control and manufacturing of these products. Recent Findings Recent developments in the field of AIT for food allergies are divers, including products for oral, epicutaneous, and subcutaneous application, most notably targeting egg, milk, and peanut allergy. As the source materials for food AIT product are typically produced for food consumption and not for medicinal purposes, unique challenges arise in the manufacturing processes and controls of these medicinal products. Individual approaches are needed to assure acceptable quality, including control of relevant quantitative and qualitative characteristics. Major characteristics for quality verification include determination of protein content, total allergenic activity, and major allergen content. The applied manufacturing processes need to be established such that relevant process parameters are kept within justified limits and consistency of produced batches is assured. Summary Allergen products for food AIT present specific challenges with respect to quality aspects that differentiate them from other commonly available AIT products. While established regulation is available and provides clear guidance for most aspects, other issues require consideration of new and individual settings relevant here. Consequently, as experience grows, respective amendments to currently available guidance may be needed.
Collapse
|
8
|
How to Incorporate Oral Immunotherapy into Your Clinical Practice. Curr Allergy Asthma Rep 2021; 21:30. [PMID: 33929616 DOI: 10.1007/s11882-021-01009-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to discuss how to best incorporate oral immunotherapy into your clinical practice based on recent evidence and guidelines, and address controversies. RECENT FINDINGS Oral immunotherapy is the food immunotherapy treatment with the most literature supporting its use. Recent data from both randomized clinical trials and real-world studies show OIT is especially safe and effective in preschoolers, while avoidance may be less safe than previously thought. OIT guidelines support its use outside of research. Oral immunotherapy can be safely and effectively incorporated into your clinical practice, with careful planning and consideration of scenarios where benefits outweigh risks. Baseline oral food challenges are necessary in clinical trials, but in clinical practice, these are best done when the history is unclear due to resource limitations. There is a role for both regular food and FDA-approved products. Future research should focus on optimizing safety and adherence in the real-world setting.
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW The aim of the article is to critically appraise the most relevant studies in the rapidly advancing field of food allergy prevention. RECENT FINDINGS Epidemiologic studies identified atopic dermatitis as a strong risk factor for food allergy, with mounting evidence for impaired skin barrier and cutaneous inflammation in the pathogenesis. Additional risk factors include a family history of atopy, the timing of allergenic food introduction into the infant's diet, dietary diversity, vitamin D, and environmental factors, such as dog ownership. Early introduction of allergenic foods (such as peanut) into the infant diet was shown to significantly reduce the risk of food allergy in infants with risk factors, whereas studies targeting skin barrier function have produced conflicting results. Cumulative evidence supports dietary diversity during pregnancy, breastfeeding, infancy, and early childhood. SUMMARY A variety of interventions have been evaluated for the prevention of atopic dermatitis and food allergy, often producing conflicting results. At present, official guidelines encourage breastfeeding and early allergenic food introduction for infants at risk for food allergy, with an emphasis on dietary diversity, fruits, vegetables, fish, and food sources of vitamin D during pregnancy, lactation, and early life for all infants.
Collapse
Affiliation(s)
- Mary Grace Baker
- Department of Pediatrics, Division of Pediatric Allergy and Immunology, Elliot and Roslyn Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anna Nowak-Wegrzyn
- Department of Pediatrics, Allergy and Immunology, New York University Langone Health, New York, New York, USA
- Department of Pediatrics, Gastroenterology and Nutrition, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|