1
|
Li Z, Lin C, Cai X, Hu S, Lv F, Yang W, Zhu X, Ji L. Anti-inflammatory therapies were associated with reduced risk of myocardial infarction in patients with established cardiovascular disease or high cardiovascular risks: A systematic review and meta-analysis of randomized controlled trials. Atherosclerosis 2023; 379:117181. [PMID: 37527612 DOI: 10.1016/j.atherosclerosis.2023.06.972] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 08/03/2023]
Abstract
BACKGROUND AND AIMS We aimed to evaluate the association between anti-inflammatory therapies and the incidence of cardiovascular events in patients with established cardiovascular disease (CVD) or high cardiovascular risks. METHODS Literature retrieval was conducted in PubMed, Medline, Embase, the Cochrane Central Register of Controlled Trials and Clinicaltrial.gov website from the inception to December 2022. Randomized controlled trials comparing anti-inflammatory therapies with placebo in patients with established CVD or high cardiovascular risks were included. The results of the meta-analysis were computed as the risk ratio (RR) with 95% confidence interval (CI). RESULTS Compared with placebo, anti-inflammatory therapies were associated with decreased incidence of myocardial infarction (MI) (RR = 0.93, 95% CI, 0.88 to 0.98), which was mainly driven by therapies targeting central IL-6 signaling pathway (RR = 0.83, 95% CI, 0.74 to 0.93). IL-1 inhibitors treatment was associated with reduced risks of heart failure (RR = 0.38, 95% CI, 0.18 to 0.80) while lower incidence of stroke was observed in patients with colchicine treatment (RR = 0.47, 95% CI, 0.28 to 0.77). MI events were less frequent in patients over 65 years of age (RR = 0.90, 95% CI, 0.83 to 0.98) or with follow-up duration over 1 year (RR = 0.90, 95% CI, 0.85 to 0.96) when comparing anti-inflammatory therapies with placebo. CONCLUSIONS Anti-inflammatory therapies, especially those targeting the central IL-6 signaling pathway, may serve as promising treating strategies to ameliorate the risk of MI. IL-1 inhibitor and colchicine were associated with decreased risks of heart failure and stroke, respectively. MI risk reduction by anti-inflammatory therapies seemed to be more prominent in older patients with long follow-up duration.
Collapse
Affiliation(s)
- Zonglin Li
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Chu Lin
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Xiaoling Cai
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China.
| | - Suiyuan Hu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Fang Lv
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Wenjia Yang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Xingyun Zhu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
2
|
Isaac A, Elmarashly B, El Saeed K, Mohamed RS, Ibrahim SA, Safwat E. The effect of hepatitis C virologic clearance on cardiovascular disease biomarker lipoprotein-associated phospholipase A2 and its relation to serum lipids. EGYPTIAN LIVER JOURNAL 2021. [DOI: 10.1186/s43066-021-00110-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Chronic hepatitis C virus (HCV) infection has been linked to cardiovascular disease (CVD). However, CVD risk prediction in chronic HCV-infected patients is problematic as the prevalence of different cardiac biomarkers in these patients is currently unknown. Serum lipids, which are routinely used in traditional CVD risk scores, may underestimate CVD risk in these patients, while non-hepatically produced biomarkers, including lipoprotein-associated phospholipase A2 (Lp-PLA2), may better reflect CVD risk. In this study, we aimed to evaluate the effect of sustained virologic response (SVR) on CVD risk, predicted by Lp-PLA2 mass in comparison with serum lipid levels.
Results
Ninety chronic HCV-infected patients were enrolled in this study. Serum Lp-PLA2 mass was measured before and after HCV treatment via direct-acting antivirals and compared with the changes in serum lipids and Framingham risk score (FRS). The Lp-PLA2 level was categorized into high (>235 ng/ml) or low predicted CVD risk (≤235 ng/ml). Mean Lp-PLA2 mass significantly decreased from 322.37 ± 79.15 ng/ml to 263.79 ± 51.804 ng/ml with SVR, and the number of high-risk patients significantly dropped from 82.22 to 60% after treatment. Total cholesterol, low-density lipoprotein, and high-density lipoprotein levels were low/optimal at baseline (170 ± 40.34 mg/dl, 71.98 ± 24.12 mg/dl, and 48.43 ± 6.79 mg/dl) and significantly increased with SVR (195.66 ± 55.68 mg/dl, 103.24 ± 46.57 mg/dl, and 53.91 ± 8.67 mg/dl). According to FRS, only 30% of patients were moderate/high risk at baseline and insignificantly declined to 28.89% post-treatment.
Conclusion
Lp-PLA2 may be a better predictor of CVD risk in chronic HCV-infected patients. Furthermore, SVR may reduce hepatic inflammation and consequently CVD risk.
Collapse
|
3
|
Reutrakul S, Chen H, Chirakalwasan N, Charoensri S, Wanitcharoenkul E, Amnakkittikul S, Saetung S, Layden BT, Chlipala GE. Metabolomic profile associated with obstructive sleep apnoea severity in obese pregnant women with gestational diabetes mellitus: A pilot study. J Sleep Res 2021; 30:e13327. [PMID: 33792106 DOI: 10.1111/jsr.13327] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 02/16/2021] [Indexed: 12/16/2022]
Abstract
Obstructive sleep apnoea (OSA) is prevalent in obese women with gestational diabetes mellitus (GDM). The present pilot study explored associations between OSA severity and metabolites in women with GDM. A total of 81 obese women with diet-controlled GDM had OSA assessment (median gestational age [GA] 29 weeks). The metabolic profile was assayed from fasting serum samples via liquid chromatography-mass spectrometry (LC-MS) using an untargeted approach. Metabolites were extracted and subjected to an Agilent 1,290 UPLC coupled to an Agilent 6,545 quadrupole time-of-flight (Q-TOF) MS. Data were acquired using electrospray ionisation in positive and negative ion modes. The raw LC-MS data were processed using the OpenMS toolkit to detect and quantify features, and these features were annotated using the Human Metabolite Database. The feature data were compared with OSA status, apnea-hypopnea index (AHI), body mass index (BMI) and GA using "limma" in R. Correlation analyses of the continuous covariates were performed using Kendall's Tau test. The p values were adjusted for multiple testing using the Benjamini-Hochberg false discovery rate correction. A total of 42 women (51.8%) had OSA, with a median AHI of 9.1 events/hr. There were no significant differences in metabolomics profiles between those with and without OSA. However, differential analyses modelling in GA and BMI found 12 features that significantly associated with the AHI. These features could be annotated to oestradiols, lysophospholipids, and fatty acids, with higher levels related to higher AHI. Metabolites including oestradiols and phospholipids may be involved in pathogenesis of OSA in pregnant women with GDM. A targeted approach may help elucidate our understanding of their role in OSA in this population.
Collapse
Affiliation(s)
- Sirimon Reutrakul
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Hui Chen
- Mass Spectrometry Core, Research Resource Center, Office of Vice Chancellor for Research, University of Illinois at Chicago, Chicago, IL, USA
| | - Naricha Chirakalwasan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Excellence Center for Sleep Disorders, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Suranut Charoensri
- Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Ekasitt Wanitcharoenkul
- Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Somvang Amnakkittikul
- Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Sunee Saetung
- Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Brian T Layden
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| | - George E Chlipala
- Research Informatics Core, Research Resources Center, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
4
|
Rivas-Urbina A, Rull A, Ordóñez-Llanos J, Sánchez-Quesada JL. Electronegative LDL: An Active Player in Atherogenesis or a By- Product of Atherosclerosis? Curr Med Chem 2019; 26:1665-1679. [PMID: 29600751 DOI: 10.2174/0929867325666180330093953] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 11/12/2017] [Accepted: 12/11/2017] [Indexed: 12/16/2022]
Abstract
Low-density lipoproteins (LDLs) are the major plasma carriers of cholesterol. However, LDL particles must undergo various molecular modifications to promote the development of atherosclerotic lesions. Modified LDL can be generated by different mechanisms, but as a common trait, show an increased electronegative charge of the LDL particle. A subfraction of LDL with increased electronegative charge (LDL(-)), which can be isolated from blood, exhibits several pro-atherogenic characteristics. LDL(-) is heterogeneous, due to its multiple origins but is strongly related to the development of atherosclerosis. Nevertheless, the implication of LDL(-) in a broad array of pathologic conditions is complex and in some cases anti-atherogenic LDL(-) properties have been reported. In fact, several molecular modifications generating LDL(-) have been widely studied, but it remains unknown as to whether these different mechanisms are specific or common to different pathological disorders. In this review, we attempt to address these issues examining the most recent findings on the biology of LDL(-) and discussing the relationship between this LDL subfraction and the development of different diseases with increased cardiovascular risk. Finally, the review highlights the importance of minor apolipoproteins associated with LDL(-) which would play a crucial role in the different properties displayed by these modified LDL particles.
Collapse
Affiliation(s)
- Andrea Rivas-Urbina
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), Barcelona, Spain.,Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona, Cerdanyola, Spain
| | - Anna Rull
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), Barcelona, Spain.,Hospital Universitari Joan XXIII, IISPV, Universitat Rovira i Virgili, Tarragona, Spain
| | - Jordi Ordóñez-Llanos
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), Barcelona, Spain.,Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona, Cerdanyola, Spain
| | - José Luis Sánchez-Quesada
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), Barcelona, Spain.,CIBERDEM. Institute of Health Carlos III, Madrid 28029, Spain
| |
Collapse
|
5
|
Kheirandish-Gozal L, Philby MF, Qiao Z, Khalyfa A, Gozal D. Endothelial Dysfunction in Children With Obstructive Sleep Apnea Is Associated With Elevated Lipoprotein-Associated Phospholipase A2 Plasma Activity Levels. J Am Heart Assoc 2017; 6:e004923. [PMID: 28183716 PMCID: PMC5523777 DOI: 10.1161/jaha.116.004923] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 12/15/2016] [Indexed: 01/11/2023]
Abstract
BACKGROUND Obstructive sleep apnea (OSA) is a highly prevalent condition, especially in obese children, and has been associated with increased risk for endothelial dysfunction and dislipidemia, which are precursors of atherosclerosis. Lipoprotein-associated phospholipase A2 (Lp-PLA2) is recognized as an independent risk factor for cardiovascular risk and atheromatous plaque activity. We hypothesized that Lp-PLA2 levels would be elevated in children with OSA, particularly among obese children who also manifest evidence of endothelial dysfunction. METHODS AND RESULTS One hundred sixty children (mean age 7.1±2.3 years), either nonobese with (n=40) and without OSA (n=40) or obese with (n=40) and without OSA (n=40) underwent overnight polysomnographic and postocclusive reperfusion evaluation and a fasting blood draw the morning after the sleep study. In addition to lipid profile, Lp-PLA2 plasma activity was assessed using a commercial kit. Obese children and OSA children had significantly elevated plasma Lp-PLA2 activity levels compared to controls. Furthermore, when both obesity and OSA were concurrently present or when endothelial function was present, Lp-PLA2 activity was higher. Treatment of OSA by adenotonsillectomy resulted in reductions of Lp-PLA2 activity (n=37; P<0.001). CONCLUSIONS Lp-PLA2 plasma activity is increased in pediatric OSA and obesity, particularly when endothelial dysfunction is present, and exhibits decreases on OSA treatment. The short-term and long-term significance of these findings in relation to cardiovascular risk remain undefined.
Collapse
Affiliation(s)
- Leila Kheirandish-Gozal
- Section of Sleep Medicine, Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, IL
| | - Mona F Philby
- Section of Sleep Medicine, Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, IL
| | - Zhuanghong Qiao
- Section of Sleep Medicine, Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, IL
| | - Abdelnaby Khalyfa
- Section of Sleep Medicine, Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, IL
| | - David Gozal
- Section of Sleep Medicine, Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, IL
| |
Collapse
|
6
|
Sena CM, Pereira AM, Seiça R. Endothelial dysfunction - a major mediator of diabetic vascular disease. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1832:2216-2231. [PMID: 23994612 DOI: 10.1016/j.bbadis.2013.08.006] [Citation(s) in RCA: 552] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 07/31/2013] [Accepted: 08/20/2013] [Indexed: 12/18/2022]
Abstract
The vascular endothelium is a multifunctional organ and is critically involved in modulating vascular tone and structure. Endothelial cells produce a wide range of factors that also regulate cellular adhesion, thromboresistance, smooth muscle cell proliferation, and vessel wall inflammation. Thus, endothelial function is important for the homeostasis of the body and its dysfunction is associated with several pathophysiological conditions, including atherosclerosis, hypertension and diabetes. Patients with diabetes invariably show an impairment of endothelium-dependent vasodilation. Therefore, understanding and treating endothelial dysfunction is a major focus in the prevention of vascular complications associated with all forms of diabetes mellitus. The mechanisms of endothelial dysfunction in diabetes may point to new management strategies for the prevention of cardiovascular disease in diabetes. This review will focus on the mechanisms and therapeutics that specifically target endothelial dysfunction in the context of a diabetic setting. Mechanisms including altered glucose metabolism, impaired insulin signaling, low-grade inflammatory state, and increased reactive oxygen species generation will be discussed. The importance of developing new pharmacological approaches that upregulate endothelium-derived nitric oxide synthesis and target key vascular ROS-producing enzymes will be highlighted and new strategies that might prove clinically relevant in preventing the development and/or retarding the progression of diabetes associated vascular complications.
Collapse
Affiliation(s)
- Cristina M Sena
- Institute of Physiology, Faculty of Medicine, University of Coimbra, Portugal; IBILI, Faculty of Medicine, University of Coimbra, Portugal.
| | | | | |
Collapse
|
7
|
Sánchez-Quesada JL, Vinagre I, De Juan-Franco E, Sánchez-Hernández J, Bonet-Marques R, Blanco-Vaca F, Ordóñez-Llanos J, Pérez A. Impact of the LDL subfraction phenotype on Lp-PLA2 distribution, LDL modification and HDL composition in type 2 diabetes. Cardiovasc Diabetol 2013; 12:112. [PMID: 23915379 PMCID: PMC3750253 DOI: 10.1186/1475-2840-12-112] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 08/03/2013] [Indexed: 01/18/2023] Open
Abstract
Background Qualitative alterations of lipoproteins underlie the high incidence of atherosclerosis in diabetes. The objective of this study was to assess the impact of low-density lipoprotein (LDL) subfraction phenotype on the qualitative characteristics of LDL and high-density lipoprotein (HDL) in patients with type 2 diabetes. Methods One hundred twenty two patients with type 2 diabetes in poor glycemic control and 54 healthy subjects were included in the study. Patients were classified according to their LDL subfraction phenotype. Seventy-seven patients presented phenotype A whereas 45 had phenotype B. All control subjects showed phenotype A. Several forms of modified LDL, HDL composition and the activity and distribution of lipoprotein-associated phospholipase A2 (Lp-PLA2) were analyzed. Results Oxidized LDL, glycated LDL and electronegative LDL were increased in both groups of patients compared with the control group. Patients with phenotype B had increased oxidized LDL and glycated LDL concentration than patients with phenotype A. HDL composition was abnormal in patients with diabetes, being these abnormalities more marked in patients with phenotype B. Total Lp-PLA2 activity was higher in phenotype B than in phenotype A or in control subjects. The distribution of Lp-PLA2 between HDL and apoB-containing lipoproteins differed in patients with phenotype A and phenotype B, with higher activity associated to apoB-containing lipoproteins in the latter. Conclusions The presence of LDL subfraction phenotype B is associated with increased oxidized LDL, glycated LDL and Lp-PLA2 activity associated to apoB-containing lipoproteins, as well as with abnormal HDL composition.
Collapse
Affiliation(s)
- Jose Luis Sánchez-Quesada
- Biomedical Research Institute IIB Sant Pau, Cardiovascular Biochemistry Group, C/ Antoni Maria Claret, 167, 08025 Barcelona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Hu Y, Lin EC, Pham LM, Cajica J, Amantea CM, Okerberg E, Brown HE, Fraser A, Du L, Kohno Y, Ishiyama J, Kozarich JW, Shreder KR. Amides of 4-hydroxy-8-methanesulfonylamino-quinoline-2-carboxylic acid as zinc-dependent inhibitors of Lp-PLA2. Bioorg Med Chem Lett 2013; 23:1553-6. [DOI: 10.1016/j.bmcl.2012.11.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 11/09/2012] [Accepted: 11/13/2012] [Indexed: 10/27/2022]
|
9
|
Dadu RT, Nambi V, Ballantyne CM. Developing and assessing cardiovascular biomarkers. Transl Res 2012; 159:265-76. [PMID: 22424430 DOI: 10.1016/j.trsl.2012.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 01/04/2012] [Accepted: 01/05/2012] [Indexed: 11/19/2022]
Abstract
Atherosclerosis is a slow process that over time can lead to fatal events. Early identification and prediction of future risk can allow for preventive strategies to be instituted. There is an increasing interest in utilizing novel biomarkers in cardiovascular disease screening and management. These novel biomarkers may help in cardiovascular disease risk assessment and treatment monitoring, and some may be treatment targets. To be useful for risk prediction, novel biomarkers need to show a significant association with cardiovascular disease events and bring additional value in risk stratification when added to known risk prediction models. Biomarkers used for treatment monitoring need to show that they can serve as good surrogates of cardiovascular disease status. In this article, we present 3 biomarkers that are currently approved by the U.S. Food and Drug Administration for use in cardiovascular disease management and risk assessment: C-reactive protein, lipoprotein-associated phospholipase A2, and myeloperoxidase. Other new biomarkers have also been shown recently to help in cardiovascular disease risk prediction and management. In this article, we will review 2 of these new biomarkers: cardiac troponin T measured by a highly sensitive assay and brain natriuretic peptide.
Collapse
Affiliation(s)
- Razvan T Dadu
- Baylor College of Medicine and Methodist DeBakey Heart and Vascular Center, 6565 Fannin Street, Houston, TX 77030, USA
| | | | | |
Collapse
|
10
|
Current world literature. Curr Opin Lipidol 2011; 22:308-10. [PMID: 21743305 DOI: 10.1097/mol.0b013e3283499d3b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|