1
|
Lorca R, Alén A, Salgado M, Misiego-Margareto R, Dolado-Cuello J, Gómez J, Alonso V, Coto E, Avanzas P, Martínez-Hernández A, Suárez Mier MP. RBM20 p.Arg636Cys: A Pathogenic Variant Identified in a Family with Several Cases of Unexpected Sudden Deaths. J Clin Med 2025; 14:743. [PMID: 39941414 PMCID: PMC11818836 DOI: 10.3390/jcm14030743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 02/16/2025] Open
Abstract
Background: Dilated cardiomyopathy (DCM) can be an inherited condition related to premature sudden cardiac death (SCD). Pathogenic variants in some genes, like LMNA, SCN5A, FLNC or RBM20, have been linked to an increased risk of SCD. Although genetic study can help to stratify the arrhythmic risk, there are no specific guidelines for RBM20 carriers' management. We aimed to evaluate the genetic profile and clinical features of all DCM patients with pathogenic variants in RBM20.Methods: We identified all carriers of pathogenic variants in RBM20 in a single national center that specializes in inherited cardiac conditions. Forensic and molecular autopsies provided crucial information. Results: We identified a large family with inherited DCM due to RBM20 p.Arg636Cy and several SCDs. The proband was a 37-year-old male who suffered an unexpected SCD despite presenting a mild DCM phenotype with normal left ventricular ejection fraction. Family screening identified four other carriers, who were asymptomatic, but presented concealed mild DCM phenotypes. Family history revealed that six other relatives (two of them obligate carriers) had also suffered sudden deaths at young ages. Conclusions: We present an informative family with DCM, due to RBM20 p.Arg636Cys, and high rates of SCD, even in members with mild DCM phenotypes. ICD implantation to prevent SCD should be carefully evaluated in all RBM20 p.Arg636Cys carriers. Moreover, the frequent development of AF and HF progression requires specific awareness.
Collapse
Affiliation(s)
- Rebeca Lorca
- Área del Corazón, Hospital Universitario Central Asturias, 33011 Oviedo, Spain
- Unidad de Cardiopatías Familiares, Área del Corazón y Departamento de Genética Molecular, Hospital Universitario Central Asturias, 33011 Oviedo, Spain
- Departamento de Biología Funcional, Universidad de Oviedo, 33003 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORs), 28029 Madrid, Spain
| | - Alberto Alén
- Área del Corazón, Hospital Universitario Central Asturias, 33011 Oviedo, Spain
| | - María Salgado
- Área del Corazón, Hospital Universitario Central Asturias, 33011 Oviedo, Spain
| | | | - Javier Dolado-Cuello
- Instituto de Medicina Legal y Ciencias Forenses de Asturias, 33011 Oviedo, Spain
| | - Juan Gómez
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, 33011 Oviedo, Spain
| | - Vanesa Alonso
- Área del Corazón, Hospital Universitario Central Asturias, 33011 Oviedo, Spain
| | - Eliecer Coto
- Unidad de Cardiopatías Familiares, Área del Corazón y Departamento de Genética Molecular, Hospital Universitario Central Asturias, 33011 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORs), 28029 Madrid, Spain
- Departamento de Medicina, Universidad de Oviedo, 33003 Oviedo, Spain
| | - Pablo Avanzas
- Área del Corazón, Hospital Universitario Central Asturias, 33011 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, 33011 Oviedo, Spain
- Departamento de Medicina, Universidad de Oviedo, 33003 Oviedo, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | | | - María Paz Suárez Mier
- Histopathology Service, National Institute of Toxicology and Forensic Sciences, 28232 Madrid, Spain;
| |
Collapse
|
2
|
Ylipää J, Andersson T. Genetic analysis and family screening for dilated cardiomyopathy: a retrospective analysis of the stepwise pedigree approach. SCAND CARDIOVASC J 2024; 58:2379356. [PMID: 39046218 DOI: 10.1080/14017431.2024.2379356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/25/2024]
Abstract
AIMS This study aimed to assess the practicality of using a stepwise pedigree-based approach to differentiate between familial and sporadic Dilated Cardiomyopathy (DCM), while also considering timing of the genetic analysis. The analysis includes an examination of the extent to which complete family investigations were conducted in real-world scenarios as well as the length of the investigation. METHODS The stepwise pedigree approach involved conducting a comprehensive family history spanning 3 to 4 generations, reviewing medical records of relatives, and conducting clinical screening using echocardiography and electrocardiogram on first-degree relatives. Familial DCM was diagnosed when at least 2 family members were found to have DCM, and genetic analysis was considered as an option. This study involved a manual review of all DCM investigations conducted at the Centre of Cardiovascular Genetics at Umeå University Hospital, where the stepwise pedigree approach has been employed since 2007. RESULTS The investigation process had a mean duration of 643 days (95% CI 560.5-724.9). Of the investigations preformed, 94 (68%) were complete, 12 (9%) were ongoing, and 33 (24%) were prematurely terminated and thus incomplete. At the conclusion of the investigations, 55 cases (43%) were classified as familial DCM, 50 (39%) as sporadic DCM, and 22 (18%) remained unassessed due to incomplete pedigrees. Among the familial cases, genetic verification was achieved in 40%. CONCLUSION The stepwise pedigree approach is time consuming, and the investigations are often incomplete which may suggest that a more direct approach to genetic analysis, may be warranted.
Collapse
Affiliation(s)
- Josef Ylipää
- Department of Public Health and Clinical Medicine, Unit of Medicine, Umeå University, Umeå, Sweden
| | - Therese Andersson
- Department of Public Health and Clinical Medicine, Unit of Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
3
|
Voinescu OR, Ionescu BI, Militaru S, Afana AS, Sascau R, Vasiliu L, Onciul S, Dobrescu MA, Cozlac RA, Cozma D, Rancea R, Dragulescu B, Andreescu NI, Puiu M, Jurcut RO, Chirita-Emandi A. Genetic Characterization of Dilated Cardiomyopathy in Romanian Adult Patients. Int J Mol Sci 2024; 25:2562. [PMID: 38473809 DOI: 10.3390/ijms25052562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Dilated cardiomyopathy (DCM) represents a group of disorders affecting the structure and function of the heart muscle, leading to a high risk of heart failure and sudden cardiac death (SCD). DCM frequently involves an underlying genetic etiology. Genetic testing is valuable for risk stratification, treatment decisions, and family screening. Romanian population data on the genetic etiology of DCM are lacking. We aimed to investigate the genetic causes for DCM among Romanian adult patients at tertiary referral centers across the country. Clinical and genetic investigations were performed on adult patients presenting to tertiary hospitals in Romania. The genetic investigations used next-generation sequencing panels of disease-associated DCM genes. A total of 122 patients with DCM underwent genetic testing. The mean age at DCM diagnosis was 41.6 ± 12.4 years. The genetic investigations identified pathogenic or likely pathogenic variants in 50.8% of participants, while 25.4% had variants of unknown significance. Disease-causing variants in 15 genes were identified in people with DCM, with 31 previously unreported variants. Variants in TTN, LMNA, and DSP explained 75% of genetic causes for DCM. In total, 52.4% of patients had a family history of DCM/SCD. Left ventricular ejection fraction of <35% was observed in 41.9% of patients with disease-causing variants and 55% with negative or uncertain findings. Further genotype-phenotype correlations were explored in this study population. The substantial percentage (50.8%) of disease-causing variants identified in patients with DCM acknowledges the importance of genetic investigations. This study highlights the genetic landscape in genes associated with DCM in the Romanian population.
Collapse
Affiliation(s)
- Oana Raluca Voinescu
- Department of Cardiology, Cardiology Discipline II, University of Medicine and Pharmacy "Victor Babeș", Eftimie Murgu Sq., 300041 Timișoara, Romania
| | - Bogdana Ioana Ionescu
- Department of Cardiology, University of Medicine and Pharmacy 'Carol Davila', Dionisie Lupu Street, no. 37, Sector 2, 4192910 Bucharest, Romania
- Expert Center for Rare Cardiac Genetic Diseases, Emergency Institute for Cardiovascular Diseases 'Prof.dr.C.C.Iliescu', Fundeni 258, 022328 Bucharest, Romania
| | - Sebastian Militaru
- Department of Cardiology, Craiova University of Medicine and Pharmacy, Petru Rareș Street no 2, 200349 Craiova, Romania
- Cardiomed Hospital, Craiova, Str. Spania, Nr. 35A, 200513 Craiova, Romania
| | - Andreea Sorina Afana
- Department of Cardiology, Craiova University of Medicine and Pharmacy, Petru Rareș Street no 2, 200349 Craiova, Romania
- Cardiomed Hospital, Craiova, Str. Spania, Nr. 35A, 200513 Craiova, Romania
| | - Radu Sascau
- Internal Medicine Department, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700503 Iași, Romania
- Cardiology Department, Cardiovascular Diseases Institute "Prof. Dr. George I. M. Georgescu", 50 Boulevard Carol I, 700503 Iași, Romania
| | - Laura Vasiliu
- Internal Medicine Department, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700503 Iași, Romania
- Cardiology Department, Cardiovascular Diseases Institute "Prof. Dr. George I. M. Georgescu", 50 Boulevard Carol I, 700503 Iași, Romania
| | - Sebastian Onciul
- Department of Cardiology, University of Medicine and Pharmacy 'Carol Davila', Dionisie Lupu Street, no. 37, Sector 2, 4192910 Bucharest, Romania
| | - Mihaela Amelia Dobrescu
- Genetics Department, Craiova University of Medicine and Pharmacy, Petru Rareș 2 Street, 200349 Craiova, Romania
- Regional Centre of Medical Genetics Dolj, Emergency County Hospital Craiova, 200642 Craiova, Romania
| | - Ramona Alina Cozlac
- Department of Cardiology, Cardiology Discipline II, University of Medicine and Pharmacy "Victor Babeș", Eftimie Murgu Sq., 300041 Timișoara, Romania
- Cardiology Department, Institute of Cardiovascular Diseases, Gheorghe Adam Street, 13A, 300310 Timișoara, Romania
| | - Dragos Cozma
- Department of Cardiology, Cardiology Discipline II, University of Medicine and Pharmacy "Victor Babeș", Eftimie Murgu Sq., 300041 Timișoara, Romania
- Cardiology Department, Institute of Cardiovascular Diseases, Gheorghe Adam Street, 13A, 300310 Timișoara, Romania
| | - Raluca Rancea
- Cardiology Department, Heart Institute Niculae Stăncioiu, 19-21 Motilor Street, 400001 Cluj-Napoca, Romania
| | - Bogdan Dragulescu
- Communications Department, Politehnica University Timisoara, sq Victoriei 2, 300006 Timișoara, Romania
| | - Nicoleta Ioana Andreescu
- Department of Microscopic Morphology, Genetics Discipline, Center of Genomic Medicine, University of Medicine and Pharmacy "Victor Babeș" Timișoara, 2 Piaţa Eftimie Murgu Street, 300041 Timişoara, Romania
- Regional Center of Medical Genetics Timiș, Clinical Emergency Hospital for Children "Louis Țurcanu" Iosif Nemoianu Street N°2, 300011 Timișoara, Romania
| | - Maria Puiu
- Department of Microscopic Morphology, Genetics Discipline, Center of Genomic Medicine, University of Medicine and Pharmacy "Victor Babeș" Timișoara, 2 Piaţa Eftimie Murgu Street, 300041 Timişoara, Romania
- Regional Center of Medical Genetics Timiș, Clinical Emergency Hospital for Children "Louis Țurcanu" Iosif Nemoianu Street N°2, 300011 Timișoara, Romania
| | - Ruxandra Oana Jurcut
- Department of Cardiology, University of Medicine and Pharmacy 'Carol Davila', Dionisie Lupu Street, no. 37, Sector 2, 4192910 Bucharest, Romania
- Expert Center for Rare Cardiac Genetic Diseases, Emergency Institute for Cardiovascular Diseases 'Prof.dr.C.C.Iliescu', Fundeni 258, 022328 Bucharest, Romania
| | - Adela Chirita-Emandi
- Department of Microscopic Morphology, Genetics Discipline, Center of Genomic Medicine, University of Medicine and Pharmacy "Victor Babeș" Timișoara, 2 Piaţa Eftimie Murgu Street, 300041 Timişoara, Romania
- Regional Center of Medical Genetics Timiș, Clinical Emergency Hospital for Children "Louis Țurcanu" Iosif Nemoianu Street N°2, 300011 Timișoara, Romania
| |
Collapse
|
4
|
Guevara-Ramírez P, Cadena-Ullauri S, Ibarra-Castillo R, Laso-Bayas JL, Paz-Cruz E, Tamayo-Trujillo R, Ruiz-Pozo VA, Doménech N, Ibarra-Rodríguez AA, Zambrano AK. Genomic analysis of a novel pathogenic variant in the gene LMNA associated with cardiac laminopathies found in Ecuadorian siblings: A case report. Front Cardiovasc Med 2023; 10:1141083. [PMID: 37025686 PMCID: PMC10070725 DOI: 10.3389/fcvm.2023.1141083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/03/2023] [Indexed: 04/08/2023] Open
Abstract
Introduction Cardiac laminopathies are caused by mutations in the LMNA gene and include a wide range of clinical manifestations involving electrical and mechanical changes in cardiomyocytes. In Ecuador, cardiovascular diseases were the primary cause of death in 2019, accounting for 26.5% of total deaths. Cardiac laminopathy-associated mutations involve genes coding for structural proteins with functions related to heart development and physiology. Family description Two Ecuadorian siblings, self-identified as mestizos, were diagnosed with cardiac laminopathies and suffered embolic strokes. Moreover, by performing Next-Generation Sequencing, a pathogenic variant (NM_170707.3:c.1526del) was found in the gene LMNA. Discussion and conclusion Currently, genetic tests are an essential step for disease genetic counseling, including cardiovascular disease diagnosis. Identification of a genetic cause that may explain the risk of cardiac laminopathies in a family can help the post-test counseling and recommendations from the cardiologist. In the present report, a pathogenic variant ((NM_170707.3:c.1526del) has been identified in two Ecuadorian siblings with cardiac laminopathies. The LMNA gene codes for A-type laminar proteins that are associated with gene transcription regulation. Mutations in the LMNA gene cause laminopathies, disorders with diverse phenotypic manifestations. Moreover, understanding the molecular biology of the disease-causing mutations is essential in deciding the correct type of treatment.
Collapse
Affiliation(s)
- Patricia Guevara-Ramírez
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Santiago Cadena-Ullauri
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Rita Ibarra-Castillo
- Department of Hemodynamics, Clinical Cardiac Electrophysiologist, Quito-Ecuador, Ecuador
| | - José Luis Laso-Bayas
- Department of Hemodynamics, Clinical Cardiac Electrophysiologist, Quito-Ecuador, Ecuador
| | - Elius Paz-Cruz
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Rafael Tamayo-Trujillo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Viviana A. Ruiz-Pozo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Nieves Doménech
- Instituto de Investigación Biomédica de A Coruña (INIBIC)-CIBERCV, Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidad da Coruña (UDC), La Coruña-Spain, Spain
| | | | - Ana Karina Zambrano
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
- Correspondence: Ana Karina Zambrano
| |
Collapse
|
5
|
Xintarakou A, Kariki O, Doundoulakis I, Arsenos P, Soulaidopoulos S, Laina A, Xydis P, Kordalis A, Nakas N, Theofilou A, Vlachopoulos C, Tsioufis K, Gatzoulis KA. The Role of Genetics in Risk Stratification Strategy of Dilated Cardiomyopathy. Rev Cardiovasc Med 2022; 23:305. [PMID: 39077708 PMCID: PMC11262384 DOI: 10.31083/j.rcm2309305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 07/31/2024] Open
Abstract
Dilated cardiomyopathy (DCM) is a heart disorder of diverse etiologies that affects millions of people worldwide, associated with increased mortality rate and high risk of sudden cardiac death. Patients with DCM are characterized by a wide range of clinical and pre-clinical phenotypes which are related with different outcomes. Dominant studies have failed to demonstrate the value of the left ventricular ejection fraction as the only indicator for patients' assessment and arrhythmic events prediction, thus making sudden cardiac death (SCD) risk stratification strategy improvement, more crucial than ever. The multifactorial two-step approach, examining non-invasive and invasive risk factors, represents an alternative process that enhances the accurate diagnosis and the individualization of patients' management. The role of genetic testing, regarding diagnosis and decision making, is of great importance, as pathogenic variants have been detected in several patients either they had a disease relative family history or not. At the same time there are specific genes mutations that have been associated with the prognosis of the disease. The aim of this review is to summarize the latest data regarding the genetic substrate of DCM and the value of genetic testing in patients' assessment and arrhythmic risk evaluation. Undoubtedly, the appropriate application of genetic testing and the thoughtful analysis of the results will contribute to the identification of patients who will receive major benefit from an implantable defibrillator as preventive treatment of SCD.
Collapse
Affiliation(s)
- Anastasia Xintarakou
- First Cardiology Department, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece
| | - Ourania Kariki
- Department of Cardiology, Onassis Cardiac Surgery Center, Athens, 17674 Kallithea, Greece
| | - Ioannis Doundoulakis
- First Cardiology Department, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece
| | - Petros Arsenos
- First Cardiology Department, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece
| | - Stergios Soulaidopoulos
- First Cardiology Department, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece
| | - Aggeliki Laina
- First Cardiology Department, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece
| | - Panagiotis Xydis
- First Cardiology Department, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece
| | - Athanasios Kordalis
- First Cardiology Department, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece
| | - Nikolaos Nakas
- Department of Cardiology, General Hospital of Nikaia-Piraeus “Agios Panteleimon”, Piraeus, 18454 Nikaia, Greece
| | - Alexia Theofilou
- Department of Cardiology, General Hospital of Nikaia-Piraeus “Agios Panteleimon”, Piraeus, 18454 Nikaia, Greece
| | - Charalampos Vlachopoulos
- First Cardiology Department, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece
| | - Konstantinos Tsioufis
- First Cardiology Department, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece
| | - Konstantinos A Gatzoulis
- First Cardiology Department, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece
| |
Collapse
|
6
|
Khazamipour A, Gholampour-Faroji N, Zeraati T, Vakilian F, Haddad-Mashadrizeh A, Ghayour Mobarhan M, Pasdar A. A novel causative functional mutation in GATA6 gene is responsible for familial dilated cardiomyopathy as supported by in silico functional analysis. Sci Rep 2022; 12:13752. [PMID: 35962153 PMCID: PMC9374661 DOI: 10.1038/s41598-022-13993-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 05/31/2022] [Indexed: 11/09/2022] Open
Abstract
Dilated cardiomyopathy (DCM), one of the most common types of cardiomyopathies has a heterogeneous nature and can be seen in Mendelian forms. Next Generation Sequencing is a powerful tool for identifying novel variants in monogenic disorders. We used whole-exome sequencing (WES) and Sanger sequencing techniques to identify the causative mutation of DCM in an Iranian pedigree. We found a novel variant in the GATA6 gene, leading to substituting Histidine by Tyrosine at position 329, observed in all affected family members in the pedigree, whereas it was not established in any of the unaffected ones. We hypothesized that the H329Y mutation may be causative for the familial pattern of DCM in this family. The predicted models of GATA6 and H329Y showed the high quality according to PROCHECK and ERRAT. Nonetheless, simulation results revealed that the protein stability decreased after mutation, while the flexibility may have been increased. Hence, the mutation led to the increased compactness of GATA6. Overall, these data indicated that the mutation could affect the protein structure, which may be related to the functional impairment of GATA6 upon H329Y mutation, likewise their involvement in pathologies. Further functional investigations would help elucidating the exact mechanism.
Collapse
Affiliation(s)
- Afrouz Khazamipour
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nazanin Gholampour-Faroji
- Biotechnology Department, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Tina Zeraati
- Medical Genetics Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farveh Vakilian
- Atherosclerosis Prevention Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Aliakbar Haddad-Mashadrizeh
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Majid Ghayour Mobarhan
- Metabolic Syndrome Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Alireza Pasdar
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Medical Genetics Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Division of Applied Medicine, Medical School, University of Aberdeen, Foresterhill, Aberdeen, UK.
- Bioinformatics Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Hu M, Liu P, Lu S, Wang Z, Lyu Z, Liu H, Sun Y, Liu F, Tian J. Myocardial protective effect and transcriptome profiling of Naoxintong on cardiomyopathy in zebrafish. Chin Med 2021; 16:119. [PMID: 34775978 PMCID: PMC8591872 DOI: 10.1186/s13020-021-00532-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/01/2021] [Indexed: 11/19/2022] Open
Abstract
Background Cardiomyopathy is a kind of cardiovascular diseases, which makes it more difficult for the heart to pump blood to other parts of the body, eventually leading to heart failure. Naoxintong (NXT), as a traditional Chinese Medicine (TCM) preparation, is widely used in the treatment of cardiovascular diseases, including cardiomyopathy, while its underlying mechanism has not been fully elucidated. The purpose of this study is to investigate the therapeutic effect of NXT on cardiomyopathy and its molecular mechanism in zebrafish model. Methods The zebrafish cardiomyopathy model was established using terfenadine (TFD) and treated with NXT. The therapeutic effect of NXT on cardiomyopathy was evaluated by measuring the heart rate, the distance between the sinus venosus and bulbus arteriosus (SV-BA), the pericardial area, and the blood flow velocity of zebrafish. Then, the zebrafish hearts were isolated and collected; transcriptome analysis of NXT on cardiomyopathy was investigated. Moreover, the heg1 mutant of zebrafish congenital cardiomyopathy model was used to further validate the therapeutic effect of NXT on cardiomyopathy. Additionally, UPLC analysis combined with the zebrafish model investigation was performed to identify the bioactive components of NXT. Results In the TFD-induced zebrafish cardiomyopathy model, NXT treatment could significantly restore the cardiovascular malformations caused by cardiac dysfunction. Transcriptome and bioinformatics analyses of the TFD and TFD + NXT treated zebrafish developing hearts revealed that the differentially expressed genes were highly enriched in biological processes such as cardiac muscle contraction and heart development. As a cardiac development protein associated with cardiomyopathy, HEG1 had been identified as one of the important targets of NXT in the treatment of cardiomyopathy. The cardiovascular abnormalities of zebrafish heg1 mutant could be recovered significantly from NXT treatment, including the expanded atrial cavity and blood stagnation. qRT-PCR analysis further showed that NXT could restore cardiomyopathy phenotype in zebrafish through HEG1-CCM signaling. Among the seven components identified in NXT, paeoniflorin (PF) and salvianolic acid B (Sal B) were considered to be the main bioactive ones with myocardial protection. Conclusion NXT presented myocardial protective effect and could restore myocardial injury and cardiac dysfunction in zebrafish; the action mechanism was involved in HEG1-CCM signaling. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-021-00532-0.
Collapse
Affiliation(s)
- Mengyan Hu
- Western China Zebrafish Research Center for Human Diseases and Drug Screening, The College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Peirong Liu
- Western China Zebrafish Research Center for Human Diseases and Drug Screening, The College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Shuxian Lu
- Western China Zebrafish Research Center for Human Diseases and Drug Screening, The College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Zhihao Wang
- Western China Zebrafish Research Center for Human Diseases and Drug Screening, The College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Zhaojie Lyu
- Western China Zebrafish Research Center for Human Diseases and Drug Screening, The College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Hongkai Liu
- Western China Zebrafish Research Center for Human Diseases and Drug Screening, The College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Yuhong Sun
- Shaanxi Buchang Pharmaceutical Co. Ltd., Xi'an, 710075, China
| | - Feng Liu
- Shaanxi Buchang Pharmaceutical Co. Ltd., Xi'an, 710075, China.,Shaanxi Institute of International Trade and Commence, Xi'an, 712046, China
| | - Jing Tian
- Western China Zebrafish Research Center for Human Diseases and Drug Screening, The College of Life Sciences, Northwest University, Xi'an, 710069, China. .,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
8
|
Dungu JN, Langley SG, Hardy-Wallace A, Li B, Barbagallo RM, Field D, Homfray T, Savage HO. Dilated cardiomyopathy: the role of genetics, highlighted in a family with Filamin C (FLNC) variant. Heart 2021; 108:676-682. [PMID: 34417207 DOI: 10.1136/heartjnl-2021-319682] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/09/2021] [Indexed: 12/30/2022] Open
Abstract
Dilated cardiomyopathy (DCM) is a heterogenous group of disorders characterised by left ventricular dilatation and dysfunction, in the absence of factors affecting loading conditions such as hypertension or valvular disease, or significant coronary artery disease. The prevalence of idiopathic DCM is estimated between 1:250 and 1:500 individuals. Determining the aetiology of DCM can be challenging, particularly when evaluating an individual and index case with no classical history or investigations pointing towards an obvious acquired cause, or no clinical clues in the family history to suggest a genetic cause. We present a family affected by DCM associated with Filamin C variant, causing sudden cardiac death at a young age and heart failure due to severe left ventricular impairment and myocardial scarring. We review the diagnosis and treatment of DCM, its genetic associations and potential acquired causes. Thorough assessment is mandatory to risk stratify and identify patients who may benefit from primary prevention implantable cardioverter defibrillator therapy according to international guidelines. Genetic testing has some limitations, and is positive in only 20%-35% of DCM, but should be considered in specific cases to identify families who may benefit from cascade screening after appropriate counselling. The management of often complex familial cardiomyopathy requires specialist input for every case, and the appropriate infrastructure to coordinate investigations.
Collapse
Affiliation(s)
- Jason N Dungu
- Cardiology, Essex Cardiothoracic Centre, Mid & South Essex NHS Foundation Trust, Basildon, UK .,Circulatory Health Research Group, Anglia Ruskin University, Chelmsford, UK
| | - Samantha G Langley
- Cardiology, Essex Cardiothoracic Centre, Mid & South Essex NHS Foundation Trust, Basildon, UK
| | - Amy Hardy-Wallace
- Cardiology, Essex Cardiothoracic Centre, Mid & South Essex NHS Foundation Trust, Basildon, UK
| | - Brian Li
- Cardiology, Essex Cardiothoracic Centre, Mid & South Essex NHS Foundation Trust, Basildon, UK.,Circulatory Health Research Group, Anglia Ruskin University, Chelmsford, UK
| | - Rossella M Barbagallo
- Cardiology, Essex Cardiothoracic Centre, Mid & South Essex NHS Foundation Trust, Basildon, UK
| | - Duncan Field
- Cardiology, Essex Cardiothoracic Centre, Mid & South Essex NHS Foundation Trust, Basildon, UK
| | - Tessa Homfray
- Royal Brompton & Harefield NHS Foundation Trust, London, UK
| | - Henry Oluwasefunmi Savage
- Cardiology, Essex Cardiothoracic Centre, Mid & South Essex NHS Foundation Trust, Basildon, UK.,Circulatory Health Research Group, Anglia Ruskin University, Chelmsford, UK
| |
Collapse
|
9
|
Jordà P, Toro R, Diez C, Salazar-Mendiguchía J, Fernandez-Falgueras A, Perez-Serra A, Coll M, Puigmulé M, Arbelo E, García-Álvarez A, Sarquella-Brugada G, Cesar S, Tiron C, Iglesias A, Brugada J, Brugada R, Campuzano O. Malignant Arrhythmogenic Role Associated with RBM20: A Comprehensive Interpretation Focused on a Personalized Approach. J Pers Med 2021; 11:130. [PMID: 33671899 PMCID: PMC7918949 DOI: 10.3390/jpm11020130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/17/2022] Open
Abstract
The RBM20 gene encodes the muscle-specific splicing factor RNA-binding motif 20, a regulator of heart-specific alternative splicing. Nearly 40 potentially deleterious variants in RBM20 have been reported in the last ten years, being found to be associated with highly arrhythmogenic events in familial dilated cardiomyopathy. Frequently, malignant arrhythmias can be a primary manifestation of disease. The early recognition of arrhythmic genotypes is crucial in avoiding lethal episodes, as it may have an impact on the adoption of personalized preventive measures. Our study performs a comprehensive update of data concerning rare variants in RBM20 that are associated with malignant arrhythmogenic phenotypes with a focus on personalized medicine.
Collapse
Affiliation(s)
- Paloma Jordà
- Cardiology Department, Hospital Clinic, University of Barcelona-IDIBAPS, 08036 Barcelona, Spain; (P.J.); (E.A.); (A.G.-A.); (J.B.)
| | - Rocío Toro
- Medicine Department, School of Medicine, University of Cadiz, 11001 Cadiz, Spain;
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), 11001 Cadiz, Spain
| | - Carles Diez
- Cardiovascular Diseases Research Group Bellvitge Biomedical Research Institute (IDIBELL) Hospitalet de Llobregat, 08001 Barcelona, Spain; (C.D.); (J.S.-M.)
- Advanced Heart Failure and Heart Transplant Unit Department of Cardiology Bellvitge University Hospital Hospitalet de Llobregat, 08001 Barcelona, Spain
| | - Joel Salazar-Mendiguchía
- Cardiovascular Diseases Research Group Bellvitge Biomedical Research Institute (IDIBELL) Hospitalet de Llobregat, 08001 Barcelona, Spain; (C.D.); (J.S.-M.)
| | - Anna Fernandez-Falgueras
- Cardiovascular Genetics Center, University of Girona-IDIBGI, 17001 Girona, Spain; (A.F.-F.); (A.P.-S.); (M.C.); (M.P.); (A.I.)
| | - Alexandra Perez-Serra
- Cardiovascular Genetics Center, University of Girona-IDIBGI, 17001 Girona, Spain; (A.F.-F.); (A.P.-S.); (M.C.); (M.P.); (A.I.)
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Monica Coll
- Cardiovascular Genetics Center, University of Girona-IDIBGI, 17001 Girona, Spain; (A.F.-F.); (A.P.-S.); (M.C.); (M.P.); (A.I.)
| | - Marta Puigmulé
- Cardiovascular Genetics Center, University of Girona-IDIBGI, 17001 Girona, Spain; (A.F.-F.); (A.P.-S.); (M.C.); (M.P.); (A.I.)
| | - Elena Arbelo
- Cardiology Department, Hospital Clinic, University of Barcelona-IDIBAPS, 08036 Barcelona, Spain; (P.J.); (E.A.); (A.G.-A.); (J.B.)
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Ana García-Álvarez
- Cardiology Department, Hospital Clinic, University of Barcelona-IDIBAPS, 08036 Barcelona, Spain; (P.J.); (E.A.); (A.G.-A.); (J.B.)
| | - Georgia Sarquella-Brugada
- Pediatric Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Cardiology Department, Hospital Sant Joan de Déu, University of Barcelona, 08950 Barcelona, Spain; (G.S.-B.); (S.C.)
- Medical Science Department, School of Medicine, University of Girona, 17001 Girona, Spain
| | - Sergi Cesar
- Pediatric Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Cardiology Department, Hospital Sant Joan de Déu, University of Barcelona, 08950 Barcelona, Spain; (G.S.-B.); (S.C.)
| | - Coloma Tiron
- Cardiology Service, Hospital Josep Trueta, University of Girona, 17001 Girona, Spain;
| | - Anna Iglesias
- Cardiovascular Genetics Center, University of Girona-IDIBGI, 17001 Girona, Spain; (A.F.-F.); (A.P.-S.); (M.C.); (M.P.); (A.I.)
| | - Josep Brugada
- Cardiology Department, Hospital Clinic, University of Barcelona-IDIBAPS, 08036 Barcelona, Spain; (P.J.); (E.A.); (A.G.-A.); (J.B.)
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Pediatric Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Cardiology Department, Hospital Sant Joan de Déu, University of Barcelona, 08950 Barcelona, Spain; (G.S.-B.); (S.C.)
| | - Ramon Brugada
- Cardiovascular Genetics Center, University of Girona-IDIBGI, 17001 Girona, Spain; (A.F.-F.); (A.P.-S.); (M.C.); (M.P.); (A.I.)
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Medical Science Department, School of Medicine, University of Girona, 17001 Girona, Spain
- Cardiology Service, Hospital Josep Trueta, University of Girona, 17001 Girona, Spain;
| | - Oscar Campuzano
- Cardiovascular Genetics Center, University of Girona-IDIBGI, 17001 Girona, Spain; (A.F.-F.); (A.P.-S.); (M.C.); (M.P.); (A.I.)
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Pediatric Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Cardiology Department, Hospital Sant Joan de Déu, University of Barcelona, 08950 Barcelona, Spain; (G.S.-B.); (S.C.)
- Medical Science Department, School of Medicine, University of Girona, 17001 Girona, Spain
| |
Collapse
|