1
|
Lee JV, Huguenard AL, Dacey RG, Braverman AC, Osbun JW. Validating a Curvature-Based Marker of Cervical Carotid Tortuosity for Risk Assessment in Heritable Aortopathies. J Am Heart Assoc 2024; 13:e035171. [PMID: 38904248 PMCID: PMC11255721 DOI: 10.1161/jaha.124.035171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/16/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Cervical arterial tortuosity is associated with adverse outcomes in Loeys-Dietz syndrome and other heritable aortopathies. METHODS AND RESULTS A method to assess tortuosity based on curvature of the vessel centerline in 3-dimensional space was developed. We measured cervical carotid tortuosity in 65 patients with Loeys-Dietz syndrome from baseline computed tomography angiogram/magnetic resonance angiogram and all serial images during follow-up. Relations between baseline carotid tortuosity, age, aortic root diameter, and its change over time were compared. Patients with unoperated aortic roots were assessed for clinical end point (type A aortic dissection or aortic root surgery during 4 years of follow-up). Logistic regression was performed to assess the likelihood of clinical end point according to baseline carotid tortuosity. Total absolute curvature at baseline was 11.13±5.76 and was relatively unchanged at 8 to 10 years (fold change: 0.026±0.298, P=1.00), whereas tortuosity index at baseline was 0.262±0.131, with greater variability at 8 to 10 years (fold change: 0.302±0.656, P=0.818). Baseline total absolute curvature correlated with aortic root diameter (r=0.456, P=0.004) and was independently associated with aortic events during the 4-year follow-up (adjusted odds ratio [OR], 2.64 [95% CI, 1.02-6.85]). Baseline tortuosity index correlated with age (r=0.532, P<0.001) and was not associated with events (adjusted OR, 1.88 [95% CI, 0.79-4.51]). Finally, baseline total absolute curvature had good discrimination of 4-year outcomes (area under the curve=0.724, P=0.014), which may be prognostic or predictive. CONCLUSIONS Here we introduce cervical carotid tortuosity as a promising quantitative biomarker with validated, standardized characteristics. Specifically, we recommend the adoption of a curvature-based measure, total absolute curvature, for early detection or monitoring of disease progression in Loeys-Dietz syndrome.
Collapse
Affiliation(s)
- Jin Vivian Lee
- Department of Neurological SurgeryWashington University School of MedicineSt. LouisMOUSA
- Department of Biomedical EngineeringWashington University in St. LouisSt. LouisMOUSA
| | - Anna L. Huguenard
- Department of Neurological SurgeryWashington University School of MedicineSt. LouisMOUSA
| | - Ralph G. Dacey
- Department of Neurological SurgeryWashington University School of MedicineSt. LouisMOUSA
| | - Alan C. Braverman
- Cardiovascular Division, Department of MedicineWashington University School of MedicineSt. LouisMOUSA
| | - Joshua W. Osbun
- Department of Neurological SurgeryWashington University School of MedicineSt. LouisMOUSA
| |
Collapse
|
2
|
Leyssens L, Balcaen T, Pétréa M, Ayllón NB, Aazmani WE, de Pierpont A, Pyka G, Lacroix V, Kerckhofs G. Non-destructive 3D characterization of the blood vessel wall microstructure in different species and blood vessel types using contrast-enhanced microCT and comparison with synthetic vascular grafts. Acta Biomater 2023; 164:303-316. [PMID: 37072066 DOI: 10.1016/j.actbio.2023.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/14/2023] [Accepted: 04/07/2023] [Indexed: 04/20/2023]
Abstract
To improve the current treatment for vascular diseases, such as vascular grafts, intravascular stents, and balloon angioplasty intervention, the evaluation of the native blood vessel microstructure in full 3D could be beneficial. For this purpose, we used contrast-enhanced X-ray microfocus computed tomography (CECT): a combination of X-ray microfocus computed tomography (microCT) and contrast-enhancing staining agents (CESAs) containing high atomic number elements. In this work, we performed a comparative study based on staining time and contrast-enhancement of 2 CESAs: Monolacunary and 1:2 Hafnium-substituted Wells-Dawson polyoxometalate (Mono-WD POM and Hf-WD POM, respectively) for imaging of the porcine aorta. After showing the advantages of Hf-WD POM in terms of contrast enhancement, we expanded our imaging to other species (rat, porcine, and human) and other types of blood vessels (porcine aorta, femoral artery, and vena cava), clearly indicating microstructural differences between different types of blood vessels and different species. We then showed the possibility to extract useful 3D quantitative information from the rat and porcine aortic wall, potentially to be used for computational modeling or for future design optimization of graft materials. Finally, a structural comparison with existing synthetic vascular grafts was made. This information will allow to better understand the in vivo functioning of native blood vessels and to improve the current disease treatments. STATEMENT OF SIGNIFICANCE: Synthetic vascular grafts, used as treatment for some cardiovascular diseases, still often fail clinically, potentially because of a mismatch in mechanical behaviour between the native blood vessel and the graft. To better understand the causes of this mismatch, we studied the full 3D microstructure of blood vessels. For this, we identified Hafnium-substituted Wells-Dawson polyoxometalate as contrast-enhancing staining agent to perform contrast-enhanced X-ray microfocus computed tomography. This technique allowed to show important differences in the microstructure of different types of blood vessels and in different species, as well as with that of synthetic grafts. This information can lead to a better understanding of the functioning of blood vessels and will allow to improve current disease treatments, such as vascular grafts.
Collapse
Affiliation(s)
- Lisa Leyssens
- Mechatronic, Electrical Energy and Dynamic Systems, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, 1348 Louvain-la-Neuve, Belgium; Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, 1200 Woluwe-Saint-Lambert, Belgium
| | - Tim Balcaen
- Mechatronic, Electrical Energy and Dynamic Systems, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, 1348 Louvain-la-Neuve, Belgium; Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, 1200 Woluwe-Saint-Lambert, Belgium; MolDesignS, Sustainable Chemistry for Metals and Molecules, Department of Chemistry, KU Leuven, 3001 Leuven, Belgium
| | - Maïté Pétréa
- Department BioMechanics, KU Leuven, 3001 Leuven, Belgium
| | - Natalia Béjar Ayllón
- Mechatronic, Electrical Energy and Dynamic Systems, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, 1348 Louvain-la-Neuve, Belgium
| | - Walid El Aazmani
- Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, 1200 Woluwe-Saint-Lambert, Belgium
| | - Alix de Pierpont
- Mechatronic, Electrical Energy and Dynamic Systems, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, 1348 Louvain-la-Neuve, Belgium
| | - Grzegorz Pyka
- Mechatronic, Electrical Energy and Dynamic Systems, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, 1348 Louvain-la-Neuve, Belgium; Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, 1200 Woluwe-Saint-Lambert, Belgium
| | - Valérie Lacroix
- Pole of Cardiovascular Research, Institute of Experimental and Clinical Research, UCLouvain, 1200 Woluwe-Saint-Lambert, Belgium; Cliniques Universitaires Saint-Luc, Service de chirurgie cardiovasculaire et thoracique, 1200 Woluwe-Saint-Lambert, Belgium
| | - Greet Kerckhofs
- Mechatronic, Electrical Energy and Dynamic Systems, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, 1348 Louvain-la-Neuve, Belgium; Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, 1200 Woluwe-Saint-Lambert, Belgium; Department of Materials Engineering, KU Leuven, 3001 Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
3
|
Cai X, Li Y, Fu S, Wang H, Liu B, Tian Y, Li L. LncRNA AK131850 is downregulated in thoracic aortic aneurysm and negatively affects the levels of TGF-β1 in aortic smooth muscle cells. Arch Physiol Biochem 2022; 128:1302-1307. [PMID: 32501722 DOI: 10.1080/13813455.2020.1767653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
This study aimed to investigate the role of lncRNA AK131850 in thoracic aortic aneurysm (TAA). We found that AK131850 was downregulated, while TGF-β1 was upregulated in aortic media specimen of thoracic aortic aneurysm (TAA) patients. In addition, AK131850 and TGF-β1 inversely correlated. Altered expression levels of AK131850 and TGF-β1 distinguished TAA patients from healthy controls. In human aortic smooth muscle cells (HAOSMC), AK131850 overexpression led to downregulated, while AK131850 siRNA silencing led to upregulated TGF-β1. AK131850 overexpression resulted in promoted, while siRNA silencing led to inhibited proliferation of HAOSMC. Therefore, AK131850 is downregulated in thoracic aortic aneurysm and negatively affects the levels of TGF-β1 in aortic smooth muscle cells.
Collapse
Affiliation(s)
- Xiulei Cai
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Yongqi Li
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Shengjie Fu
- Department of Vascular Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Han Wang
- Department of Vascular Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Bing Liu
- Department of Vascular Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yu Tian
- Department of Vascular Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Lei Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
4
|
Point on the Aortic Bicuspid Valve. Life (Basel) 2022; 12:life12040518. [PMID: 35455009 PMCID: PMC9029119 DOI: 10.3390/life12040518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/28/2022] [Accepted: 03/09/2022] [Indexed: 12/21/2022] Open
Abstract
Background—Bicuspid aortic valve (BAV) disease is the most prevalent congenital heart disease in the world. Knowledge about its subtypes origin, development, and evolution is poor despite the frequency and the potential gravity of this condition. Its prognosis mostly depends on the risk of aortic aneurysm development with an increased risk of aortic dissection. Aims—This review aims to describe this complex pathology in way to improve the bicuspid patients’ management. Study design—We reviewed the literature with MEDLINE and EMBASE databases using MeSH terms such as “bicuspid aortic valve”, “ascending aorta”, and “bicuspid classification”. Results—There are various classifications. They depend on the criteria chosen by the authors to differentiate subtypes. Those criteria can be the number and position of the raphes, the cusps, the commissures, or their arrangements regarding coronary ostia. Sievers’ classification is the reference. The phenotypic description of embryology revealed that all subtypes of BAV are the results of different embryological pathogenesis, and therefore, should be considered as distinct conditions. Their common development towards aortic dilatation is explained by the aortic media’s pathological histology with cystic medial necrosis. At the opposite, BAV seems to display a profound genetic heterogeneity with both sporadic and familial forms. BAV can be even isolated or combined with other congenital malformations. Conclusions—All those characteristics make this pathology a highly complex condition that needs further genetic, embryological, and hemodynamic explorations to complete its well described anatomy.
Collapse
|
5
|
MicroRNAs in ascending thoracic aortic aneurysms. Biosci Rep 2021; 40:225830. [PMID: 32678444 PMCID: PMC7385583 DOI: 10.1042/bsr20200218] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 07/07/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023] Open
Abstract
Thoracic Aortic Aneurysm (TAA) is characterized by the dilation of the aorta and is fatal if not diagnosed and treated appropriately. The underlying genetic mechanisms have not been completely delineated, so better knowledge of the physiopathology of TAAs is needed to improve detection and therapy. MicroRNAs (miRNAs) regulate gene expression post-transcriptionally and are known to be involved in cardiovascular diseases (CVDs). The current study aimed to identify miRNAs that can be used as possible biomarkers for the early diagnosis of patients with ascending TAAs (ATAAs). MiRNA expression was profiled by NanoString nCounter technology using 12 samples including tissue and pre- and post-surgical plasma from ATAA patients. Four miRNAs were selected and further validated by real time polymerase chain reaction (RT-PCR) in 22 plasma samples from which three miRNAs (hsa-miR140-5p, hsa-miR-191-5p and hsa-miR-214-3p) showed significant expression level differences between the two types of plasma samples. Further analyses of the corresponding predicted target genes by these miRNAs, revealed two genes (Myotubularin-related protein 4 (MTMR4) and Phosphatase 1 catalytic subunit β (PPP1CB)) whose expression was inversely correlated with the expression of their respective miRNAs. Overall, in this pilot study, we identified three miRNAs that might serve as potential biomarkers and therapeutic targets in ATAA.
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW The incidence of aortic valve disease in inherited connective tissue disorders is well documented; however, recent studies have only begun to unravel the pathology behind this association. In this review, we aim to describe the etiology, clinical manifestations, management, and prognosis of aortic and aortic valvular disorders that co-exist in a variety of connective tissue diseases. An extensive literature review was performed in PubMed. Articles from 2008 to 2018 were included for review. Predetermined search terms used in PubMed include "aortic manifestation of connective tissue diseases" and "aortic valve disorders in rheumatologic disease." RECENT FINDINGS Manifestations of aortic valve disease in the context of connective tissue disorders include valvular stenosis, regurgitation, and/or thoracic aortic aneurysms. Both inherited and inflammatory connective tissue disorders contribute to aortic valve damage with increased susceptibility associated with specific gene variants. Anti-inflammatory and immunosuppressive therapies have demonstrated beneficial results in Marfan's syndrome, Behcet disease, rheumatoid arthritis, ankylosing spondylitis, and systemic sclerosis, often leading to remission. Yet, such therapy is less effective in other disorders compared to alternative treatments such as surgical intervention. Additionally, regular echocardiographic studies should be recommended to those suffering from these disorders, especially those at higher risk for cardiovascular involvement. Given the rates of relapse with immunosuppressants, even following aortic valve replacement, further studies are needed to determine if certain dosing and/or combinations of immunosuppressants could be given to those diagnosed with connective tissue diseases to prevent progression of aortic valve involvement.
Collapse
Affiliation(s)
- Bogna Grygiel-Górniak
- Department of Rheumatology and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Mary-Tiffany Oduah
- Department of Rheumatology and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Abdulbaril Olagunju
- Department of Rheumatology and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Michal Klokner
- Department of Rheumatology and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
7
|
Tofacitinib Treatment Is Associated With Modest and Reversible Increases in Serum Lipids in Patients With Ulcerative Colitis. Clin Gastroenterol Hepatol 2020; 18:123-132.e3. [PMID: 31077827 DOI: 10.1016/j.cgh.2019.04.059] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 04/18/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Tofacitinib is an oral, small-molecule Janus kinase inhibitor for the treatment of ulcerative colitis (UC). We analyzed inflammation, lipid concentrations, and incidence rates of major adverse cardiovascular (CV) events (MACEs) in patients who received tofacitinib in worldwide studies. METHODS We collected data from 1157 patients who participated in 3 8-week induction studies (1 phase-2 study and 2 phase-3 studies; patients received tofacitinib 10 mg twice daily or placebo), a 52-week phase-3 maintenance study of responders (patients received tofacitinib 5 or 10 mg twice daily or placebo), and an ongoing long-term extension study of patients who did and did not respond to induction or maintenance therapy (patients received tofacitinib 5 or 10 mg twice daily). Lipid concentrations were assessed from induction baseline to week 61 (week 52 of maintenance therapy). We calculated MACE incidence rates (patients with ≥1 event per 100 patient-years of exposure) and Reynolds risk score (RRS; a composite score used to determine CV risk) for patients given tofacitinib vs placebo. RESULTS The mean RRS was <5% at baseline and week 8 of treatment with tofacitinib. At week 8, there were greater increases from baseline in total cholesterol, high-density lipoprotein cholesterol (HDL-c), and low-density lipoprotein cholesterol in patients given tofacitinib compared with placebo. There were correlations between reduced levels of high-sensitivity C-reactive protein and increased serum concentrations of lipid in patients given tofacitinib or placebo (P < .001). Lipid concentrations were increased in patients given tofacitinib vs patients given placebo through week 61. Overall, ratios of low-density lipoprotein cholesterol to HDL-c and total cholesterol to HDL-c did not change significantly over the 61-week period. Four MACEs were reported; the incidence rate was 0.24 (95% CI, 0.07-0.62) and 3 of these patients had 4 or more CV risk factors. CONCLUSIONS In an analysis of data from 5 trials of patients with UC who received tofacitinib, we found reversible increases in lipids with treatment and inverse correlations with reduced levels of high-sensitivity C-reactive protein. We did not find clinically meaningful changes in lipid ratios or RRS. MACEs were infrequent and not dose-related. Clinicaltrials.gov: A3921063 (NCT00787202); OCTAVE Induction 1 (NCT01465763); OCTAVE Induction 2 (NCT01458951); OCTAVE Sustain (NCT01458574); OCTAVE Open (NCT01470612).
Collapse
|
8
|
Balistreri CR, Forte M, Greco E, Paneni F, Cavarretta E, Frati G, Sciarretta S. An overview of the molecular mechanisms underlying development and progression of bicuspid aortic valve disease. J Mol Cell Cardiol 2019; 132:146-153. [PMID: 31103478 DOI: 10.1016/j.yjmcc.2019.05.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 05/14/2019] [Indexed: 12/31/2022]
Abstract
Bicuspid aortic valve (BAV) is a common congenital heart malformation frequently associated with the development of aortic valve diseases and severe aortopathy, such as aortic dilatation, aneurysm and dissection. To date, different genetic loci have been identified in syndromic and non- syndromic forms of BAV. Among these, genes involved in the regulation of extracellular matrix remodelling, epithelial to mesenchymal transition and nitric oxide metabolism appear to be the main contributors to BAV pathogenesis. However, no- single gene model explains BAV inheritance, suggesting that more factors are simultaneously involved. In this regard, characteristic epigenetic and immunological profiles have been documented to contradistinguish BAV individuals. In this review, we provide a comprehensive overview addressing molecular mechanisms involved in BAV development and progression.
Collapse
Affiliation(s)
- Carmela Rita Balistreri
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Palermo, Italy.
| | | | - Ernesto Greco
- Department of Cardiovascular, Respiratory, Nephrological, Anesthesiological, and Geriatric Sciences, Sapienza University of Rome, Rome, Italy
| | - Francesco Paneni
- Center for Molecular Cardiology, University of Zürich, Switzerland; University Heart Center, Cardiology, University Hospital Zurich, Switzerland
| | - Elena Cavarretta
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy; Mediterranea Cardiocentro, Naples, Italy
| | - Giacomo Frati
- IRCCS Neuromed, Pozzilli, IS, Italy; Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Sebastiano Sciarretta
- IRCCS Neuromed, Pozzilli, IS, Italy; Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| |
Collapse
|
9
|
Campobasso R, Condemi F, Viallon M, Croisille P, Campisi S, Avril S. Evaluation of Peak Wall Stress in an Ascending Thoracic Aortic Aneurysm Using FSI Simulations: Effects of Aortic Stiffness and Peripheral Resistance. Cardiovasc Eng Technol 2018; 9:707-722. [DOI: 10.1007/s13239-018-00385-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 10/08/2018] [Indexed: 12/25/2022]
|
10
|
Local variations in material and structural properties characterize murine thoracic aortic aneurysm mechanics. Biomech Model Mechanobiol 2018; 18:203-218. [PMID: 30251206 DOI: 10.1007/s10237-018-1077-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 09/14/2018] [Indexed: 12/18/2022]
Abstract
We recently developed an approach to characterize local nonlinear, anisotropic mechanical properties of murine arteries by combining biaxial extension-distension testing, panoramic digital image correlation, and an inverse method based on the principle of virtual power. This experimental-computational approach was illustrated for the normal murine abdominal aorta assuming uniform wall thickness. Here, however, we extend our prior approach by adding an optical coherence tomography (OCT) imaging system that permits local reconstructions of wall thickness. This multimodality approach is then used to characterize spatial variations of material and structural properties in ascending thoracic aortic aneurysms (aTAA) from two genetically modified mouse models (fibrillin-1 and fibulin-4 deficient) and to compare them with those from angiotensin II-infused apolipoprotein E-deficient and wild-type control ascending aortas. Local values of stored elastic energy and biaxial material stiffness, computed from spatial distributions of the best fit material parameters, varied significantly with circumferential position (inner vs. outer curvature, ventral vs. dorsal sides) across genotypes and treatments. Importantly, these data reveal an inverse relationship between material stiffness and wall thickness that underlies a general linear relationship between stiffness and wall stress across aTAAs. OCT images also revealed sites of advanced medial degeneration, which were captured by the inverse material characterization. Quantification of histological data further provided high-resolution local correlations among multiple mechanical metrics and wall microstructure. This is the first time that such structural defects and local properties have been characterized mechanically, which can better inform computational models of aortopathy that seek to predict where dissection or rupture may initiate.
Collapse
|
11
|
Giusti B, Sticchi E, De Cario R, Magi A, Nistri S, Pepe G. Genetic Bases of Bicuspid Aortic Valve: The Contribution of Traditional and High-Throughput Sequencing Approaches on Research and Diagnosis. Front Physiol 2017; 8:612. [PMID: 28883797 PMCID: PMC5573733 DOI: 10.3389/fphys.2017.00612] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/09/2017] [Indexed: 12/20/2022] Open
Abstract
Bicuspid aortic valve (BAV) is a common (0.5-2.0% of general population) congenital heart defect with increased prevalence of aortic dilatation and dissection. BAV has an autosomal dominant inheritance with reduced penetrance and variable expressivity. BAV has been described as an isolated trait or associated with syndromic conditions [e.g., Marfan Marfan syndrome or Loeys-Dietz syndrome (MFS, LDS)]. Identification of a syndromic condition in a BAV patient is clinically relevant to personalize aortic surgery indication. A 4-fold increase in BAV prevalence in a large cohort of unrelated MFS patients with respect to general population was reported, as well as in LDS patients (8-fold). It is also known that BAV is more frequent in patients with thoracic aortic aneurysm (TAA) related to mutations in ACTA2, FBN1, and TGFBR2 genes. Moreover, in 8 patients with BAV and thoracic aortic dilation, not fulfilling the clinical criteria for MFS, FBN1 mutations in 2/8 patients were identified suggesting that FBN1 or other genes involved in syndromic conditions correlated to aortopathy could be involved in BAV. Beyond loci associated to syndromic disorders, studies in humans and animal models evidenced/suggested the role of further genes in non-syndromic BAV. The transcriptional regulator NOTCH1 has been associated with the development and acceleration of calcium deposition. Genome wide marker-based linkage analysis demonstrated a linkage of BAV to loci on chromosomes 18, 5, and 13q. Recently, a role for GATA4/5 in aortic valve morphogenesis and endocardial cell differentiation has been reported. BAV has also been associated with a reduced UFD1L gene expression or involvement of a locus containing AXIN1/PDIA2. Much remains to be understood about the genetics of BAV. In the last years, high-throughput sequencing technologies, allowing the analysis of large number of genes or entire exomes or genomes, progressively became available. The latter issue together with the development of "BigData" analysis methods improving their interpretation and integration with clinical data represents a promising opportunity to increase the disease knowledge and diagnosis in monogenic and multifactorial complex traits. This review summarized the main knowledge on the BAV genetic bases, the role of genetic diagnosis in BAV patient managements and the crucial challenges for the comprehension of genetics of BAV in research and diagnosis.
Collapse
Affiliation(s)
- Betti Giusti
- Department of Experimental and Clinical Medicine, Section of Critical Medical Care and Medical Specialities, University of FlorenceFlorence, Italy.,Marfan Syndrome and Related Disorders Regional (Tuscany) Referral Center, Careggi HospitalFlorence, Italy.,Advanced Molecular Genetics Laboratory, Atherothrombotic Diseases Center, Careggi HospitalFlorence, Italy.,Center of Excellence for the Study at Molecular and Clinical Level of Chronic, Degenerative and Neoplastic Diseases to Develop Novel Therapies (DENOTHE), University of FlorenceFlorence, Italy
| | - Elena Sticchi
- Department of Experimental and Clinical Medicine, Section of Critical Medical Care and Medical Specialities, University of FlorenceFlorence, Italy.,Marfan Syndrome and Related Disorders Regional (Tuscany) Referral Center, Careggi HospitalFlorence, Italy.,Advanced Molecular Genetics Laboratory, Atherothrombotic Diseases Center, Careggi HospitalFlorence, Italy.,Center of Excellence for the Study at Molecular and Clinical Level of Chronic, Degenerative and Neoplastic Diseases to Develop Novel Therapies (DENOTHE), University of FlorenceFlorence, Italy
| | - Rosina De Cario
- Department of Experimental and Clinical Medicine, Section of Critical Medical Care and Medical Specialities, University of FlorenceFlorence, Italy.,Marfan Syndrome and Related Disorders Regional (Tuscany) Referral Center, Careggi HospitalFlorence, Italy
| | - Alberto Magi
- Department of Experimental and Clinical Medicine, Section of Critical Medical Care and Medical Specialities, University of FlorenceFlorence, Italy.,Advanced Molecular Genetics Laboratory, Atherothrombotic Diseases Center, Careggi HospitalFlorence, Italy
| | - Stefano Nistri
- Center of Excellence for the Study at Molecular and Clinical Level of Chronic, Degenerative and Neoplastic Diseases to Develop Novel Therapies (DENOTHE), University of FlorenceFlorence, Italy.,Cardiology Service, Centro Medico Strumentale Riabilitativo (CMSR) Veneto MedicaAltavilla Vicentina, Italy
| | - Guglielmina Pepe
- Department of Experimental and Clinical Medicine, Section of Critical Medical Care and Medical Specialities, University of FlorenceFlorence, Italy.,Marfan Syndrome and Related Disorders Regional (Tuscany) Referral Center, Careggi HospitalFlorence, Italy.,Center of Excellence for the Study at Molecular and Clinical Level of Chronic, Degenerative and Neoplastic Diseases to Develop Novel Therapies (DENOTHE), University of FlorenceFlorence, Italy
| |
Collapse
|
12
|
Gago-Díaz M, Ramos-Luis E, Zoppis S, Zorio E, Molina P, Braza-Boïls A, Giner J, Sobrino B, Amigo J, Blanco-Verea A, Carracedo Á, Brion M. Postmortem genetic testing should be recommended in sudden cardiac death cases due to thoracic aortic dissection. Int J Legal Med 2017; 131:1211-1219. [PMID: 28391405 DOI: 10.1007/s00414-017-1583-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 03/27/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND Acute thoracic aortic dissections and ruptures, the main life-threatening complications of the corresponding aneurysms, are an important cause of sudden cardiac death. Despite the usefulness of the molecular diagnosis of these conditions in the clinical setting, the corresponding forensic field remains largely unexplored. The main goal of this study was to explore and validate a new massive parallel sequencing candidate gene assay as a diagnostic tool for acute thoracic aortic dissection autopsy cases. MATERIALS AND METHODS Massive parallel sequencing of 22 thoracic aortic disease candidate genes performed in 17 cases of thoracic aortic dissection using AmpliSeq and Ion Proton technologies. Genetic variants were filtered by location, type, and frequency at the Exome Aggregation Consortium and an internal database and further classified based on the American College of Medical Genetics and Genomics (ACMG) recommendations published in 2015. All prioritized results were confirmed by traditional sequencing. RESULTS From the total of 10 potentially pathogenic genetic variants identified in 7 out of the 17 initial samples, 2 of them were further classified as pathogenic, 2 as likely pathogenic, 1 as possibly benign, and the remaining 5 as variants of uncertain significance, reaching a molecular autopsy yield of 23%, approximately. CONCLUSIONS This massive parallel sequencing candidate gene approach proved useful for the molecular autopsy of aortic dissection sudden cardiac death cases and should therefore be progressively incorporated into the forensic field, being especially beneficial for the anticipated diagnosis and risk stratification of any other family member at risk of developing the same condition.
Collapse
Affiliation(s)
- Marina Gago-Díaz
- Xenética de Enfermidades Cardiovasculares e Oftalmolóxicas, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain.,Grupo de Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago de Compostela, Universidade de Santiago de Compostela, Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela, Spain
| | - Eva Ramos-Luis
- Xenética de Enfermidades Cardiovasculares e Oftalmolóxicas, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain.,Grupo de Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago de Compostela, Universidade de Santiago de Compostela, Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela, Spain
| | - Silvia Zoppis
- Xenética de Enfermidades Cardiovasculares e Oftalmolóxicas, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain.,Grupo de Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago de Compostela, Universidade de Santiago de Compostela, Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela, Spain.,Laboratorio di Genetica Forense, Sezione di Medicina Legale, Dipartimento S.A.I.M.L.A.L., Università di Roma Sapienza, Rome, Italy
| | - Esther Zorio
- Servicio de Cardiología, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Pilar Molina
- Servicio de Patología, Instituto de Medicina Legal de Valencia, Valencia, Spain
| | | | - Juan Giner
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Beatriz Sobrino
- Grupo de Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago de Compostela, Universidade de Santiago de Compostela, Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela, Spain
| | - Jorge Amigo
- Grupo de Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago de Compostela, Universidade de Santiago de Compostela, Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela, Spain
| | - Alejandro Blanco-Verea
- Xenética de Enfermidades Cardiovasculares e Oftalmolóxicas, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain.,Grupo de Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago de Compostela, Universidade de Santiago de Compostela, Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela, Spain
| | - Ángel Carracedo
- Grupo de Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago de Compostela, Universidade de Santiago de Compostela, Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela, Spain.,Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - María Brion
- Xenética de Enfermidades Cardiovasculares e Oftalmolóxicas, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain. .,Grupo de Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago de Compostela, Universidade de Santiago de Compostela, Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela, Spain. .,Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Laboratorio 1, Travesía de Choupana S/N, CP: 15706, Santiago de Compostela, Spain.
| |
Collapse
|
13
|
Andreas M, Panzenboeck A, Shabanian S, Kocher A, Mannhalter C, Petzl A, Hueblauer J, Wolzt M, Ehrlich M, Lang I. The VKORC1 polymorphism rs9923231 is associated with aneurysms of the ascending aorta in an Austrian population. Thromb Res 2017; 152:41-43. [DOI: 10.1016/j.thromres.2017.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/15/2017] [Accepted: 02/13/2017] [Indexed: 10/20/2022]
|
14
|
Yuan SM. α-Smooth Muscle Actin and ACTA2 Gene Expressions in Vasculopathies. Braz J Cardiovasc Surg 2016; 30:644-9. [PMID: 26934405 PMCID: PMC4762557 DOI: 10.5935/1678-9741.20150081] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/23/2015] [Indexed: 12/27/2022] Open
Abstract
α-smooth muscle actin, encoded by ACTA2 gene, is an isoform of the
vascular smooth muscle actins, typically expressed in the vascular smooth muscle
cells contributing to vascular motility and contraction. ACTA2 gene mutations
cause a diversity of diffuse vasculopathies such as thoracic aortic aneurysms
and dissections as well as occlusive vascular diseases, including premature
coronary artery disease and ischemic stroke. Dynamics of
differentiation-specific α-smooth muscle actin in arterial smooth muscle
cells and proliferation of the proteins have been well described. Although a
variety of research works have been undertaken in terms of modifications of
α-smooth muscle actin and mutations of ACTA2 gene and myosin, the
underlying mechanisms towards the pathological processes by way of gene
mutations are yet to be clarified. The purpose of the present article is to
describe the phenotypes of α-smooth muscle actin and implications of
ACTA2 mutations in vasculopathies in order to enhance the understanding of
potential mechanisms of aortic and coronary disorders.
Collapse
|
15
|
Schoen FJ, Gotlieb AI. Heart valve health, disease, replacement, and repair: a 25-year cardiovascular pathology perspective. Cardiovasc Pathol 2016; 25:341-352. [PMID: 27242130 DOI: 10.1016/j.carpath.2016.05.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/04/2016] [Accepted: 05/05/2016] [Indexed: 01/24/2023] Open
Abstract
The past several decades have witnessed major advances in the understanding of the structure, function, and biology of native valves and the pathobiology and clinical management of valvular heart disease. These improvements have enabled earlier and more precise diagnosis, assessment of the proper timing of surgical and interventional procedures, improved prosthetic and biologic valve replacements and repairs, recognition of postoperative complications and their management, and the introduction of minimally invasive approaches that have enabled definitive and durable treatment for patients who were previously considered inoperable. This review summarizes the current state of our understanding of the mechanisms of heart valve health and disease arrived at through innovative research on the cell and molecular biology of valves, clinical and pathological features of the most frequent intrinsic structural diseases that affect the valves, and the status and pathological considerations in the technological advances in valvular surgery and interventions. The contributions of many cardiovascular pathologists and other scientists, engineers, and clinicians are emphasized, and potentially fruitful areas for research are highlighted.
Collapse
Affiliation(s)
- Frederick J Schoen
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115; Pathology and Health Sciences and Technology (HST), Harvard Medical School, 75 Francis Street, Boston, MA 02115.
| | - Avrum I Gotlieb
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Laboratory Medicine Program, University Health Network, Medical Sciences Building, 1 King's College Circle, Rm. 6275A, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
16
|
Somers AE, Hinton RB, Pilipenko V, Miller E, Ware SM. Analysis of TGFBR1*6A variant in individuals evaluated for Marfan syndrome. Am J Med Genet A 2016; 170:1786-90. [PMID: 27112580 DOI: 10.1002/ajmg.a.37668] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/07/2016] [Indexed: 11/11/2022]
Abstract
Marfan syndrome (MFS) and Loeys-Dietz syndrome (LDS) are genetic disorders that affect connective tissue as a result of dysregulated TGF-β signaling. MFS is most frequently caused by mutations in FBN1 whereas Loeys-Dietz syndrome results from mutations in TGFBR1 or TGFBR2. There is substantial inter- and intra-familial phenotypic variability among these disorders, suggesting the presence of genetic modifiers. Previously, a polymorphism in the TGFβR1 protein termed the TFGBR1*6A allele was found to be overrepresented in patients with MFS and was identified as a low penetrance allele with suggestion as a possible modifier. To further investigate the importance of this variant, a retrospective review of genetic and phenotypic findings was conducted for 335 patients evaluated for suspicion of MFS or related disorders. In patients with a diagnosis of MFS, the presence of the TFGBR1*6A allele was not associated with phenotypic differences. Similarly, careful phenotyping of patients who carried the TFGBR1*6A allele but did not have MFS did not identify an altered frequency of specific connective tissue features. In this small cohort, the results did not reach significance to identify the TFGBR1*6A allele as a major modifier for aortic dilation, ectopia lentis, or systemic features associated with MFS or other connective tissue disorders. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Robert B Hinton
- University of Cincinnati College of Medicine, Cincinnati, Ohio.,Division of Cardiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Valentina Pilipenko
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Erin Miller
- University of Cincinnati College of Medicine, Cincinnati, Ohio.,Division of Cardiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | | |
Collapse
|
17
|
Schubert JA, Landis BJ, Shikany AR, Hinton RB, Ware SM. Clinically relevant variants identified in thoracic aortic aneurysm patients by research exome sequencing. Am J Med Genet A 2016; 170A:1288-94. [PMID: 26854089 DOI: 10.1002/ajmg.a.37568] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 01/09/2016] [Indexed: 11/09/2022]
Abstract
Thoracic aortic aneurysm (TAA) is a genetically heterogeneous disease involving subclinical and progressive dilation of the thoracic aorta, which can lead to life-threatening complications such as dissection or rupture. Genetic testing is important for risk stratification and identification of at risk family members, and clinically available genetic testing panels have been expanding rapidly. However, when past testing results are normal, there is little evidence to guide decision-making about the indications and timing to pursue additional clinical genetic testing. Results from research based genetic testing can help inform this process. Here we present 10 TAA patients who have a family history of disease and who enrolled in research-based exome testing. Nine of these ten patients had previous clinical genetic testing that did not identify the cause of disease. We sought to determine the number of rare variants in 23 known TAA associated genes identified by research-based exome testing. In total, we found 10 rare variants in six patients. Likely pathogenic variants included a TGFB2 variant in one patient and a SMAD3 variant in another. These variants have been reported previously in individuals with similar phenotypes. Variants of uncertain significance of particular interest included novel variants in MYLK and MFAP5, which were identified in a third patient. In total, clinically reportable rare variants were found in 6/10 (60%) patients, with at least 2/10 (20%) patients having likely pathogenic variants identified. These data indicate that consideration of re-testing is important in TAA patients with previous negative or inconclusive results.
Collapse
Affiliation(s)
- Jeffrey A Schubert
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio.,Department of Pediatrics and Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Benjamin J Landis
- Department of Pediatrics and Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Amy R Shikany
- Division of Cardiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Robert B Hinton
- Division of Cardiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Stephanie M Ware
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio.,Department of Pediatrics and Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
18
|
Seidman M, Mitchell R. Fundamental Principles in Cardiovascular Genetics. Cardiovasc Pathol 2016. [DOI: 10.1016/b978-0-12-420219-1.00006-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
19
|
|
20
|
Barbier M, Gross MS, Aubart M, Hanna N, Kessler K, Guo DC, Tosolini L, Ho-Tin-Noe B, Regalado E, Varret M, Abifadel M, Milleron O, Odent S, Dupuis-Girod S, Faivre L, Edouard T, Dulac Y, Busa T, Gouya L, Milewicz D, Jondeau G, Boileau C. MFAP5 loss-of-function mutations underscore the involvement of matrix alteration in the pathogenesis of familial thoracic aortic aneurysms and dissections. Am J Hum Genet 2014; 95:736-43. [PMID: 25434006 DOI: 10.1016/j.ajhg.2014.10.018] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 10/30/2014] [Indexed: 10/24/2022] Open
Abstract
Thoracic aortic aneurysm and dissection (TAAD) is an autosomal-dominant disorder with major life-threatening complications. The disease displays great genetic heterogeneity with some forms allelic to Marfan and Loeys-Dietz syndrome, and an important number of cases still remain unexplained at the molecular level. Through whole-exome sequencing of affected members in a large TAAD-affected family, we identified the c.472C>T (p.Arg158(∗)) nonsense mutation in MFAP5 encoding the extracellular matrix component MAGP-2. This protein interacts with elastin fibers and the microfibrillar network. Mutation screening of 403 additional probands identified an additional missense mutation of MFAP5 (c.62G>T [p.Trp21Leu]) segregating with the disease in a second family. Functional analyses performed on both affected individual's cells and in vitro models showed that these two mutations caused pure or partial haploinsufficiency. Thus, alteration of MAGP-2, a component of microfibrils and elastic fibers, appears as an initiating mechanism of inherited TAAD.
Collapse
|
21
|
Tsamis A, Pal S, Phillippi JA, Gleason TG, Maiti S, Vorp DA. Effect of aneurysm on biomechanical properties of "radially-oriented" collagen fibers in human ascending thoracic aortic media. J Biomech 2014; 47:3820-4. [PMID: 25468299 DOI: 10.1016/j.jbiomech.2014.10.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 10/21/2014] [Indexed: 10/24/2022]
Abstract
We recently reported a mechanistic model to link micro-architectural information to the delamination strength (Sd) of human ascending thoracic aorta (ATA). That analysis demonstrated that the number density (N) and failure energy (Uf) of the radially-oriented collagen fibers contribute to the Sd of both aneurysmal (ATAA) and non-aneurysmal (CTRL-ATA) aortic tissue. Among the set of ATAA samples, we studied specimens from patients displaying bicuspid (BAV) and tricuspid aortic valve (TAV) morphologic phenotypes. Results from our prior work were based on the assumption that the Uf was independent of dissection direction. In the current study, we excluded that assumption and hypothesized that Uf correlates with the Sd of ATAA. To test the hypothesis, we used previously-reported experimentally-determined Sd measurements and N of radially-oriented collagen fibers as input in our validated mechanistic model to calculate Uf for BAV-ATAA, TAV-ATAA and CTRL-ATA tissue specimens. The results of our analysis revealed that Uf is significantly lower for both BAV-ATAA and TAV-ATAA compared to CTRL-ATA cases, and does not differ between BAV-ATAA and TAV-ATAA. Furthermore, we found that Uf is consistent between circumferential-radial and longitudinal-radial planes in either of BAV-ATAA, TAV-ATAA or CTRL-ATA specimens. These findings employ a novel mechanistic model to increase our understanding of the putative interrelationship between biomechanical properties, extracellular matrix biology, and failure energy of aortic dissection.
Collapse
Affiliation(s)
- Alkiviadis Tsamis
- Departments of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; Center for Vascular Remodeling and Regeneration, University of Pittsburgh, Pittsburgh, PA, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Siladitya Pal
- Departments of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Julie A Phillippi
- Departments of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, United States; Center for Vascular Remodeling and Regeneration, University of Pittsburgh, Pittsburgh, PA, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Thomas G Gleason
- Departments of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, United States; Center for Vascular Remodeling and Regeneration, University of Pittsburgh, Pittsburgh, PA, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Spandan Maiti
- Departments of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.
| | - David A Vorp
- Departments of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, United States; Surgery, University of Pittsburgh, Pittsburgh, PA, United States; Center for Vascular Remodeling and Regeneration, University of Pittsburgh, Pittsburgh, PA, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
22
|
Jackson V, Eriksson MJ, Caidahl K, Eriksson P, Franco-Cereceda A. Ascending aortic dilatation is rarely associated with coronary artery disease regardless of aortic valve morphology. J Thorac Cardiovasc Surg 2014; 148:2973-80.e1. [PMID: 25242056 DOI: 10.1016/j.jtcvs.2014.08.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 08/08/2014] [Accepted: 08/13/2014] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Differences in clinical presentation between patients with tricuspid aortic valves (TAVs) or bicuspid aortic valves (BAVs) and aortic valve disease are evident. Whether these differences can be attributed to differences in cardiovascular risks remains uncertain. METHODS Patient characteristics, echocardiographic findings, medical history, medication, and laboratory findings were evaluated in 702 patients with aortic valve and/or ascending aortic pathology; 202 also had concomitant coronary artery disease. RESULTS A BAV was commonly found in patients with isolated valve disease (BAV 47%, TAV 53%) and frequently associated with ascending aortic dilatation (BAV 80%, TAV 20%). In patients with coronary artery disease, a TAV was commonly found (TAV 84%, BAV 16%). The combination of ascending aortic dilatation and coronary artery disease was markedly rare regardless of valve morphology (TAV, 7 out of 38; BAV, 6 out of 127). The distribution of valve pathology and clinical parameters was similar in patients with TAV and BAV with coronary artery disease (P ≥ .12). Without coronary artery disease, parameters associated with cardiovascular risks were more often seen in patients with TAV than in patients with BAV (P ≤ .0001). CONCLUSIONS Coronary artery disease is uncommon in surgical patients with BAV, but it is associated with TAV, advanced age, and male gender. Coronary artery disease and ascending aortic dilatation rarely coexist, regardless of valve phenotype. Differences in the prevalence of coronary artery disease or ascending aortic dilatation between patients with TAV and BAV are not explained by differences in cardiovascular risks or the distribution of valve pathology.
Collapse
Affiliation(s)
- Veronica Jackson
- Cardiothoracic Surgery Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| | - Maria J Eriksson
- Clinical Physiology Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Kenneth Caidahl
- Clinical Physiology Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Per Eriksson
- Atherosclerosis Research Unit at the Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anders Franco-Cereceda
- Cardiothoracic Surgery Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
23
|
Boodhwani M, Andelfinger G, Leipsic J, Lindsay T, McMurtry MS, Therrien J, Siu SC. Canadian Cardiovascular Society Position Statement on the Management of Thoracic Aortic Disease. Can J Cardiol 2014; 30:577-89. [DOI: 10.1016/j.cjca.2014.02.018] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 02/01/2014] [Accepted: 02/01/2014] [Indexed: 01/10/2023] Open
|
24
|
Moazzam AA, Savvas SN, Amar AP, Ham SW, Panush RS, Clavijo LC. Diffuse aneurysmal disease – A review. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.rvm.2013.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
25
|
Wain KE, Ellingson MS, McDonald J, Gammon A, Roberts M, Pichurin P, Winship I, Riegert-Johnson DL, Weitzel JN, Lindor NM. Appreciating the broad clinical features of SMAD4 mutation carriers: a multicenter chart review. Genet Med 2014; 16:588-93. [PMID: 24525918 DOI: 10.1038/gim.2014.5] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 01/06/2014] [Indexed: 12/18/2022] Open
Abstract
Heterozygous loss-of-function SMAD4 mutations are associated with juvenile polyposis syndrome and hereditary hemorrhagic telangiectasia. Some carriers exhibit symptoms of both conditions, leading to juvenile polyposis-hereditary hemorrhagic telangiectasia syndrome. Three families have been reported with connective tissue abnormalities. To better understand the spectrum and extent of clinical findings in SMAD4 carriers, medical records of 34 patients (20 families) from five clinical practices were reviewed. Twenty-one percent of the patients (7/34) had features suggesting a connective tissue defect: enlarged aortic root (n = 3), aortic and mitral insufficiency (n = 2), aortic dissection (n = 1), retinal detachment (n = 1), brain aneurysms (n = 1), and lax skin and joints (n = 1). Juvenile polyposis-specific findings were almost uniformly present but variable. Ninety-seven percent of the patients had colon polyps that were generally pan-colonic and of variable histology and number. Forty-eight percent of the patients (15/31) had extensive gastric polyposis. Hereditary hemorrhagic telangiectasia features, including epistaxis (19/31, 61%), mucocutaneous telangiectases (15/31, 48%), liver arteriovenous malformation (6/16, 38%), brain arteriovenous malformation (1/26, 4%), pulmonary arteriovenous malformation (9/17, 53%), and intrapulmonary shunting (14/23, 61%), were documented in 76% of the patients. SMAD4 carriers should be managed for juvenile polyposis and hereditary hemorrhagic telangiectasia because symptoms of both conditions are likely yet unpredictable. Connective tissue abnormalities are an emerging component of juvenile polyposis-hereditary hemorrhagic telangiectasia syndrome, and larger studies are needed to understand these manifestations.
Collapse
Affiliation(s)
- Karen E Wain
- Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Jamie McDonald
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Amanda Gammon
- High Risk Cancer Clinics, Huntsman Cancer Institute, Salt Lake City, Utah, USA
| | | | - Pavel Pichurin
- Medical Genetics, Mayo Clinic, Rochester, Minnesota, USA
| | - Ingrid Winship
- 1] Department of Medicine, University of Melbourne, Melbourne, Australia [2] Genetic Medicine, Royal Melbourne Hospital, Melbourne, Australia
| | | | | | | |
Collapse
|
26
|
Pal S, Tsamis A, Pasta S, D'Amore A, Gleason TG, Vorp DA, Maiti S. A mechanistic model on the role of "radially-running" collagen fibers on dissection properties of human ascending thoracic aorta. J Biomech 2014; 47:981-8. [PMID: 24484644 DOI: 10.1016/j.jbiomech.2014.01.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 01/06/2014] [Accepted: 01/07/2014] [Indexed: 11/29/2022]
Abstract
Aortic dissection (AoD) is a common condition that often leads to life-threatening cardiovascular emergency. From a biomechanics viewpoint, AoD involves failure of load-bearing microstructural components of the aortic wall, mainly elastin and collagen fibers. Delamination strength of the aortic wall depends on the load-bearing capacity and local micro-architecture of these fibers, which may vary with age, disease and aortic location. Therefore, quantifying the role of fiber micro-architecture on the delamination strength of the aortic wall may lead to improved understanding of AoD. We present an experimentally-driven modeling paradigm towards this goal. Specifically, we utilize collagen fiber micro-architecture, obtained in a parallel study from multi-photon microscopy, in a predictive mechanistic framework to characterize the delamination strength. We then validate our model against peel test experiments on human aortic strips and utilize the model to predict the delamination strength of separate aortic strips and compare with experimental findings. We observe that the number density and failure energy of the radially-running collagen fibers control the peel strength. Furthermore, our model suggests that the lower delamination strength previously found for the circumferential direction in human aorta is related to a lower number density of radially-running collagen fibers in that direction. Our model sets the stage for an expanded future study that could predict AoD propagation in patient-specific aortic geometries and better understand factors that may influence propensity for occurrence.
Collapse
Affiliation(s)
- Siladitya Pal
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Alkiviadis Tsamis
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; Center for Vascular Remodeling and Regeneration, University of Pittsburgh, Pittsburgh, PA, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Salvatore Pasta
- Fondazione Ri.MED, University of Palermo, Palermo, Italy; DICGM University of Palermo, Palermo, Italy
| | - Antonio D'Amore
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States; Fondazione Ri.MED, University of Palermo, Palermo, Italy; DICGM University of Palermo, Palermo, Italy
| | - Thomas G Gleason
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, United States; Center for Vascular Remodeling and Regeneration, University of Pittsburgh, Pittsburgh, PA, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - David A Vorp
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, United States; Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States; Center for Vascular Remodeling and Regeneration, University of Pittsburgh, Pittsburgh, PA, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Spandan Maiti
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
27
|
Siddiqi HK, Eagle KA. Acute aortic dissection in women: challenges and opportunities. Expert Rev Cardiovasc Ther 2014; 11:1527-39. [DOI: 10.1586/14779072.2013.845085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Tsamis A, Phillippi JA, Koch RG, Pasta S, D'Amore A, Watkins SC, Wagner WR, Gleason TG, Vorp DA. Fiber micro-architecture in the longitudinal-radial and circumferential-radial planes of ascending thoracic aortic aneurysm media. J Biomech 2013; 46:2787-94. [PMID: 24075403 DOI: 10.1016/j.jbiomech.2013.09.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 09/04/2013] [Indexed: 11/29/2022]
Abstract
It was recently demonstrated by our group that the delamination strength of ascending thoracic aortic aneurysms (ATAA) was lower than that of control (CTRL, non-aneurysmal) ascending thoracic aorta (ATA), and the reduced strength was more pronounced among bicuspid (BAV) vs. tricuspid aortic valve (TAV) patients, suggesting a different risk of aortic dissection for BAV patients. We hypothesized that aortic valve morphologic phenotype predicts fiber micro-architectural anomalies in ATA. To test the hypothesis, we characterized the micro-architecture in the longitudinal-radial (Z-RAD) and circumferential-radial (Θ-RAD) planes of human ATA tissue that was artificially dissected medially. The outer and inner-media of CTRL-ATA, BAV-ATAA and TAV-ATAA were imaged using multi-photon microscopy in the Z-RAD and Θ-RAD planes to observe collagen and elastin. Micrographs were processed using an image-based tool to quantify several micro-architectural characteristics. In the outer-media of BAV-ATAA, elastin was more undulated and less aligned about the Θ-axis when compared with CTRL-ATA, which is consistent with increased tensile stretch at inflection point of Θ-strips of adventitial-medial half of BAV-ATAA (1.28) when compared with CTRL-ATA (1.13). With increasing age, collagen became more undulated about the Z-axis within the outer-media of TAV-ATAA, and elastin became more oriented in the Z-axis and collagen less radially-oriented within the inner-media of TAV-ATAA. This discrepancy in the micro-architecture with fibers in the inner layers being more stretched and with disrupted radially-oriented components than fibers in the outer layers may be associated with the development, progression and vascular remodeling in aneurysms arising in TAV patients.
Collapse
Affiliation(s)
- Alkiviadis Tsamis
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; Center for Vascular Remodeling and Regeneration, University of Pittsburgh, Pittsburgh, PA, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Chamney S, McGimpsey S, McConnell V, Willoughby CE. Iris Flocculi as an ocular marker of ACTA2 mutation in familial thoracic aortic aneurysms and dissections. Ophthalmic Genet 2013; 36:86-8. [PMID: 24020716 DOI: 10.3109/13816810.2013.833634] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Non-syndromic familial thoracic aortic aneurysms and dissections (TAAD) are inherited in an autosomal dominant manner. We report a missense mutation in the smooth muscle α-actin (ACTA2; MIM*102620) gene in a 3 generational family from Northern Ireland in which iris flocculi were an ocular marker of the disease.
Collapse
Affiliation(s)
- Sarah Chamney
- Department of Ophthalmology, Royal Victoria Hospital, Belfast , Northern Ireland , UK
| | | | | | | |
Collapse
|
30
|
Padang R, Bannon PG, Jeremy R, Richmond DR, Semsarian C, Vallely M, Wilson M, Yan TD. The genetic and molecular basis of bicuspid aortic valve associated thoracic aortopathy: a link to phenotype heterogeneity. Ann Cardiothorac Surg 2013; 2:83-91. [PMID: 23977563 DOI: 10.3978/j.issn.2225-319x.2012.11.17] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Accepted: 11/30/2012] [Indexed: 12/17/2022]
Affiliation(s)
- Ratnasari Padang
- The Systematic Review Unit, The Collaborative Research (CORE) Group, Sydney, Australia; ; The Baird Institute for Applied Heart and Lung Surgical Research, Sydney, Australia; ; Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia; ; Agnes Ginges Centre for Molecular Cardiology, Centenary Institute; ; Sydney Medical School, University of Sydney, Australia
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Tsamis A, Krawiec JT, Vorp DA. Elastin and collagen fibre microstructure of the human aorta in ageing and disease: a review. J R Soc Interface 2013; 10:20121004. [PMID: 23536538 PMCID: PMC3645409 DOI: 10.1098/rsif.2012.1004] [Citation(s) in RCA: 327] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 03/06/2013] [Indexed: 12/28/2022] Open
Abstract
Aortic disease is a significant cause of death in developed countries. The most common forms of aortic disease are aneurysm, dissection, atherosclerotic occlusion and ageing-induced stiffening. The microstructure of the aortic tissue has been studied with great interest, because alteration of the quantity and/or architecture of the connective fibres (elastin and collagen) within the aortic wall, which directly imparts elasticity and strength, can lead to the mechanical and functional changes associated with these conditions. This review article summarizes the state of the art with respect to characterization of connective fibre microstructure in the wall of the human aorta in ageing and disease, with emphasis on the ascending thoracic aorta and abdominal aorta where the most common forms of aortic disease tend to occur.
Collapse
Affiliation(s)
- Alkiviadis Tsamis
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Vascular Remodeling and Regeneration, University of Pittsburgh, Pittsburgh, PA, USA
- Vascular Bioengineering Laboratory, 300 Center for Bioengineering, 300 Technology Drive, Pittsburgh, PA 15213, USA
| | - Jeffrey T. Krawiec
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Vascular Remodeling and Regeneration, University of Pittsburgh, Pittsburgh, PA, USA
- Vascular Bioengineering Laboratory, 300 Center for Bioengineering, 300 Technology Drive, Pittsburgh, PA 15213, USA
| | - David A. Vorp
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Vascular Remodeling and Regeneration, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
32
|
Current World Literature. Curr Opin Cardiol 2013; 28:369-79. [DOI: 10.1097/hco.0b013e328360f5be] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Huusko TJ, Santaniemi M, Kakko S, Taskinen P, Ukkola O, Kesäniemi YA, Savolainen MJ, Salonurmi T. Long telomeres in blood leukocytes are associated with a high risk of ascending aortic aneurysm. PLoS One 2012; 7:e50828. [PMID: 23209831 PMCID: PMC3510165 DOI: 10.1371/journal.pone.0050828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 10/25/2012] [Indexed: 01/12/2023] Open
Abstract
Ascending aortic aneurysm is a connective tissue disorder. Even though multiple novel gene mutations have been identified, risk profiling and diagnosis before rupture still represent a challenge. There are studies demonstrating shorter telomere lengths in the blood leukocytes of abdominal aortic aneurysm patients. The aim of this study was to measure whether relative telomere lengths are changed in the blood leukocytes of ascending aortic aneurysm patients. We also studied the expression of telomerase in aortic tissue samples of ascending aortic aneurysms. Relative lengths of leukocyte telomeres were determined from blood samples of patients with ascending aortic aneurysms and compared with healthy controls. Telomerase expression, both at the level of mRNA and protein, was quantified from the aortic tissue samples. Mean relative telomere length was significantly longer in ascending aortic aneurysm blood samples compared with controls (T/S ratio 0.87 vs. 0.61, p<0.001). Expressions of telomerase mRNA and protein were elevated in the aortic aneurysm samples (p<0.05 and p<0.01). Our study reveals a significant difference in the mean length of blood leukocyte telomeres in ascending aortic aneurysm and controls. Furthermore, expression of telomerase, the main compensating factor for telomere loss, is elevated at both the mRNA and protein level in the samples of aneurysmal aorta. Further studies will be needed to confirm if this change in telomere length can serve as a tool for assessing the risk of ascending aortic aneurysm.
Collapse
Affiliation(s)
- Tuija J Huusko
- Institute of Clinical Medicine, Department of Internal Medicine, Clinical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland.
| | | | | | | | | | | | | | | |
Collapse
|